J.%m nes:Lettnin J
Ml S‘WI tg/holer Ed/tors

Embedded
Software
Verification
and Debugging

@ Springer

Embedded Systems

Series editors

Nikil D. Dutt, Irvine, CA, USA
Grant Martin, Santa Clara, CA, USA
Peter Marwedel, Dortmund, Germany

This Series addresses current and future challenges pertaining to embedded
hardware, software, specifications and techniques. Titles in the Series cover a
focused set of embedded topics relating to traditional computing devices as well as
high-tech appliances used in newer, personal devices, and related topics. The
material will vary by topic but in general most volumes will include fundamental
material (when appropriate), methods, designs and techniques.

More information about this series at http://www.springer.com/series/8563

Djones Lettnin - Markus Winterholer
Editors

Embedded Software
Verification and Debugging

@ Springer

Editors

Djones Lettnin Markus Winterholer
Universidade Federal de Santa Catarina Luzern

Floriandpolis Switzerland

Brazil

ISSN 2193-0155 ISSN 2193-0163 (electronic)
Embedded Systems

ISBN 978-1-4614-2265-5 ISBN 978-1-4614-2266-2 (eBook)

DOI 10.1007/978-1-4614-2266-2
Library of Congress Control Number: 2017932782

© Springer Science+Business Media, LLC 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

Markus Winterholer dedicates to
Eva-Maria and David.

Djones Lettnin dedicates to
Amelie and Fabiana.

Foreword

I am glad to write a foreword for this book.

Verification (informally defined as the process of finding bugs before they annoy
or kill somebody) is an increasingly important topic. And I am particularly glad to
see that the book covers the full width of verification, including debugging,
dynamic and formal verification, and assertion creation.

I think that as a field matures, it goes through the following stages regarding
verification:

Trying to pay little attention to it, in an effort to “get things done”;

Then, when bugs start piling up, looking into debugging techniques;

Then, starting to look into more systematic ways of finding new bugs;

And finally, finding a good balance of advanced techniques, such as coverage-
driven dynamic verification, improved assertions, and formal verification.

The area of HW verification (and HW/SW co-verification), where I had the
pleasure of working with Markus, offers an interesting perspective: It has gone
through all these stages years ago, but it was never easy to see the full path ahead.

Consider just the dynamic-verification slice of that history: Initially, no one
could predict how important bugs (and thus verification) would be. It took several
chip-project failures (I personally witnessed one, first hand) to understand that
verification was going to be a big part of our future forever. Then, more random
testing was used. That helped, but not enough, so advanced, constrained-random,
massive test generation was invented. Then, it became clear that functional cov-
erage (not just code coverage) was needed, to make sense of all the resulting runs
and see which covered what.

It then dawned on everybody that this new coverage-driven verification needed
its own professionals, and thus “verification engineer” as a job description came to
be. Then, as CDV started producing more failing runs than engineers could debug,
emphasis again shifted to advanced debug tools and so on. All of this looks rea-
sonable in hindsight, but was not so obvious on day one.

vii

viii Foreword

Newer fields like autonomous systems are still working their way through the
list, but as the cost of bugs there become clearer, I expect them to adopt more of the
advanced techniques mentioned in this book.

November 2016 Yoav Hollander
Foretellix Ltd.

Contents

1 An Overview About Debugging and Verification Techniques
for Embedded Software 1
Djones Lettnin and Markus Winterholer

1.1 The Importance of Debugging and Verification Processes 1
1.2 Debugging and Verification Platforms 4
1.2.1 OS Simulation. 4
1.2.2 Virtwal Platform 5
1.2.3 RTL Simulation 5
1.2.4 Acceleration/Emulation 5
1.2.5 FPGA Prototypingcooiiiiiuine.... 6
1.2.6 Prototyping Board 6
1.2.7 Choosing the Right Platform for Software
Development and Debugging 7
1.3 Debugging Methodologiesc.vieunn... 7
1.3.1 Interactive Debugging 8
1.3.2 Post-Process Debugging 8
1.3.3 Choosing the Right Debugging Methodology 10
1.4 Verification Methodologies 10
1.4.1 Verification Planning 10
1.4.2 Verification Environment Development 11
L5 Summary 14
References. 15
2 Embedded Software Debug in Simulation and Emulation
Environments for Interface IP 19
Cyprian Wronka and Jan Kotas
2.1 Firmware Debug Methods Overview 19
2.2 Firmware Debuggability 22
2.3 Test-Driven Firmware Development for Interface IP 24
2.3.1 Starting Development 24

ix

Contents

2.3.2 First Functional Tests 27
2.3.3 Debugging a System. 31
2.34 System Performance 33
2.3.5 Interface IP Performance in a Full Featured OS Case. 34
2.3.6 Low Level Firmware Debug in a State-of-the-Art
Embedded System 35
2.4 Firmware Bring-up as a Hardware Verification Tool 35
241 NANDFlash 35
242 xHCIL ... 36
2.5 Playback Debugging with Cadence® Indago™ Embedded
Software Debugger 38
25.1 Example 39
2.5.2 Coverage Measurement 42
253 Drawbacks 44
2.6 ConCluSIONSttt 44
References 45
The Use of Dynamic Temporal Assertions for Debugging 47
Ziad A. Al-Sharif, Clinton L. Jeffery and Mahmoud H. Said
3.1 Introduction 47
3.1.1 DTA Assertions Versus Ordinary Assertions 48
3.1.2 DTA Assertions Versus Conditional Breakpoints 50
3.2 Debugging with DTA Assertions 50
33 DeSIZN . ..o 51
3.3.1 Past-Time DTA Assertions 53
3.3.2 Future-Time DTA Assertions 53
3.3.3 All-Time DTA Assertions 54
34 Assertion’s Evaluation 54
34.1 Temporal Cycles and Limits 56
34.2 Evaluation Log 57
3.4.3 DTA Assertions and Atomic Agents 57
3.5 Implementation.ttt 59
3.6 Evaluation............. 60
3.6.1 Performance 61
3.7 Challenges and Future Work 62
3.8 ConcClusion 63
References. 64

Automated Reproduction and Analysis of Bugs in Embedded

Software. 67
Hanno Eichelberger, Thomas Kropf, Jirgen Ruf

and Wolfgang Rosenstiel

4.1 Introduction 67
42 OVEIVIBW . o ottt 69

Contents xi

4.3 Debugger-Based Bug Reproduction 70
43.1 Stateofthe Art 71
4.3.2 Theory and Algorithms 73
433 Implementationuiuiirane. ... 75
4.3.4 EXPerimentsouuieniennenienen.. 78

4.4 Dynamic Verification During Replay 80
44.1 Stateofthe Art 80
4.4.2 Theory and Workflow 81
4.4.3 Implementation of Assertions During Replay 82
4.4.4 EXPerimentsoueeuuiueemnneennneeann. 83

4.5 Root-Cause Analysesc.oiuuiiiinennnnenn.. 84
45.1 Stateofthe Art 85
4.5.2 Theory and Conceptsc..cuuiniuiuo.... 86
4.5.3 Implementationc.. ... 97
454 EXperimentsoueenienneniraie... 100

4.6 SUMMATY . ..ottt 104

References 104

5 Model-Based Debugging of Embedded Software Systems 107

Padma Iyenghar, Elke Pulvermueller, Clemens Westerkamp,
Juergen Wuebbelmann and Michael Uelschen

5.1 Introduction 107
5.1.1 Problem Statement 108
5.1.2 Contribution 109

5.2 Related Work 110

5.3 Model-Based Debugging Framework 112
53.1 OVEIVIEW ...ttt 112

5.4 Runtime Monitoring 116
5.4.1 Classification of Runtime Monitoring 116
5.4.2 Time-and Memory-Aware Runtime Monitoring

Approaches 118

5.5 Experimental Evaluation 119
5.5.1 Software Monitoring0iiii.... 119
5.5.2 On-Chip (Software) Monitoring 123

5.6 Performance Metrics 125
5.6.1 Software Monitoring 125
5.6.2 On-Chip (Software) Monitoring 128

5.7 Discussion and Evaluation 129
5.7.1 Salient Features in the Proposed Approach 130

5.8 Conclusion 131

References e 131

xii

6

Contents
A Mechanism for Monitoring Driver-Device
Communication 133
Rafael Melo Macieira and Edna Barros
6.1 Introductiont 133
6.2 Related Works 135
6.3 Proposed Approach 136
6.4 Definition of the HFSM-D State Machine 141
6.5 The TDevC Language 144
6.5.1 TDevC Device Model 144
6.5.2 TDevC Platform Model 150
6.6 Architecture of the Monitoring Module 152
6.7 Experiments and Results 153
6.8 ConcClusionsoi 156
6.8.1 Future Works 156
References 157
Model Checking Embedded C Software Using k-Induction
and Invariants L 159
Herbert Rocha, Hussama Ismail, Lucas Cordeiro
and Raimundo Barreto
7.1 Introduction 159
7.2 Motivating Example 161
7.3 Induction-Based Verification of C Programs Using Invariants 162
7.3.1 The Proposed k-Induction Algorithm 162
7.3.2 Running Example 167
7.4 Experimental Evaluation 172
7.4.1 Experimental Setup 172
7.4.2 Experimental Results 173
7.5 Related Work 179
7.6 ConcCluSIONSttt e 180
References 181

Scalable and Optimized Hybrid Verification

of Embedded Software 183
Jorg Behrend, Djones Lettnin, Alexander Griinhage, Jiirgen Ruf,

Thomas Kropf and Wolfgang Rosenstiel

8.1 Introduction 183
82 Related Work 184
8.2.1 Contributions 186
8.3 VERIFYR Verification Methodology 186
83.1 SPAHeuristic.......... ... 189
8.3.2 Preprocessing Phase, 191

8.3.3 Orchestrator 194

Contents xiii
834 COVerageoiii 195

8.3.5 Technical Details 195

8.4 Results and Discussion 197
8.4.1 Testing Environment 197

8.4.2 Motorola Powerstone Benchmark Suite 197

8.4.3 Verification Results Using VERIFYR 199

8.4.4 EEPROM Emulation Software from NEC Electronics 200

8.5 Conclusion and Future Work 203
References 203
Index 207

Contributors

Ziad A. Al-Sharif Software Engineering Department, Jordan University of
Science and Technology, Irbid, Jordan

Raimundo Barreto Federal University of Amazonas, Manaus, Brazil

Edna Barros CIn - Informatics Center, UFPE—Federal University of
Pernambuco, Recife, Brazil

Jorg Behrend Department of Computer Engineering, University of Tiibingen,
Tiibingen, Germany

Lucas Cordeiro Federal University of Amazonas, Manaus, Brazil
Hanno Eichelberger University of Tiibingen, Tiibingen, Germany

Alexander Griinhage Department of Computer Engineering, University of
Tiibingen, Tiibingen, Germany

Hussama Ismail Federal University of Amazonas, Manaus, Brazil

Padma Iyenghar Software Engineering Research Group, University of
Osnabrueck, Osnabriick, Germany

Clinton L. Jeffery Computer Science Department, University of Idaho, Moscow,
ID, USA

Jan Kotas Cadence® Design Systems, Katowice, Poland

Thomas Kropf Department of Computer Engineering, University of Tiibingen,
Tiibingen, Germany

Djones Lettnin Department of Electrical and Electronic Engineering, Federal
University of Santa Catarina, Trindade, Floriandpolis, SC, Brazil

Rafael Melo Macieira Cln - Informatics Center, UFPE—Federal University of
Pernambuco, Recife, Brazil

XV

Xvi Contributors
Elke Pulvermueller Software Engineering Research Group, University of
Osnabrueck, Osnabriick, Germany

Herbert Rocha Federal University of Roraima, Boa Vista, Brazil

Wolfgang Rosenstiel Department of Computer Engineering, University of
Tiibingen, Tiibingen, Germany

Jiirgen Ruf Department of Computer Engineering, University of Tiibingen,
Tiibingen, Germany

Mahmoud H. Said Software Engineering Department, Jordan University of
Science and Technology, Irbid, Jordan

Michael Uelschen University of Applied Sciences, Osnabriick, Germany
Clemens Westerkamp University of Applied Sciences, Osnabriick, Germany
Markus Winterholer swissverified.com, Lucerne, Switzerland

Cyprian Wronka Cadence® Design Systems, San Jose, CA, USA

Juergen Wuebbelmann University of Applied Sciences, Osnabriick, Germany

Chapter 1

An Overview About Debugging

and Verification Techniques for Embedded
Software

Djones Lettnin and Markus Winterholer

1.1 The Importance of Debugging and Verification
Processes

Embedded systems (ES) have frequently been used over the last years in the electronic
systems industry due to their flexible operation and possibility of future expansions.
Embedded systems are composed of hardware, software, and other modules (e.g.,
mechanics) designed to perform a specific task as part of a larger system. Important
further concepts such as Cyber-Physical Systems (CPS) and Internet of Things (IoT)
consider also different aspects of ES. In CPS, computation and physical processes are
integrated considering physical quantities such as timing, energy, and size [4]. In IoT,
physical objects are seamlessly integrated into the information network [47]. Taking
everything into account, internal control of vehicles, autopilot, telecommunication
products, electrical appliances, mobile devices, robot control, and medical devices
are some of the practical examples of embedded systems.

Over the last years, the amount of software used in embedded electronic products
has been increasing and the tendency is that this evolution continues in the future.
Almost 90% of the microprocessors developed worldwide have been applied in
embedded systems products [52], since the embedded software (ESW) is the main
responsible for functional innovations, for instance, in the automotive area with the
reduction of gas emissions or with the improvement of security and comfort [45].

The embedded software is also frequently used in safety critical applications
(e.g., automotive) where failures are unacceptable [21], as seen in lists of disasters

D. Lettnin (X))

Department of Electrical and Electronic Engineering, Federal University
of Santa Catarina, Florian6polis, Brazil

e-mail: djones.lettnin@ufsc.br

M. Winterholer
swissverified.com, Lucerne, Switzerland
e-mail: markus @ winterholer.com

© Springer Science+Business Media, LLC 2017 1
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_1

2 D. Lettnin and M. Winterholer

Applications
Middleware
Operating System
Driver
Bare Metal Software
Firmware
CPU Subsystem Application Specific Processors EE??F H -
Rl=1=1 = ==L EEE
. e P =
=- EEE
Interconnect SoC . D D D
e HEN
ROM
“EEE o
S0 =y
Integrated Curcuit Level Board Level Product Level

Fig. 1.1 Example a SoC into a system

and inconveniences occurred due to software errors [26, 32]. The main challenge of
verification and debugging processes is to handle the system complexity. For instance,
the automotive embedded software of a car achieved up to 1 GB by 2010 [61]. As
it can be observed in Fig. 1.1, embedded software is being applied with different
views in modern SoCs, going from application software (e.g., apps, middleware,
operating system, drivers, firmware) distributed among many processor cores, as
well as, hardware-dependent (i.e., bare metal) software and finally, covering the
communication software stacks.

The electronic system level (ESL) design and verification consider usually a com-
bination of bottom-up and top-down approaches [63]. It meets the system-level objec-
tives by exploiting the synergism of hardware and software through their concurrent
design. Therefore, the development of software needs start earlier (in parallel) to the
SoC design, integration‘, and verification, as depicted in Fig. 1.2. During the pre-
silicon phase, it is time to remove critical bugs in system environment. In this phase,
the SW is becoming more and more a requirement to tape out, since it may hold the
fabrication if a bug is too critical. After the production, the development of SW can
be continued on-chip and the post-silicon validation will be performed.

Software development, debugging, and verification processes are driving SoC
project costs reaching up to 80% of overall development costs, as it can be observed
in Fig. 1.3. The design complexity is getting higher and for this reasons it originates
the design productivity gap and the verification gap. The technology capability is
currently doubling every 36 months. The hardware design productivity improved
over the last couple of years by filling the silicon with multi-core and with mem-
ory components, and providing additional functionality in software [42]. With the
increase amount of embedded software, a software gap could be noticed, where
the main challenge now is how to fit millions of software lines with millions of

1 An Overview About Debugging and Verification Techniques ... 3

Apps

Middleware

Software
OS and

Firmware /
Drivers

SoC

Hardware
IP Sub-System

Time

Fig. 1.2 System development. Adapted from [37]

e S WATE

Verification
and
Validation

Physical
Imp.

P
_.Qualification ___

B5nm 40nm 28nm 20nm 16i14nm
(354M) (B15M) (1044M) (1317M) (1636M)
Process Node (# transistors)

Fig. 1.3 Software and verification driving SoC project costs [37]

gates [10]. The software part is currently doubling every 10 months, however, the
productivity for hardware-dependent software only doubles every 5 years. Together
with the increase of the design complexity, the lifetime and the time-to-market
requirements have been demanding shorter system design periods. This develop-
ment period could be smaller if it would be possible to minimize the verification
and debugging time [68]. When a device needs to be re-designed and/or new project
cycles need to be added to the development due to design errors, the final cost of
the product can be increased by hundreds of thousands of dollars. It is also common

4 D. Lettnin and M. Winterholer

agreement that the functional errors must be corrected before the device is released
to the market. Supplying companies of both hardware and software intellectual prop-
erty (IP') modules are examples of enterprises that demand high level of correctness,
since they need to assure that their IP cores will work correctly when inserted in a
target project [33].

This chapter introduces debugging/verification platforms and methodologies and
gives an overview about the scope and organization of this book.

1.2 Debugging and Verification Platforms

Debugging and Verification Platforms can be defined as a standard for the hardware
of a computer system, deciding what kinds of debugging and verification processes
can be performed. Basically, we can divide the platforms in two categories: Pre- and
Post-Silicon. In the pre-silicon platforms, the designs are debugged and verified using
virtual environment with sophisticated simulation and formal verification tools. In
distinction to post-silicon platforms where real devices are used running on target
boards with logic analyzer and assertion-based tools.

1.2.1 OS Simulation

The operating systems of smart devices (e.g., smartphones) allow the developers
to create thousands of additional programs with several utilities, such as, to store
personal data of the users. In order to develop these applications (i.e., apps), each
platform has its strengths, weaknesses, and challenges.

Gronli et al. [36] compare the main mobile OS platforms in several different
categories, such as software architecture, application development, platform capa-
bilities and constraints, and, finally, developer support. The compared OS platforms
considers: (1) Android, a Linux-based operating system from Google; (2) The Win-
dows Phone operating system from Microsoft; (3) The iOS platform from Apple;
and one platform representing a new generation: (4) The new web-based Firefox OS
from Mozilla. All evaluated platforms presented from good to excellent interactive
debugging options.

Untellectual property cores are design modules of both hardware or software units used as building
blocks, for instance, within SoC designs.

1 An Overview About Debugging and Verification Techniques ... 5

1.2.2 Virtual Platform

Virtual prototyping (VP) [3, 6] (aka. Virtual Platforms) is a software model of a
system that can be used for early software development and SoC/system architectural
analysis. Virtual prototyping includes processor and peripheral models that may run
at or near real-time speeds, potentially supporting pre-silicon development of the
entire software stack up to the applications level. Virtual prototyping solutions may
come with tools to help develop models, and they also usually provide a simulation
and debugging environment [72]. While early virtual prototyping solutions required
proprietary models, many now use SystemC models based on the Open SystemC
Initiative (OSCI), transaction-level modeling (TLM), [7] standard and the IEEE-
1666 SystemC standard [58].

In addition to early software development, virtual prototyping can be used for
software distribution, system development kits and customer demos. In post-RTL
software development, for example, virtual prototyping can be used as a low-cost
replacement for silicon reference boards distributed by semiconductor companies to
software developers in systems companies. Compared to reference boards, virtual
prototyping provides much better debug capabilities and iteration time, and therefore
can accelerate the post-silicon system integration process [6].

1.2.3 RTL Simulation

Hardware-dependent software requires a simulator or a target platform to be tested.
Register Transfer Level (RTL) simulation is the most widely used method to validate
the correctness of digital IC designs. They are better suited to test software with hard-
ware dependencies (e.g., assembly code) and that requires timing accuracy. However,
when simulating a large IC designs with complicated internal behaviors (e.g., CPU
cores running embedded software), RTL simulation can be extremely time consum-
ing. Since RTL-to-layout is still the most prevalent IC design methodology, it is
essential to speedup the RTL simulation process. Recently, General Purpose com-
puting on Graphics Processing Units (GPGPU) is becoming a promising paradigm
to accelerate computing-intensive workloads [62].

1.2.4 Acceleration/Emulation

Traditional debugging tools have not kept pace with the rapid rate at which system-
on-chip (SoC)/ASIC design size and complexity are growing. As RTL/gate design
size increases, traditional simulators slowdown significantly, which delays hard-
ware/software (system) integration and prolong the overall verification cycle.

6 D. Lettnin and M. Winterholer

When excessive simulation time becomes a bottleneck for dynamic verification,
hardware emulation and simulation acceleration are often used. Hardware emulators
provide a debugging environment with many features that can be found in logic sim-
ulators, and in some cases even surpass their debugging capabilities, such as setting
breakpoints and visibility of content or sign in memory design. For the Assertion-
based Verification (ABV) methodology to be used in hardware emulation, assertions
must be supported in hardware [12]. Traditional emulators are based on reconfig-
urable logic and FPGAs. To increase flexibility and to ease the debugging process,
which requires the ability to instrument assertions, current-generation emulators and
simulation accelerators are typically based on an array of processing elements, such
as in Cadence Palladium [15]. Another approach, is to integrate the debug and com-
munication module inside the chip such as an on-chip in-circuit emulation (ICE)
architecture for debugging [75]. However, due to its high cost, emulators are expen-
sive for many developers.

1.2.5 FPGA Prototyping

During the last years, Commercial-Off-The-Shelf (COTS) FPGAs provide process-
ing capability fulfilling the demand required by the increasing instruments resolution
and measurement speeds, even with low power budget [55]. Furthermore, partial
dynamic reconfiguration permits changing or adapting payload processing during
operation.

FPGA technology is commonly used to prototype new digital designs before
entering fabrication. Whilst these physical prototypes can operate many orders of
magnitude faster than through a logic simulator, a fundamental limitation is their
lack of on-chip visibility when debugging. In [41] a trace-buffer-based instrumenta-
tion was installed into the prototype, allowing designers to capture a predetermined
window of signal data during live operation for offline analysis. However, instead of
requiring the designer to recompile their entire circuit every time the window is mod-
ified, it was proposed that an overlay network is constructed using only spare FPGA
routing multiplexers to connect all circuit signals through to the trace instruments.
Thus, during debugging, designers would only need to reconfigure this network
instead of finding a new place-and-route solution.

1.2.6 Prototyping Board

Traditionally, post-silicon debugging is usually painful and slow. Observability into
silicon is limited and is expensive to achieve. Simulation and emulation is slow
and is extremely tough to hit corner-case scenarios, concurrent and cycle-dependent
behavior. With simulation , the hope is that the constrained-random generator will
hit the input combination, which caused the failure scenario (triggered the bug). Not

1 An Overview About Debugging and Verification Techniques ... 7

SDK Virtual RTL Acceleration EPGA Prototyping
OS Sim Platform Simulation Emulation Prototype Board
«Highest speed +Almost at speed *KHz range +*MHz Range +10’s of MHz *Real time speed
«Earliest in the +Less accurate «Accurate *RTL accurate *RTL accurate +Fully accurate
flow (or slower) *Excellent HW ~After RTL is «After stable RTL «Post Silicon
«Ignore hardware *Before RTL debug available is available +Difficult to debug
*Great to debug «Little SW +Good to debug +OK to debug «Sometimes hard
(but less detail) execution with full detail «More expensive to replicate
«Easy replication +Expensive to than software to
replicate replicate

Fig. 1.4 Strength and weakness of each platform [44]

the least, time-to-market is a major concern when complex post-silicon bugs surface,
and it takes time to find the root cause and the fix of the issue [5].

Post-silicon introspection techniques have emerged as a powerful tool to combat
increased correctness, reliability, and yield concerns. Previous efforts using post-
silicon introspection include online bug detection, multiprocessor cache-coherence
validation, online defect detection. In [22] an Access-Control Extensions (ACE)
was proposed that can access and control a microprocessor’s internal state. Using
ACE technology, special firmware can periodically probe the microprocessor during
execution to locate run-time faults, repair design errors.

1.2.7 Choosing the Right Platform for Software Development
and Debugging

As it could be observed in the previous sections, there is no “one fits all” approach.
Each platform has strength and weakness, as can be summarized in Fig. 1.4.

1.3 Debugging Methodologies

Debugging might be considered as the most time-consuming task for embedded
system developers. Any investment in effective debug tools and infrastructure accel-
erates the product release. Basically the debugging process can be performed in
Interactive or Post-Process forms.

D. Lettnin and M. Winterholer

Table 1.1 SW Category versus debugging method and platform

SW Type SW category Debug method Platforms
Bare metal Boot ROM (all SoCs) Post-process RTL Sim, emulation
(HW/SW)
Bare metal Firmware (non Post-process RTL Sim, emulation
OS-based SoC) (HW/SW)
Bare metal HW bring-up tests (all Post-process RTL Sim, emulation
SoCs) (HW/SW)
OS—OS-based SoC OS bring-up kernel and | Post-process Emulation
drivers (HW/SW)
0OS—O0S-based SoC OS bring-up kernel and | Interactive TLM, emulation,
drivers(OS-based SoC) hybrid, FPGA
Middleware—OS-based | Middleware for value Interactive TLM, emulation,
SoC add IP(OS-based SoC) hybrid, FPGA
Application—OS-based | Application tests for Interactive TLM, emulation,
SOC value add IP (OS-based hybrid, FPGA
SoC)

1.3.1 Interactive Debugging

One popular debug approach that overcomes the observability problem is the so-
called interactive (or run/stop) technique, which stops an execution of the SoC before
its state is inspected in detail. An advantage of this technique is that we can inspect the
SoC’s full state without running into the device pins’ speed limitations. It also requires
only a small amount of additional debug logic in the SoC. The main disadvantage
of interactive debug is that the technique is intrusive, since the SoC must be stopped
prior to observing its state [71].

The most primitive forms of debugging are the printing of messages on the stan-
dard output (e.g., printf of C language) and the usage of debugging applications (e.g.,
gdb). If the embedded software is being tested on a hardware engine, JTAG? inter-
faces should be used to acquire debugging information [2]. As example of industrial
debug solutions are: Synopsys System-Level Catalyst [46, 69] with focus on virtual
platforms and FPGA prototypes debugging; SVEN and OMAR focuses on software
and hardware technologies increasing silicon and software debug facilities [13].

1.3.2 Post-Process Debugging

The Post-Process Debugging runs simulation in batch mode, record data to a wave-
form database, and then analyze the results after simulation is complete. This latter

2JTAG (Joint Test Action Group) is a hardware interface based on the IEEE 1149.1 standard and
used for scan testing of printed circuit boards.

An Overview About Debugging and Verification Techniques ...

1

MH J0J uonoa[[od

juopuadop juopuadap Byep ssa001d-1s04
VN VN | uonejuswoduy VN | uonejuowoduy VN VN VN Jo 10eduy
MS I0J UOT)O[[0D
juapuadop juapuadap BIEp $s9001d-1s04
VN VN | uonejuowerduy VN | uonejusworduy VN VN VN Jo 10eduwy
juopuadop juopuadap juopuadop MITA UONBZIUOIYOUAS
uonejuowd[dwy | uonejuawd[duwy poon poon poon | uonejuswd(dwy poon | rowweI3old MS/MH
MH MH
poon poon | paden I10J poon pPoon) | paden 10j poon poon 1004 poon Koermnooe MH
Apqista Aiqrsia SUIGISIN MOIA
poon Joje[NUIg Ioje[nuig Joye[nuy | pader) SUNyIAIoAT poon poon | rowweiSoig Amqisia MH
juopuadop juapuadap juopuadop juapuadop 3nqop
uonejuowd[dwy | uonejuewra[duy oN | uonejuowoerduy oN | uonejuoworduy ON SOX MS dArsnuy
(*919 ‘so[qeLIBA
juapuadop Juapuadop juopuadop juapuadop ‘KIowour “yor)s)
poon poon | uonejuowd[dwy] | uonejuowd[dwy] | uonejuowd[dwy | uonejuswIdwy poon poon AIqisia S
Koeanooe urwn
1004 1004 poon poon poon poon 1004 poon uonnoaxd S
juopuadop juapuadap paads
uonejuowd[dwy | uonejuawd[duwy VN | poads uonenuyg VN 1004 poon poon uonnoAXa MS
PLIQAY uome[NWIS | PLIGAY UOR[NWS | UOHE[NWa :3nqop uvone[nwy | wiIS 1Y :Sngop wrS T
:3nqop 2ANORINU] | :SNqap SANORINU] §59001d-1504 | :3nqOp 2AnORINIU] $59001d-1504 | :3nqop aAnoRIOU] | WIS AL OVL(

3nqop aremyos pappaquig 7' AqEL

10 D. Lettnin and M. Winterholer

use model presents challenges when trying to post-process results when the DUT is
being driven by a class-based verification environment, such as the Open Verification
Methodology (OVM) or Universal Verification Methodology (UVM) [18].

The Incisive Debug Analyzer (IDA) [16] provides functionality of an interactive
debug flow plus the advantage of debugging in post-process mode, allowing all the
debug data files running the simulation once.

1.3.3 Choosing the Right Debugging Methodology

Table 1.1 correlates the SW category and the debugging methods as well as the
debugging platforms.

As it could be observed in the previous sections, both debugging methods have
their strength and weakness, as can be summarized in Table 1.2.

1.4 Verification Methodologies

1.4.1 Verification Planning

Verification planning is a methodology that defines how to measure variables, scenar-
ios, and features. Additionally, it documents how verification results are measured
considering, for instance, simulation coverage, directed tests, and formal analysis.
It also provides a framework to reach consensus and to define verification closure
for a design. An example of verification planning tool is the Enterprise Planner [17],
which allows to create, edit, and maintain verification plans, either starting from
scratch, or by linking and tracking the functional specifications.

Static Dynamic

* Testing

* Static analysis

Hybrid

* Co-simulation

* Symbolic model checking
- SAT-based
- BDD-based

* Model checking + * Co-debugging

theorem proving

. * Co-verification
* Assertion-based +

model checking

* Explicit model checking

* Assertion-based
verification

Fig. 1.5 Taxonomy of embedded systems verification approaches [48]

1 An Overview About Debugging and Verification Techniques ... 11

1.4.2 Verification Environment Development

Figure 1.5 illustrates the taxonomy of embedded system verification approaches.
Dynamic verification needs to execute the embedded system during the verification
process. It focuses mainly on testing, co-verification, and assertion-based verification.
On the other hand, static verification verifies the embedded system without its exe-
cution. It is presented with focus on static analysis and model checking approaches.
Theorem proving demands skilled user iteration and is mainly used in combination
with other static verification approaches. Finally, hybrid approaches are focused on
the combination of static approaches and of dynamic-static approaches [48].

1.4.2.1 Dynamic Verification

The dynamic verification focuses on testing, co-verification, and assertion-based ver-
ification approaches. Dynamic verification for hardware-independent software can
be tested directly on a host machine. On the other hand, hardware-dependent software
requires a simulator or a target platform. If the embedded software demands high
performance (e.g., operating system booting, video processing applications) a hard-
ware engine (e.g., in-circuit-emulator, simulation accelerator, or rapid prototyping)
can be used to increase performance. The main advantage of dynamic verification
is that the whole system can be used in the verification in order to test more deeply
into the system state space.

Testing

Testing is an empirical approach that intent to execute the software design in order
to identify any design errors [8]. If the embedded software does not work, it should
be modified in order to get it work. Scripting languages are used for writing different
test scenarios (e.g., functions with different parameter values or different function
call sequences). The main testing methodologies and techniques are listed in the
following [67, 74]:

Metric-driven Hardware/Software Co-verification

Metric-driven verification is the use of a verification plan and coverage metrics
to organize and manage the verification project, and optimize daily activities to
reach verification closure. Testbenches are designed in order to drive inputs into
hardware/software modules and to monitor internal states (white box verification®)
or the output results (black box verification*) of the design. Executing regression
suites produces a list of failing runs that typically represent bugs in the system
to resolve, and coverage provides a measure of verification completion. Bugs are
iteratively fixed, but the unique process of metric-driven verification is the use of

3White box verification focus on knowledge of a system’s internal structure [8].

“4Black box verification focus on the functional behavior of the system, without explicit knowledge
of the internal details [8].

12 D. Lettnin and M. Winterholer

coverage charts and coverage hole analysis to aid verification closure. Analyzing
coverage holes provides insight into system scenarios that have not been generated,
enabling the verification team to make adjustments to the verification environment
to achieve more functional coverage [14].

As an example, coverage driven verification has been successfully used in the
hardware area with the e language. Recently, it has been extended to embedded
software through the Incisive Software extensions (ISX) [73].

Assertion-Based Verification

Assertion-based verification methodology captures a design’s intended behavior in
temporal properties and monitors the properties during system simulation [30]. After
the specification of system requirement, the informal specification is cast into tem-
poral properties that capture the design intent. This formalization of the requirements
already improves the understanding of the new system. This methodology has been
successfully used at lower levels of hardware designs, specially at register transfer
level (RTL), which requires a clock mechanism as timing reference and signals at
the Boolean level [30]. Thus, it is not suitable to apply this hardware verification
technique directly to embedded software, which has no timing reference and con-
tains more complex structures (e.g., integers, pointers, etc.). Thus, new mechanisms
are used in order to apply assertion-based methodology with embedded software
[50, 51].

1.4.2.2 Static Verification

Static verification performs analysis without the execution of the program. The analy-
sis is performed on source or on object code. Static verification of embedded software
focuses mainly on abstract static analysis, model checking and theorem proving.

Static Analysis

Static analysis has been widely used in the optimization of compiler design (e.g.,
pointer analysis). In the software verification, static analysis has been used for high-
lighting possible coding errors (e.g., linting tools) or formal static analysis in order to
verify invariant properties, such as division-by-zero, array bounds, and type casting
[25, 53]. This approach has been also used for the analysis of worst case execution
time (WCET) and of stack/heap memory consumption [1].

Formal static analysis is based on abstract interpretation theory [24], which
approximates to the semantics of program execution. This approximation is achieved
by means of abstract functions (e.g., numerical abstraction or shape analysis) that
are responsible for mapping the real values to abstract values. This model over-
approximates the behavior of the system to make it simple to analyze. On the other
hand, it is incomplete and not all real properties of the original system are valid for
the abstract model. However, if the property is valid in abstract interpretation then
the property is also valid in the original system.

1 An Overview About Debugging and Verification Techniques ... 13

Model Checking

Model checking (MC) verifies whether the model of the design satisfies a given
specification. There are two main paradigms for model checking: Explicit state model
checking and symbolic model checking.

Explicit state model checking uses an explicit representation (e.g., hash table)
in order to store the explored states given by a state transition function. On the
other hand, symbolic model checking [21] stores the explored states symbolically
in a compact form. Although explicit model checking has been used in the software
verification (e.g., SPIN model checker [40]), it has memory limitations compared
with symbolic model checkers [60]. The symbolic model checking is based on binary
decision diagrams (BDD) [54] or on Boolean satisfiability (SAT) [31] and it has
been applied in the formal verification process. However, each approach has its own
strengths and weaknesses [59].

Formal verification can handle up to medium-sized software systems, where they
have less state space to explore. For larger software designs, formal verification using
model checking often suffers from the state space explosion problem. Therefore,
abstraction techniques are applied in order to alleviate the burden for the back-end
model checkers.

The commonly software model checking approaches are as follows:

e Convert the C program to a model and feed it into a model checker [43].
This approach models the semantics of programs as finite state systems by using
suitable abstractions. These abstract models are verified using both BDD-based
and SAT-based model checkers.

e Bounded Model Checking (BMC) [19].
This approach unwinds the loops in the embedded software and the resulting clause
formula is applied to a SAT-based model checker.

Each approach has its own strengths and weaknesses and a detailed survey on
software model checking approaches is made in [29].

The main weaknesses of current model checking approaches are still the model-
ing of suitable abstraction models and the state space explosion for large industrial
embedded software.

Theorem Proving

Theorem proving is a deductive verification approach, which uses a set of axioms
and a set of inference rules in order to prove a design against a property. Over the
last years, the research in the field of automated theorem provers (ATP) has been an
important topic in the embedded software verification [27]. However, the standalone
theorem proving technique still needs skilled human guidance in order to construct
a proof.

14 D. Lettnin and M. Winterholer
1.4.2.3 Hybrid Verification

The combination of verification techniques is an interesting approach in order to over-
come the drawbacks of the isolated dynamic and static aforementioned verification
approaches.

The main hybrid verification approach for the verification of embedded software
has been focused on combining model checking and theorem proving, such as satis-
fiability modulo theories (SMT) [66] and predicate abstraction approaches.

SMT combines theories (e.g., linear inequality theory, array theory, list structure
theory, bit vector theory) expressed in classical first-order logic in order to determine
if a formula is satisfiable. The predicate symbols in the formula may have additional
interpretations that are classified according to the theory that they belong to. In this
sense, SMT has the advantage that a problem does not have to be translated to Boolean
level (like in SAT solving) and can be handled on word level. For instance, SMT-based
BMC has been used in the verification of multi-threaded software allowing the state
space to be reduced by abstracting the number of state variables and interleavings
from the proof of unsatisfiability generated by the SMT solvers [23].

Model checking with predicate abstraction using a theorem prover [11] or a SAT-
solver [20] checks software based on an abstract-check-refine paradigm. It constructs
an abstract model based on predicates and then checks the safety property. If the check
fails, it refines the model and iterates the whole process.

The combination of dynamic and static verification has been explored in the
hardware verification domain [28, 34, 35, 38, 39, 56, 57, 64, 65, 70]. Basically,
simulation is used to reach “interesting” (also known as lighthouse or critical) states.
From these states, the model checker can verify exhaustively a local state space for a
certain number of time steps. This approach is available in the hardware commercial
verification tools such as Magellan [39]. Additionally, the combination of simulation
and formal verification has been applied to find bugs in the verification of hardware
serial protocols, in which isolated techniques (i.e., only simulation or only formal
verification) were unable to find them [34].

One way to control the embedded software complexity lies in the combination of
formal methods with simulative approaches. This approach combines the benefits of
going deep into the system and covers exhaustively the state space of the embedded
software system. For example, assertion-based verification and formal verification
based on state-of-the-art software model checkers are combined and applied to the
verification of embedded software using the C language [9, 48, 49].

1.5 Summary

This chapter has presented and discussed the main merits and shortcomings of the
state-of-the-art in debugging and verification of embedded software.

1

An Overview About Debugging and Verification Techniques ... 15

References

—

o

10.

11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

AbsInt: WCET analysis and stack usage analysis. http://www.absint.com/

. Andrews J (2005) Co-verification of hardware and software for ARM SoC Design. Newnes

Andrews J (2011) Welcome to the cadence virtual system platform. URL http://www.cadence.
com/

Ashton K (2009) That ‘internet of things’ thing, in the real world things matter more than ideas.
RFID 1:10-10

Automation JD, Post-silicon debug solution. http://www.jasper-da.com/products/post-silicon-
debug

Avinun R (2011) Concurrent hardware/software development platforms speed system integra-
tion and bring-up. http://www.cadence.com/

Bailey B, McNamara M, Balarin F, Stellfox M, Mosenson G, Watanabe Y (2010) TLM-driven
design and verification methodology. Cadence Des Syst

Bart B, Noteboom E (2002) Testing embedded software. Addison-Wesley Longman

Behrend J, Lettnin D, Heckeler P, Ruf J, Kropf T, Rosenstiel W (2011)Scalable hybrid ver-
ification for embedded software. In: DATE *11: Proceedings of the conference on design,
automation and test in Europe, pp 179-184

Berthet C (2002) Going mobile: the next horizon for multi-million gate designs in the semi-
conductor industry. In: DAC ’02: Proceedings of the 39th conference on Design automation,
ACM, New York, USA, pp 375-378. doi:10.1145/513918.514015

Beyer D, Henzinger TA, Jhala R, Majumdar R (2007) The software model checker BLAST.
STTT 9(5-6):505-525

Boul M, Zilic Z (2008) Generating hardware assertion checkers: for hardware verification,
emulation, post-fabrication debugging and on-line monitoring, 1st edn. Springer, Incorporated
Brouillette P (2010) Accelerating soc platform software debug with intelOs sven and omar. In:
System, software, SoC and silicon debug S4D conference 2010

Brown S (2011) Hardware/software verification with incisive software extensions. http://www.
cadence.com/

Cadence design systems: cadence palladium. http://www.cadence.com

Cadence design systems: incisive debug analyzer. http://www.cadence.com

Cadence design systems: incisive management. http://www.cadence.com

Cadence design systems: post-processing your ovm/uvm simulation results. http://www.
cadence.com

Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Jensen K,
Podelski A (eds) TACAS: tools and algorithms for the construction and analysis of systems
(TACAS 2004), Lecture notes in computer science, vol 2988. Springer, pp 168-176

Clarke E, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction
for ANSI-C. In: TACAS:Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2005), Lecture notes in computer science, vol 3440, pp 570-574. Springer

Clarke EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press

Constantinides K, Austin T (2010) Using introspective software-based testing for post-silicon
debug and repair. In: Design automation conference (DAC), 2010 47th ACM/IEEE, pp 537-542
Cordeiro L (2010) Smt-based bounded model checking for multi-threaded software in embed-
ded systems. In: Proceedings of the 32nd ACM/IEEE international conference on software
engineering-volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pp 373-376
Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference record of the fourth
annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, ACM
Press, New York, pp 238-252

Coverity: Coverity static analysis verification engine (coverity save). http://www.coverity.com/
products/coverity-save/

Dershowitz N, The software horror stories. http://www.cs.tau.ac.il/~nachumd/horror.html

http://www.absint.com/
http://www.cadence.com/
http://www.cadence.com/
http://www.jasper-da.com/products/post-silicon-debug
http://www.jasper-da.com/products/post-silicon-debug
http://www.cadence.com/
http://dx.doi.org/10.1145/513918.514015
http://www.cadence.com/
http://www.cadence.com/
http://www.cadence.com
http://www.cadence.com
http://www.cadence.com
http://www.cadence.com
http://www.cadence.com
http://www.coverity.com/products/coverity-save/
http://www.coverity.com/products/coverity-save/
http://www.cs.tau.ac.il/~nachumd/horror.html

16

217.

28.

29.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44,

45.

46.
47.

48.

49.

50.

D. Lettnin and M. Winterholer

Detlefs D, Nelson G, Saxe JB (2003) Simplify: a theorem prover for program checking. Tech
Rep] ACM

Dill DL, Tasiran S (1999) Formal verification meets simulation. In: ICCAD ’99: Proceed-
ings of the 1999 IEEE/ACM international conference on Computer-aided design, IEEE Press,
Piscataway, NJ, USA. Chairman-Ellen M. Sentovich, p 221

D’Silva V, Kroening D, Weissenbacher G (2008) A survey of automated techniques for formal
software verification. TCAD: IEEE Trans Comput Aided Des Integr Circ Syst 27(7):1165—
1178. doi:10.1109/TCAD.2008.923410

Foster HC, Krolnik AC, Lacey DJ (2004) Assertion-based design. Springer

. Ganai M, Gupta A (2007) SAT-based scalable formal verification solutions. Springer
. Ganssle J (2006) Total recall. http://www.embedded.com/
. Goldstein H (2002) Checking the play in plug-and-play. IEEE Spectr 39:50-55

Gorai S, Biswas S, Bhatia L, Tiwari P, Mitra RS (2006) Directed-simulation assisted formal
verification of serial protocol and bridge. In: DAC ’06: proceedings of the 43rd annual confer-
ence on Design automation, ACM Press, New York, USA, pp 731-736. doi: 10.1145/1146909.
1147096

Gott RM, Baumgartner JR, Roessler P, Joe SI (2005) Functional formal verification on designs
of pseries microprocessors and communication subsystems. IBM J. 49(4/5):565-580

Grgnli TM, Hansen J, Ghinea G, Younas M (2014) Mobile application platform heterogeneity:
Android vs windows phone vs ios vs firefox os. In: Proceedings of the 2014 IEEE 28th inter-
national conference on advanced information networking and applications, AINA ’14, IEEE
Computer Society, Washington, DC, USA, pp 635-641. doi:10.1109/AINA.2014.78

Hanna Z (2014) Challenging problems in industrial formal verification. In: Proceedings of
the 14th conference on formal methods in computer-aided design, FMCAD ’ 14, FMCAD Inc,
Austin, TX. pp 1:1-1:1. http://dl.acm.org/citation.cfm?id=2682923.2682925

Hazelhurst S, Weissberg O, Kamhi G, Fix L (2002) A hybrid verification approach: getting
deep into the design

Ho PH, Shiple T, Harer K, Kukula J, Damiano R, Bertacco V, Taylor J, Long J (2000) Smart
simulation using collaborative formal and simulation engines. ICCAD 00:120. doi:10.1109/
ICCAD.2000.896461

Holzmann GJ (2004) The spin model checker: primer and reference manual. Addison-Wesley
Hung E, Wilton SJE (2014) Accelerating fpga debug: increasing visibility using a runtime
reconfigurable observation and triggering network. ACM Trans. Des. Autom. Electron. Syst.
19(2), 14:1-14:23. doi:10.1145/2566668

ITRS: International technology roadmap for semiconductors (2007). http://www.itrs.net/
Ivanicic F, Shlyakhter I, Gupta A, Ganai MK (2005) Model checking C programs using F-
SOFT. In: ICCD ’05: proceedings of the 2005 international conference on computer design,
IEEE Computer Society, Washington, DC, USA, pp 297-308. doi:10.1109/ICCD.2005.77
Kevan T, Managing complexity with hardware emulation. http://electronics360.globalspec.
com/article/4336/managing-complexity-with-hardware-emulation

Kropf T (2007) Software bugs seen from an industrial perspective or can formal method help
on automotive software development?

Lauterbach S, Trace32. http://www.lauterbach.com/

Lee EA (2007) computing foundations and practice for cyber-physical systems: a preliminary
report. Tech Rep UCB/EECS-2007-72

Lettnin D (2010) Verification of temporal properties in embedded software: based on assertion
and semiformal verification approaches. Suedwestdeutscher Verlag fuer Hochschulschriften
Lettnin D, Nalla PK, Behrend J, Ruf J, Gerlach J, Kropf T, Rosenstiel W, Schonknecht V,
Reitemeyer S (2009) Semiformal verification of temporal properties in automotive hardware
dependent software. In: DATE ’09: proceedings of the conference on design, automation and
test in Europe

Lettnin D, Nalla PK, Ruf J, Kropf T, Rosenstiel W, Kirsten T, Schonknecht V, Reitemeyer S
(2008) Verification of temporal properties in automotive embedded software. In: DATE *08:
Proceedings of the conference on Design, automation and test in Europe, ACM, New York,
NY, USA, pp 164-169. doi:10.1145/1403375.1403417

http://dx.doi.org/10.1109/TCAD.2008.923410
http://www.embedded.com/
http://dx.doi.org/10.1145/1146909.1147096
http://dx.doi.org/10.1145/1146909.1147096
http://dx.doi.org/10.1109/AINA.2014.78
http://dl.acm.org/citation.cfm?id=2682923.2682925
http://dx.doi.org/10.1109/ICCAD.2000.896461
http://dx.doi.org/10.1109/ICCAD.2000.896461
http://dx.doi.org/10.1145/2566668
http://www.itrs.net/
http://dx.doi.org/10.1109/ICCD.2005.77
http://electronics360.globalspec.com/article/4336/managing-complexity-with-hardware-emulation
http://electronics360.globalspec.com/article/4336/managing-complexity-with-hardware-emulation
http://www.lauterbach.com/
http://dx.doi.org/10.1145/1403375.1403417

1

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

An Overview About Debugging and Verification Techniques ... 17

Lettnin D, Rosenstiel W (2008) Verification of temporal properties in embedded software. In:
IP 08: IP-based system design, Grenoble

Liggesmeyer P, Rombach D (2005) Software-engineering eingebetteter systeme: Grundlagen-
Methodik-Anwendungen, vol 1. Spektrum Akademischer Verlag

MathWorks T, Polyspace embedded software verification. http://www.mathworks.com/
products/polyspace/

McMillan KL (1992) Symbolic model checking: an approach to the state explosion problem.
Ph.D thesis, Pittsburgh, PA, USA

Michel H, Bubenhagen F, Fiethe B, Michalik H, Osterloh B, Sullivan W, Wishart A, Ilstad
J, Habinc S (2011) Amba to socwire network on chip bridge as a backbone for a dynamic
reconfigurable processing unit. In: 2011 NASA/ESA Conference on Adaptive hardware and
systems (AHS), pp 227-233. doi:10.1109/AHS.2011.5963941

Mony H, Baumgartner J, Paruthi V, Kanzelman R, Kuehlmann A (2004) Scalable auto-
mated verification via expert-system guided transformations. http://citeseer.ist.psu.edu/
mony04scalable.html

Nanshi K, Somenzi F (2006) Guiding simulation with increasingly refined abstract traces. In:
DAC ’06: Proceedings of the 43rd annual conference on design automation, ACM Press, NY,
USA, pp 737-742. doi:10.1145/1146909.1147097

(OSCI), O.S.1.: IEEE 1666 standard systemc language reference manual (LRM) (2005)
Parthasarathy G, Iyer MK, Cheng KT (2003) A comparison of BDDs, BMC, and sequential SAT
for model checking. In: HLDVT ’03: Proceedings of the eighth IEEE international workshop
on high-level design validation and test workshop, IEEE Computer Society, Washington, DC,
USA, p 157

Peled D (2002) Comparing symbolic and explicit model checking of a software system. In: In
Proceedings of SPin workshop on model checking of software, vol 2318. LNCS, Springer, pp
230-239

Pretschner A, Broy M, Kruger IH, Stauner T (2007) Software engineering for automotive
systems: a roadmap. In: FOSE ’07: 2007 future of software engineering, IEEE Computer
Society, Washington, DC, USA, pp 55-71. doi:10.1109/FOSE.2007.22

Qian H, Deng Y (2011) Accelerating rtl simulation with gpus. In: IEEE/ACM international
conference on computer-aided design ICCAD), 2011, pp 687-693. doi:10.1109/ICCAD.2011.
6105404

Rigo S, Azevedo R, Santos L (2011) Electronic system level design: an open-source approach.
Springer

Ruf J, Kropf T (2002) Combination of simulation and formal verification. In: Proceedings of
GI/ITG/GMM-workshop Methoden und Beschreibungssprachen zur Modellierung und Veri-
fikation von Schaltungen und Systemen. Shaker Verlag

Shyam S, Bertacco V (2006) Distance-guided hybrid verification with GUIDO. In: DATE *06:
Proceedings of the conference on design, automation and test in Europe, European design and
automation association, 3001 Leuven, Belgium, pp 1211-1216

SMT-Exec: Satisfiability modulo theories execution service. http://www.smtcomp.org/
Spillner A, Linz T, Schaefer H (2006) Software testing foundations: a study guide for the
certified tester exam. O’Reilly media

Strategies IB, Software verification and development cost. http://www.ibs-inc.net

Synopsys: synopsys system-level catalyst. http://www.synopsys.com/

Tasiran S, Yu Y, Batson B (2004) Linking simulation with formal verification at a higher level.
IEEE Des. Test 21(6):472-482. doi:10.1109/MDT.2004.94

Vermeulen B, Goossens K (2011) Interactive debug of socs with multiple clocks. Des Test
Comput IEEE 28(3):44-51. doi:10.1109/MDT.2011.42

Wehner P, Ferger M, Gohringer D, Hiibner M (2013) Rapid prototyping of a portable hw/sw
co-design on the virtual zynq platform using systemc. In: SoCC. IEEE, pp 296-300

http://www.mathworks.com/products/polyspace/
http://www.mathworks.com/products/polyspace/
http://dx.doi.org/10.1109/AHS.2011.5963941
http://citeseer.ist.psu.edu/mony04scalable.html
http://citeseer.ist.psu.edu/mony04scalable.html
http://dx.doi.org/10.1145/1146909.1147097
http://dx.doi.org/10.1109/FOSE.2007.22
http://dx.doi.org/10.1109/ICCAD.2011.6105404
http://dx.doi.org/10.1109/ICCAD.2011.6105404
http://www.smtcomp.org/
http://www.ibs-inc.net
http://www.synopsys.com/
http://dx.doi.org/10.1109/MDT.2004.94
http://dx.doi.org/10.1109/MDT.2011.42

18

73.

74.
75.

D. Lettnin and M. Winterholer

Winterholer M (2006) Transaction-based hardware software co-verification. In: FDL’06: Pro-
ceedings of the conference on forum on specification and design languages

Zeller A (2005) Why programs fail: a guide to systematic debugging. Morgan Kaufmann
Zhao M, Liu Z, Liang Z, Zhou D (2009) An on-chip in-circuit emulation architecture for
debugging an asynchronous java accelerator. In: International conference on computational
intelligence and software engineering, CiSE 2009, pp 1-4. doi:10.1109/CISE.2009.5363421

http://dx.doi.org/10.1109/CISE.2009.5363421

Chapter 2
Embedded Software Debug in Simulation
and Emulation Environments for Interface IP

Cyprian Wronka and Jan Kotas

2.1 Firmware Debug Methods Overview

Present EDA environments [1, 2] provide various methods for firmware debug.
Typically one can use one of the following:

e Simulation with a SystemC model of the hardware. This allows for a very early
start of firmware development without any access to hardware and allows to test
the functionality of the code assuming the model is accurate. The main limitations
are lack of system view and (depending on the model accuracy) lack of hardware
timing accuracy (behavioral models).

e Hardware simulation with firmware executing natively on the simulator CPU. This
is the simplest method incorporating the actual RTL that allows to prototype the
code. It requires some SystemC wrappers to get access to registers and interrupts.
It lacks the system view and therefore cannot verify the behavior of the firmware
in the presence of other system elements.

e Playback (with ability to play in both directions) of a recorded system simulation
session.

e Hardware simulation with a full system model. (This is a synchronous hybrid,
where RTL and software are run in the same simulation process). This can be
divided into:

— Using a fast model of the CPU [3]—this allows very fast execution of code (e.g.,
Linux boot in "1 min) but lacks cycle accuracy due to TLM to RTL translation.
It also slows down significantly when the full RTL simulation starts (all clocks
enabled). Example of such a system is presented in Fig.2.1.

— Using a full system RTL—this is generally very slow and only allows to test
simple operations (under 10k CPU instructions) in a reasonable time.

C. Wronka (X))
Cadence® Design Systems, San Jose, CA, USA
e-mail: cwronka@cadence.com

J. Kotas
Cadence® Design Systems, Katowice, Poland
e-mail: jank @cadence.com

© Springer Science+Business Media, LLC 2017 19
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_2

20

C. Wronka and J. Kotas

System C
top TLMZSignal TLM2/SCEMI TLM2/Signal
Port/TLM AXITLM AXITLM Port/TLM
interface
RTL
top

Fig. 2.1 Diagram showing a generic hybrid hardware simulation or emulation environment with
a TLM part including the CPU fast model (fop) and the RTL part including an interface IP core
(bottom)

e Hardware emulation [4] of the full system. Again this can be divided into:

— Hybrid mode consisting of a fast model CPU and emulation RTL. In the case

of interface IP it provides very fast execution, but requires good management
of memory between the fast model and the emulation device to assure that the
data transfers (typically data written by CPU and later sent to interface) will be
efficiently emulated. NOTE: In this mode software is executing asynchronously
to RTL and the two synchronize on cross domain transactions and on a set
time interval. Effectively the software timing is not cycle accurate with the
hardware and depending on setup would remove cache transactions and cache
miss memory transactions.

Full RTL mode where all system is cycle accurate. This is slower (Linux boot
can take 10min), however consistent performance is maintained through the
emulation process. This mode allows to test the generic system use cases or
replicate problems found during FPGA testing.

Emulation with no CPU—A PCle SpeedBridge® Adapter can be used to connect
an arbitrary interface IP device to a PC and develop a driver in the PCle space.
The emulation environment allows for access to all internal signals of the IP
(captured at runtime, even using a very elaborate condition-based trigger) to
debug the issues (whether originating from, software, hardware or the device
connected at the other end of the interface.

e Hardware prototyping using FPGA. In this case the processor can run at 10-100s

of MHz (or even at GHz speeds if it is a silicon core connected to the FPGA logic).

2 Embedded Software Debug in Simulation and Emulation ... 21

AVIP
AXI IP core @ SpecaBiidges
Cadence® PCle Bridg (e.g. Cadence® xHCI) Adagias
PHY board

Patadum® | FPGA

Fig. 2.2 Example setup of a PCle device used for Linux driver debug with Cadence® Palladium®
platform

. //’lf'r__ ' - -
; | PCle I/F B
7 % board

USB Type-C
- § |/F board

>

Fig. 2.3 Example Cadence® FPGA board setup used for interface IP bring-up. Please note the
number of connectors and the attached boards. This is required for testing systems consisting of
multiple interface IPs connected together (also with a CPU and system memory)

These environment are not very good at bringing up new (unproven) hardware,
however they are great for:

— System tests in real time or near real time
— Performance tests
— Soak tests.

Example schematic used both for FPGA and Emulation or RTL interface IP connected
to a standard PC is shown in Fig. 2.2. Alternatively it is possible to prototype a simple
SoC in an FPGA. Such a system with PCle EP (End Point) IP, USB Device IP, and
an audio interface is presented in Fig.2.3.

22 C. Wronka and J. Kotas

e Testinginsilicon. This is generally considered an SoC bring-up, where all hardware
issues should be ironed out, this does not prevent the fact that some tuning may
still be done in firmware. The system is running at full speed and there is generally
no access to the actual hardware (signals), however there should be a processor
debug interface allowing to step through the code.

When debugging firmware for interface IP in simulation or emulation, itis required
to connect the interface side of the IP to some entity that is compliant with the interface
protocol. To achieve this one can use:

e In simulation:

— Verification IP
— Another instance of IP with the same interface

e In emulation:

— Accelerated Verification IP
— Another instance of IP with the same interface
— A SpeedBridge® Adapter to connect to the real world.

2.2 Firmware Debuggability

In many cases the engineer looking after the firmware may not have been the creator
of the code, and therefore it is important to provide as much information about the
functionality of the code as possible.

The best practices include:

Self-explaining register name structures or macros

Self-explaining variable names (as opposed to a, b, ¢, d)

Self-explaining function names

Especially useful is information about the usage of pointers, as often firmware uses
pointers to store routine addresses, it is important to provide sufficient information
for a debugging engineer to be able to understand what the code is supposed to do.

There are new systems appearing currently on the market, where majority of IP
driver code can be automatically generated from a higher level (behavioral) language
[5]. In that case it is important to be able to regenerate the code and trace all changes
back to the source (meta code) in order to propagate all debug

DESCRIPTION = ‘‘Sequence for starting playback.’’;
sequence start_playback

{
LOCAL unsigned int idx;

idx=0;
repeat (idx <8)

R T S ST SR

2 Embedded Software Debug in Simulation and Emulation ...

8
{
9 /x If a channel has been enabled, start playback on that
10 channel x/
1" if (DRV_I2S_CID_CTRL.I2S_STROBE[idx] == 0)
12 {
13 DRV_I2S CTRL.ENB[idx] = 1;
14 }
15 idx = idx+1;
16 }
17| /% Enable clock to transmit sync */
18| DRV_I2S_CID_CTRL.STROBE TS = 1;
19| DRV_I2S_CID_CTRL.STROBE RS = 0;
20| DRV_I2S_CTRL.TFIFO_RST = 0;

2 /% Reset x/
2| DRV_I2S_CTRL.TSYNC RST = 1;

21| }

23

Listing 1 Example code using Vayavyal.abs DPS language.

Generated code:

/%!

* \brief Sequence for starting playback.
x \return Success or Failure

* \retval 0 Success

x \retval —1 Failure

x/

INT I2S_MC_IP_SLAVE_start_playback (void)
{

© X N L A W D —

10| UINT idx;

1 UINT varDRV_I2S_CID_CTRL;

12

13 idx = 0;

14

15 while (idx < 8) {

16 DRV_I2S_CID_CTRL_RgRd(varDRV_I2S_CID_CTRL);
17 if (GET_VALUE(varDRV_I2S_CID_CTRL,

18 DRV_I2S_CID_CTRL_I2S_STROBE_LPOS,

19 DRV_I2S_CID_CTRL_I2S_STROBE_HPOS) == 0)
20 DRV_I2S_CTRL_ENB_UdfWr(idx, 1);

21 idx ++;

2 }

»| DRV_I2S_CID_CTRL_STROBE_TS_UdfWr(1);
5| DRV_I2S_CID_CTRL_STROBE_RS_UdfWr(0);
2| DRV_I2S_CTRL_TFIFO_RST_UdfWr(0);
x| DRV_I2S_CTRL_TSYNC_RST UdfWr(1);

29 return Y_SUCCESS;

30| }

Listing 2 Example code generated using Vayavyal.abs DDGen

24 C. Wronka and J. Kotas

Using register abstraction as described above allows to detach the code from the
register and filed addresses and if any register moves in the structure, the code is not
affected.

2.3 Test-Driven Firmware Development for Interface IP

Working with a new piece of IP that is usually just being developed as the initial
firmware is created, requites a constant closed- loop work mode in which new versions
of code can be tested against new versions of RTL. A typical development flow within
an interface IP firmware support team could look like this:

e Hardware team designs the IP

e Firmware engineers participate in the design to feed on the register interface design
decisions

e Once aregister model is designed and a first RTL implementation is in place with
a functional bus connectivity, such IP can immediately be integrated into early
firmware development.

One of the interesting methodologies to use in firmware development in test-driven
development. This could be considered as a formalization of the hardware bring-up
process, where some expectation of functionality is always well defined, and the
development/bring-up aims at getting that feature enabled/supported.

The steps of test driven development are

e Design a test that fails
e Implement functionality to pass
e Refine for ease of integration.

2.3.1 Starting Development

The first cycle of development is typically hardware focused. The initial test is gen-
erally a register read/write operation on the address space of the IP to confirm that it
has been properly integrated with the system Fig. 2.6.

Once this code is in place (and since it is always the same, it is easily reusable)
the preparation of the test platform can start. In current hardware simulation environ-
ments, it is possible to use a Virtual Platform Environment (VPE) type environment
(diagram) where the CPU and all system peripherals exist as SystemC fast models
and the IP under development is being connected through a TLM to RTL wrapper.
In a typical use case such connection requires the following steps:

2 Embedded Software Debug in Simulation and Emulation ... 25

h/w.."". hiw fixor

Design IP <
_ | ~. siwfix?
Implement ' :
‘D._ # Implement Design firmware s/w
Verification :
: Design and tests
environment | | N
s -~
) - Implement
N T 1 Firmware AL
N : . -~ Bring-u -
2 Ready to “ ¥ .| Integrate with | > comgleti
~._ bring-up? -~ T test system ~ P

?

1 Implement Tests |

[x)
..../

Fig. 2.4 Diagram showing cooperation between RTL (h/w) and C (s/w) teams to design and bring-
up an IP block

e Preparation of a system-level wrapper for the new IP
e Integration of that wrapper with the existing system

— Selecting base address
— Providing any control signals that are required by that IP but not available on
the available slave bus interfaces
— In the case of interface IPs it is crucial to connect the actual ‘outside world’
interface of the IP (diagram) to a sensible transactor. These can be:
An instance of Verification IP
An instance of a IP core compatible with the interface.

In an ideal world such integration should be seamless as the IP comes with stan-
dard bus interfaces and only requires these connected to the systems. In reality the
‘transactor’ part of the test environment can be the most laborious element of the
test environment preparation. In early stages this can be delayed until first contact
with IP registers has been made, but this typically is a stage that can be passed very
quickly (Fig.2.4).

Once all is connected and a binary file is loaded into the system, a couple of
software/hardware co-debug cycles encompassing:

e checking slave bus ports access,
e checking interrupt generation

lead to a first iteration of a working firmware debug environment.

26 C. Wronka and J. Kotas

Example C code of a register read and write operation:

log(*‘reading:\n’’);
v=PAA_UncachedRead32 ((volatile uint32_tx)(IP_REGS_BASE+
offset));

log(* “writing:\n’’);
PAA_UncachedWrite32 ((volatile uint32_t«)(IP_REGS_BASE+i), 0
xFABEDDIE) ;

-

Listing 3 Example register read and write code

with bare-metal read and write functions:

uint32_t PAA_UncachedRead32(volatile uint32_tx address) {
return xaddress;

}

void PAA_UncachedWrite32(volatile uint32_t* address,
uint32_t value) {
xaddress = value;

© N L B W D —

}

Listing 4 Bare-metal implementation of platform abstraction APL.

An example of a register read and write operation on a slave port is presented on
Fig.2.6.

At this stage the firmware debug process typically starts to cross its paths with
the hardware verification team. If the IP comes with a machine-readable register
description (such as IP-XACT or SysRDL) again it is straightforward to automatically
generate system-level test sequences that can be executed immediately on the new
design with the benefit of the test code being fully driven by the register design data
(Fig.2.5). This constitutes a very basic set of system sanity test cases such as:

(input format)
SysRDL

’ RIS IP-XACT System C Register
ﬁ:‘?ﬁ::g;ts;j (registers+10) models & Macios Documentation

Fig. 2.5 Simplified register abstraction flow for interface IP

2 Embedded Software Debug in Simulation and Emulation ... 27

Fig. 2.6 Reading and writing register at address 8 (on APB)

e check register reset value
e confirm register writable bits are writable
e confirm register read only bits are read only.

These are generally covered by the hardware verification team, however the exe-
cution of these in a real system allows ironing out issues with bus access and any
minor register bank problems.

At this stage a firmware developer can start running any functional test cases on
the IP core.

2.3.2 First Functional Tests

In a typical situation of developing a low-level driver for a certain IP there is a
number of ‘key features’ that need to be supported to allow for initial system-level
integration. These typically are a subset of:

Initialize IP,

send data over interface using register interface,
receive data over interface using register interface,
use the master bus interface/trigger a DMA,

2.3.2.1 Initializing IP

Once a verification environment is in place, one can set up a simple routine to perform
the initialization of the IP and confirm that it has been performed correctly. A test to
confirm that may be

e receiving an interrupt that system is ready

e polling a register that system is ready

e in extreme cases it may require to peek into the actual IP signals to see that it has
been intialized.

IP initialization may involve setting up elements connected to the IP to establish a
working data channel, e.g., PHY initialization. At that stage it is important for all

28 C. Wronka and J. Kotas

components of the system to be connected properly and there may be cases where the
initialization procedure executed by the firmware in a system environment uncovers
a hardware connectivity problem. These integration problems can be easily avoided
by using automated IP assembly tools [6]. In these cases it is also required to have
a working ‘transactor’ at the other end of the ‘external interface’ to assure that link
has been established. If the transactor is another instance of IP supporting the same
protocol, it is desirable to have a unit test environment, where each IP can be tested
in isolation against a known model (e.g., a Verification IP instance).

2.3.2.2 Sending and Receiving Data

Once the IP is initialized and a data channel is in place, it is possible to start transmit-
ting data to confirm the system connectivity. In the case of interface IP it is required to
have a ‘transactor’ instance able to fulfill the communication protocol requirements
to assure that the IP can complete the data transmission. Let’s consider an example
of a flash memory controller. The aim of the debug step is to confirm that we can
create a working code able to write a page of data in the NAND memory by sending
the data word by word through the register interface. To achieve this it is important
to have the following prerequisites:

e the controller is initialized

e the memory is initialized

e it is required to know the protocol used by the memory controller (in the case of
NAND memory it is a sequence of standardized commands (e.g., ONFI) inter-
leaved with the desired data.

Let us consider an example operation where a memory page is written using register
interface and later read to confirm consistency. Debugging this code in simulation,
allows the following:

e stepping through the firmware code

e looking at the register interface to confirm the right data is sent to the flash controller

e looking at the memory interface to confirm that the right data is sent and received
to/from the flash memory (model)

e looking at the register interface to confirm that the right data is read from the
memory (model)

e accessing a memory (or having debug messages) to confirm the data integrity.

Once the code has been debugged and proven in simulation, it can be tested on an
FPGA setup. Once all basic issues are resolved in simulation, the FPGA platform
allows for performance analysis and profiling of the opeartions using real memory
parts.

2 Embedded Software Debug in Simulation and Emulation ... 29

.l!'!'?.ll.ll'll;'l.flfl_ll‘i 5.‘

Fig. 2.7 Performing an initialization sequence on the APB bus

2.3.2.3 Testing the DMA

The simulation environment is a great platform to test the DMA transfers and to
prototype the firmware to perform these. DMA transfers can show system problems
(e.g., with memory caching) and therefore it is good to be able to see the system
memory at the time of the transfer being initiated and the flow of data on the master
bus interface to confirm the integrity of the data being transmitted. The diagram
below shows the same memory write and read as in previous section, but this time
a descriptor requesting each operation is built and after the initial trigger, the IP is
expected to:

e read the descriptor

e start reading the memory (using a master bus interface)

e start writing the data to the device

e finish reading memory

e finish writing the data

e interrupt the processor to notify the operation has completed
e perform steps similar to above, but in the other direction.

Once a single DMA has been confirmed to work, it may be required to test a
chained DMA operation, in which multiple descriptors are fetched (in a sequence,
potentially with partial hardware buffering) to assure the firmware is capable of
creating and handling these (Fig.2.7).

Another route may be to test a multi-channel DMA where multiple chains of com-
mands are created and executed by the interface IP on multiple connected devices.

2.3.2.4 Sending and Receiving Data on FPGA

In the case of an FPGA the debug capabilities are significantly reduced, the number
of IP signals that can be traced is limited and having checked the code in simulation
should significantly reduce the bring-up process. Having an embedded processor
in the FPGA connected to the debugger still allows to step through the code, how-
ever looking at the interface signals can be difficult and may require the use of an
oscilloscope or a logical analyser.

30 C. Wronka and J. Kotas

The earlier defined steps (already proven in simulation) can be repeated on FPGA
to bring-up the basic functionality of the hardware.

The advantage of FPGA testing is speed and for example in the case of NAND flash
testing it was possible to run over 2 orders of magnitude more data (500 MB) than in
simulation (16 MB). This also allowed to detect issues with the driver with handling
large number of data blocks. Further, due to the fact that testing was performed on
real memory it was possible to discover that the memory model used was erased by
default, which was not the case for the real memory die, and required an update in
the memory erase procedure (Fig.2.8).

LU LU AL A LR R ST VTR R ATERRITATRTRTTATEYETTTT M—
ERTEETETR TR EPE RS LR EER L TR BT O O O A ==

1

Fig. 2.8 Enabling the interface on a QSPI IP

Tensilica
VP

Imaging and Vision
processor

128b AXI DOR

AMBA AX] Interconnect

AXI2 AXI2
AxI2 pixel pixel
APB

MIP1 MIPI

CSl-2 Dsl

32b APB

RTC

Timer
wDG

UART

Fig. 2.9 Example system with an Image Processing Unit and a camera/display MIPI interface

2 Embedded Software Debug in Simulation and Emulation ... 31

2.3.3 Debugging a System

Once all components of the system have been brought up (at least in the positive
path) it is possible to start debugging the system along with applications that use
multiple components at the same time. The assumptions at this point should be:

e there is a debuggable CPU (allowing to step through code)
e all components can perform basic operations
e the CPU and all opponents have access to memory.

Once these steps are established one can proceed to system bring-up. In most cases
such bring-up would start with some basic bare-metal tests, where multiple compo-
nent would be used at the same time. For example the UART may need to be used
as a debug output (or even input) while bringing up a camera interface (MIPI CSI)
IP. Additionally it may be required to initialize the camera using another simple
interface (e.g., [2C) while using the MIPI interface to obtain images and place them
into the system memory. In that case it is important to understand the full system
architecture Fig. 2.9 as multiple components will be interacting with each other and
the CPU will be interacting with all components.
The debug steps in the example above could follow as:

create a serial port connection for debug messages (run UART)

create an 12C connection with camera and log connection results

initialize camera and log the results

initialize the MIPI CSI interface

request the MIPI CSI interface to start transferring data from the camera to the
system memory.

e access the memory using a debugger or dump its contents using the UART.

In this example, it would be desirable to have a controlled environment in which
the camera would send known data that can be verified (e.g., test mode), whether
the correct content has been written into the system memory. Once the system is
confirmed to perform all operations in the right sequence, and the right data is copied
into memory, it is also required to confirm that the data transfer is well synchronized
with the rest of the system, i.e., that once the camera starts sending multiple frames
per second, there is sufficient buffering and the frame data is not corrupted. This
is a good opportunity to test the interrupts as multiple devices (UART, 12C, MIPI
CSI) can trigger an interrupt and it is important to set up the right way of processing
interrupts. Example of prioritized interrupt execution is shown in Fig.2.10.

Interrupt handling should not be affecting the functionality of the system and
therefore it may be required to create artificial conditions that trigger multiple inter-
rupts at the same time to debug the scenario (Fig.2.11).

32 C. Wronka and J. Kotas

MIPI DSI UART Control 12C

Picture frames
User Input
Camera Sensor

Fig. 2.10 Diagram showing multiple devices generating interrupts at various times. The interrupt
priority needs to be set appropriately to assure no interruption in streaming data and user interaction
can be compromised in this case, as it is only for set-up and debug purposes

Step 1 (camera to DDR memory)
Step 2 (DDR memory to ISP) - - - Imaging and Vision

Step 3 (ISP to DDR memory) processor

AMBA AX] Interconnect

Fig. 2.11 Diagram showing memory transfers (DMA) in the system

2 Embedded Software Debug in Simulation and Emulation ... 33

2.3.4 System Performance

Once all components are working together it is possible to consider the system
performance and look at code optimisations to achieve some desired benchmarks.
Let’s consider the system above with the addition of a screen interface and an image
processing routine. In that case the image is

fetched form the camera and stored into memory,

read from that memory by an Image/Signal processing component,
stored back to memory by the Image/Signal processing component
read from memory by the display component (e.g., MIPI DSI).

Considering a VGA test image is processed in RGB mode the system will need
to read 2 MB and write 2 MB of data per image. If that image is delivered at 30 fps,
this is 60 MB/s read and 60 MB/s written. One has to consider that the system may
need to access the memory at the same time for other purposes (e.g., logging/main-
tenance/reading program or other data related to image processing. If the system
is running on an FPGA it is required to assure the system architecture enables the
required bandwidth. And the FPGA platform itself is an ideal vehicle to prove that
this can be achieved.

Once the system is performance proven in FPGA, the scalability to ASIC speeds
should be much more simple and only minor software optimizations may be required.
The issues to be considered here would be:

bus access

memory access

memory bandwidth (bus, controller, module)
memory caching.

Lab example

“In one of our demo designs, the team was presented with an existing FPGA board
where the main (and biggest) FPGA chip did not have a direct connection to the
DDR memory. The DDR controller was synthesized on a separate (smaller FPGA)
that could be connected to the main one using a chip2chip connection. The system
described above (with camera, image processor and display) was implemented on
that board and the memory bandwidth turned out to be a limiting factor in terms of
image resolution and frames per second. A special design using a Xilinx Chip2 AXI
construct was used to achieve best performance. This needed further optimizations
both on hardware and software level. On the hardware side the important tuning
factors were:

e chip2chip clock speed (and synchronous/asynchronous implementation versus the
system bus)

e image processor cache size

e image processor cache line size (tuned with the DDR line size).

34 C. Wronka and J. Kotas

On the software side it was important to limit memory access and assure that the
image blocks (in each on the four data paths) would be sent using a ‘chained’ sequence
of DMA operations to best utilize the fabric bandwidth.”

2.3.5 Interface IP Performance in a Full Featured OS Case

Another interesting example could be the Ethernet MAC implementation used as a
NIC (network interface card) with a PCle endpoint. Both cores are connected together
and plugged into a PC (diagram below). There are two mirroring set-ups with:

e emulation (using a PCle SpeedBridge® Adapter and Ethernet SpeedBridge®
Adapter)
e FPGA with standard PCle and Ethernet connectors.

Either of these implementations can be connected to a lab PC running Linux OS and a
driver implemented for the interface IP as a PCle device in Linux can be performance
tested and debugged. (The same set-up is used for compliance testing).

In a particular case a feature was added to the Ethernet controller to allow offload-
ing the software TCP/IP stack from performing ‘coalescing’ of received packets into
one large packet. Support for this feature was added to the Linux driver and both
implementations of the NIC platform were used to test the functionality in a system
environment. The FPGA implementation was used to benchmark the CPU savings
due to the offload feature and while running these a potential problem with the
offloads was discovered. The following steps were used to track the problem with
FPGA):

e Additional logging in the Linux driver
e Enabling additional kernel logging in Linux
e Using a TCP sniffer (wireshark) to confirm data transfer.

However all these methods did not allow to find the cause of the problem, and
therefore the problem needed to be replicated in an emulation environment for full
understanding. Moreover, it turned out that some of the problems are inconsistent
from one PC to another. After replicating the problem in an emulation environment
with full access to all hardware design signals it turned out that:

e The PClIe root-port (host) may reorder packets

e Some PCle bus parameters influence the occurrence of this issue

e Further to all these, an actual hardware issue was detected with further refinement
of the test, that was not related to the PCle bus.

In the case of performing such lab tests, it is very important to have a very strict
control over the test environemnt, to assure no random events or changes in the set-
up cause the system to behave in a different way. The best practice is to set up a clean
sandbos with a fully scripted path through the tests and a full control over external
events (e.g., avoid connecting to live local networks).

2 Embedded Software Debug in Simulation and Emulation ... 35

2.3.6 Low Level Firmware Debug in a State-of-the-Art
Embedded System

While bringing up a new SoC system in the lab used for compliance testing purposes,
the hardware designers created a system consisting of a 64-bit CPU core and a
contemporary interrupt controller, both used to test the Message Signal Interrupt
(MSI) capability of an embedded xHCI controller 2.1 with xHCI controller as IP
and a USB SuperSpeed device VIP instance. The MSI capability is typical and well
supported for PCle-based devices, however with the introduction of new interrupt
controllers it is possible to receive these interrupts in embedded systems.

In the case of an embedded MSI interrupt the memory location is hijacked by the
interrupt controller to generate an interrupt signal for the CPU. This has required to
set the correct configuration of the bus (including protected access line) to work with
the interrupt controller and allow devices on the bus to access the given memory
location to generate an interrupt. An example device supporting this feature is an
xHCI interface core. The Linux driver supports the MSI mode and with the full
system running in the simulation environment it was possible to confirm that the IP
generates MSI interrupts. After appropriate configuration of addresses, switching the
xHCI core into the MSI mode and configuring the GIC to receive these messages.

2.4 Firmware Bring-up as a Hardware Verification Tool

With the current possibility to bring-up an IP quickly in a simulation/emulation in
a full system environment, it is possible to use off-the-shelf system tests for early
verification of newly developed IP.

This has been applied to two different cores recently in our lab setting.

2.4.1 NAND Flash

An MTD (Memory Technology Device) driver was created for a new NAND flash
controller core to enable the usage of MTD-test framework in Linux to perform
multiple (existing) system test on an IP that was still in development.

List of MTD tests available in the community'

e mtd_speedtest: measures and reports read/write/erase speed of the MTD device.
e mtd_stresstest: performs random read/write/erase operations and validates the
MTD device I/O capabilities.

Thttp://www.linux-mtd.infradead.org/doc/general.html.

http://www.linux-mtd.infradead.org/doc/general.html

36 C. Wronka and J. Kotas

e mtd_readtest: this tests reads whole MTD device, one NAND page at a time
including OOB (or 512 bytes at a time in case of flashes like NOR) and checks
that reading works properly.

e mtd_pagetest: relevant only for NAND flashes, tests NAND page writing and
reading in different sizes and order; this test was originally developed for testing
the OneNAND driver, so it might be a little OneNAND-oriented, but must work
on any NAND flash.

e mtd_oobtest: relevant only for NAND flashes, tests that the OOB area I/O works
properly by writing data to different offsets and verifying it.

e mtd_subpagetest: relevant only for NAND flashes, tests I/O.

e mtd_torturetest: this test is designed to wear out flash eraseblocks. It repeat-
edly writes and erases the same group of eraseblocks until an I/O error hap-
pens, so be careful! The test supports a number of options (see modinfo
mtd_torturetest) which allow you to set the amount of eraseblocks to tor-
ture and how the torturing is done. You may limit the amount of torturing cycles
using the cycles_count module parameter. It may be very good idea to run
this test for some time and validate your flash driver and HW, providing you have
a spare device. For example, we caught a rather rare and nasty DMA issues on an
OMAP?2 board with OneNAND flash, just by running this tests for few hours.

e mtd_nandecctest: a simple test that checks correctness of the built-in software
ECC for 256 and 512-byte buffers; this test is not driver-specific, but tests general
NAND support code.

This allowed finding a number of issues with the Linux driver, as it was a ready set
of ‘tested tests’ so a perfect environment for driver development with a well defined
acceptance criteria (passing all tests).

The MTD framework allows to run file-systems (such as JFFS2) on top of the
existing stack, giving further system and stress testing capabilities.

2.4.2 xHCI

In the case of an IP with a standard register interface, the Linux itself can be used
as a first stage of system testing as soon as the IP can be integrated into a simula-
tion/emulation environment. Furthermore, the USB-test Linux framework was used
to perform multiple system tests to confirm the system-level stability of an IP (that
was at the same time going through design updates and standard hardware verification
process).

1| TEST 1: write length bytes iteration times

2| TEST 2: read length bytes iteration times

3| TEST 3: write/length ixvary..length bytes iteration times
4| TEST 4: read/length ixvary..length bytes iteration times
5| Queued bulk I/0 tests

6| TEST 5: write iteration sglists sglen entries of length
7 bytes

2 Embedded Software Debug in Simulation and Emulation ...

o

TEST 6: read iteration sglists sglen entries of length

9 bytes

10| TEST 7: write/vary iteration sglists sglen entries ixvary..
1 length bytes

12| TEST 8: read/vary iteration sglists sglen entries ixvary..
13 length bytes

14| Non—queued sanity tests for control (chapter 9 subset)

15| TEST 9: ch9 (subset) control tests, iteration times

16| Queued control messaging

17| TEST 10: queue sglen control calls, iteration times

18| Simple non—queued unlinks (ring with one urb)

19| TEST 11: wunlink iteration reads of length

20| TEST 12: unlink iteration writes of length

EP halt tests

2| TEST 13: set/clear iteration halts

23| Control write tests

24| TEST 14: iteration epOout, O0..length vary vary

5| Iso write tests

6| TEST 15: write iteration iso, sglen entries of length bytes
27| Iso read tests

| TEST 16: read iteration iso, sglen entries of length bytes
»| Tests for bulk I/O using DMA mapping by core and odd address
30| TEST 17: write odd addr length bytes iterations times core

=)

3 map
2| TEST 18: read odd addr length bytes iterations times core
3 map

34| Tests for bulk 1/0 using premapped coherent buffer and odd
35 address
36| TEST 19: write odd addr length bytes iterations times

37 premapped
33| TEST 20: read odd addr length bytes iterations times
39 premapped

40| Control write tests with unaligned buffer

TEST 21: iterations epOout add addr, 110..length vary vary
| Unaligned iso tests

4| TEST 22: write iterations iso odd, sglen entries of length
44 bytes

45| TEST 23: read iterations iso odd, sglen entries of length
46 bytes

47| Unlink URBs from a bulk-OUT queue

4| TEST 24: unlink from iteration queues of sglen length—byte
49 writes

so| Simple non—queued interrupt I/O tests

TEST 25: write length bytes iterations times

52| TEST 26: read length bytes iterations times

s3| Simple Bulk performance test

s+|/ TEST 27: bulk write iterationssxsglenxlength /(1024%1204)
55 Mbytes

se| TEST 28: bulk read iterationsssglenxlength /(1024%1204)

57 Mbytes

~

v

37

Listing 5 Non-queued bulk I/O tests from http://www.linux-usb.org/usbtest/

http://www.linux-usb.org/usbtest/

38 C. Wronka and J. Kotas

where:

iterations—count iterations
length—size of packet
sglen—scather/gather entries of
vary—vary packet size by.
i—current iteration

These tests allowed to find a number of issues with the driver, in particular:

e stall support
e device configuration.

The test suite was also used as a stress test for the IP using several system config-
urations (32/64 bit, legacy/MSI interrupt) allowing to assure system quality of the
driver.

2.5 Playback Debugging with Cadence® Indago""
Embedded Software Debugger

Digital systems get more and more complex in time. The requirements for new func-
tionality while preserving backwards compatibility makes each new system release
more complicated than the previous one. To fully verify such a project, a tool is
required that allows firmware and hardware co-verification. Hardware tests (whether
UVM or functional/directed) may not suffice, in order to create more realistic use
cases firmware driven test cases are required. This allows building a complete use
case into a single test case, e.g., adding a new sound channel to a SoundWire device
requires reconfiguring the IP and running all transmissions simultaneously. There-
fore it is important to have a system with a microcontroller available as part of the
verification platform.

On the other hand, increasing competition on the market enforces putting more
consideration to the cost of designing new versions of devices. In particular the time-
to-market perspective is very important. It is key to assure that the work is not held up
by unexpected errors that are difficult to analyze. The occurrence of such issues can
lead to project delays and introduction of ‘crunch time’—both significantly affecting
the team and potentially leading to further problems. There is a lot of cases where
the error is observable after it occurs and it is easy to set a breakpoint at the later
execution time to see its effects, but it may be difficult to track the root cause (such
as—unexpected input value or a bug in the code). In this case it is very important to
be able to observe the past of the system (hardware and software including memory
contents) to trace the actual root cause occurrence.

Indago™ Embedded Software Debugger is a solution allowing to debug the entire
system (both hardware and software). It is a complete solution in the way that using
a single tool allows to access all components of the project. It allows easy analysis

[9%]
=]

2 Embedded Software Debug in Simulation and Emulation ...

&
SoundWire | AHB | m X §
Slaves 5 g
vIP) % 5
—_— g
SoundWire - g
T:-?‘:]r Poi | & ||| Contrl signals g
E @
5 2
SoundWire g w
Passive —] g
Manitor o 2 =
(VIP, opticnal) IRG Line i H:EH g
$1)6
3|2
§
i g
POI z E

e

Slaves (RTL) Slave (RTL) |
w
APB -
IRQ Line g
Control signals !
SystemVerilo
y g SystemC

wrapper

Fig. 2.12 Soundwire hardware/software co-verification platform

of the cooperation between hardware and software. Indago™ Embedded Software
Debugger allows to watch the complete system state at each moment by tracing all
signals, the CPU state, and the memory contents.

2.5.1 Example

An example verification system for the SoundWire Master and Slave devices has
been created and is shown in Fig. 2.12. It is based on an SoC with both SystemC and
RTL components executed in the Incisive® Enterprise Simulator.

The system consists of the following components:

e SystemC:

— CPU Fast Model

— Virtual Fabric Model
— Memory Model

— UART Model

e RTL (Verilog):

— SoundWire Master

40 C. Wronka and J. Kotas

Fig. 2.13 Main Interface of Indago™ embedded software debugger application

— SoundWire Slave
e VIP:
— SoundWire Slave

In order to use playback debugging with Indago™ Embedded Software Debugger,
the ELF file and information about software execution flow are required. It can be
either:

e Trace text file which allows to use all features of Indago™ Embedded Software
Debugger,

e PC Counter trace on a waveform, which only provides basic debugging function-
ality.

A compatible waveform database containing information about hardware signals can
also be loaded to the application, which allows hardware/software co-debugging.

Figure 2.13 shows the main interface of the Indago™ Embedded Software Debug-
ger which contains two major parts, code debugger, and waveform window which
can show information about both software and hardware.

This particular example shows the write operation to the hardware. CPU writes
data to the FIFO which is shown at the hardware level as AHB write transaction.

The offline debugging feature allows to move forward and backward in code
execution and setting unlimited breakpoints. This is especially useful when code fails
in an interrupt handler. Indago™ Embedded Software Debugger allows to jump back
to the last execution and see what went wrong without stepping through successful
runs. Figure?2.14 presents an example function which was called by an interrupt
handler. Call Stack and waveform can be used to quickly identify why it was called.

2 Embedded Software Debug in Simulation and Emulation ... 41

w. - fEOEETRD

Fig. 2.14 Debugging of code executed during one of interrupts

Add SmartPrints (on Ivlinuxq)

Note: SmartPrints will be added only on the recorded time windows

Message © CSWI_CmdWrite was entered: =
val slave is: ${slave},
val registeraddress is: ${registeraddress},
val registerData is: ${registerData},

Show 1000 » | Messages

Time Range

Verbosity = re—re——{)— E

Add || Cancel

Fig. 2.15 SmartPrint settings

Offline debugging allows nonintrusive debugging methods. Using prints to debug
code is quite common, but it affects code execution timing, so problematic code may
start working after adding some prints in the code. Indago™ Embedded Software
Debugger supports SmartPrints. In any line of code which was executed it is possible

Keep ~ Message -

[Bty ® simulation

Time (fs)

Kl /A S m_ean cannnn

[

[© ¢y [604,049,000...
[9 & m 622,447,000...
[@ ¥ [631,940,000...

[@ & [632,893.000...

| B - |verbosity = r—r—T—T= |Domain [¥le [v]HDL\SV [¥]SC

Remove Line 1506@cswi.c
Remove Message 1 selected

Message

CSWI_CmdWrite was entered:

val slave is: CSWI_DA_DEVICE NUMEER 8,

val registerAddress is: 517,
val registerData is: 1 "\0OL',
CSWI_CadWrite was entered:

val slave is: CSWI_DA_DEVICE_NUMBER 8,

val registerAddress is: 512,
val registerData is: 2 '\002',
CSWI_CmdWrite was entered:

val slave is: CSWI_DA_DEVICE NUMBER S,

val registerAddress is: 514,
val registerData is: 0 ''

CSWI_CmdWrite was entered:

val slave 1s: CSWI_DA_DEVICE NUMBER_8,

val registerAddress is: 562,
val registerData is: 63 '?',
LONT _Cmeddles o _sine _antaead.

Showing 49 items out of 197 (2 fiters applied)
[¥] variables Uil Registers = Call Stack {:} Cores @ Breakpoints := smart..

C. Wronka and J. Kotas

& o

SEl) |
+ x
+ x

€«

Fig. 2.16 SmartLog window

to add print message with custom information and available variables, as shown in
Figs.2.15 and 2.16. Because it uses offline database of software execution, it does
not add any delays, which may affect the execution especially during interrupts. It
also makes debugging much easier.

2.5.2 Coverage Measurement

Indago™ Embedded Software Debugger along with Incisive® Enterprise Simulator
Metrics Center allows for Code Coverage measurement.

Figure2.17 shows the main window of the application. It provides a quick insight
into code testing quality, and helps to identify and fix issues in the code verification.
It is also possible to view code source code with indication which line was executed
as shown in Fig.2.18. Results from multiple test runs can be merged together.

2 Embedded Software Debug in Simulation and Emulation ... 43

IMC (64) [Anal

- Metrics] [on viinuxg)

Emlmlm

Pl @ roistie Eloments = = @ P

- Mama Overall hverage Grade Dverall Covarnd Aanertien Status Grade

(T

CW_TuPfpinhl -

Cow_Cleckisnentusring =

I _Getlankhddrens = e
3w CotBaskhddressitr =
5w Lackben e
[—— = e

Ovarall bverage Grade Cuaral Covared n

[=TFF 04 1843 645, 00%)

s 04 1847 129,001

(=T 31 04 12 45000
018 inal

018 il
010 inal
010 inal
010 inal
018 inal

b CowE b) CSW_FAoPut
iw | Foughe 3 e

Biock Type Source Line Scern

code back s B
cede blsck a1 G

© staic uintE2_t COM_FifoPuniCOM_Fifo® fife, CSM_CmaResponse® aem) |
- ife = s NULL) || (it4m = = NULLTH
return BV AL
W ifif-
revurn £1004M

CIM_RIFO_SITE)

8.1 Bl > felFfe->Fifelnl luint8 1)
fido=»fioin = ififo-fifoln « 1)% COM_AIFO ZE

., sizealCIM_Cmel

B Cipatch Cas
- L e
L
Black Ao e 4
Blsck dverage Grade 100%

Fig. 2.18 Example function source coverage view

44 C. Wronka and J. Kotas

Table 2.1 Comparison of Cadence® runtime and playback debuggers

Positives Negatives

Indago™ embedded software | Debug without affecting Cannot modify values during

debugger runtime. Unlimited rerun of debug (need to rerun full
prerecorded sequence. simulation). Large recording
Forward and backward file (need to provision disk
playback. Coverage space)
measurement. SmartPrints

Virtual platform Ability to modify Difficult debuging interrupts.
variables/registers during Need to rerun simulation to
debug. Much lower disk space | step back. No coverage
requirements measurement

2.5.3 Drawbacks

The limitation is that modifications cannot be tested in sifu. Therefore, it is important
to have access to multiple debug tools to be able to reevaluate the new code as the
recording of a new system run can be time consuming.

2.6 Conclusions

In this chapter, multiple examples of embedded systems with different debug
approaches have been presented. The recent development in the EDA tools and
the constant growth of computer speed and capacity allows to simulate or emulate
very complex system on chip- type platforms with immediate access to both software
debug symbols and stepping through code and tracing of the hardware signals, to
assure easy bring-up of new devices (while being designed) in system environments
and test against both industry standard verification IP or connectivity with real world
devices. This in turn allows shortening the time to market for new devices as the
software developers can start working on the drivers and system software as soon as
the IP is reasonably stable or as soon as a TLM model is available.

With the new playback approach to system debug it is also possible to trace issues
in the system without affecting the runtime. Table 2.1 shows a brief comparison of
both techniques.

The most important elements in the embedded software debug are

Platform that is set-up closest to the target system.

Ability ot start working with the device or its model as early as possible in the
development process.

Cooperation of hardware and software engineers (especially in the early bring-up
stages).

The appropriate choice of tools.

2 Embedded Software Debug in Simulation and Emulation ... 45

Acknowledgements The authors would like to thank Rafat Ciepiela for his input into the contents
and review of the chapter.

References

1. Cadence® (2016) Cadence Incisive® Enterprise simulator. Product website. https:/
www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-
verification/simulation-and-testbench- verification/incisive-enterprise-simulator.html

2. Synopsys (2016) Synopsys virtualizer. Product website. http://www.synopsys.com/Prototyping/
VirtualPrototyping/Pages/virtualizer.aspx

3. ARM (2016) ARM cpu fast models. Product website. http://www.arm.com/products/tools/
models/fast-models.php

4. Cadence® (2016) Cadence Palladium® Z1 emulator. Product website. https://www.cadence.
com/content/cadence-www/global/en_US/home/tools/system-design-and- verification/
acceleration-and-emulation/palladium-z1.html

5. VayavyaLabs (2016) Vayavya device driver generator. Product website. http://vayavyalabs.com/
technology/ddgen/

6. ARM (2016) ARM socrates DE tool. Product website. https://www.arm.com/products/system-
ip/ip-tooling/socrates-design-environment.php

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://www.synopsys.com/Prototyping/VirtualPrototyping/Pages/virtualizer.aspx
http://www.synopsys.com/Prototyping/VirtualPrototyping/Pages/virtualizer.aspx
http://www.arm.com/products/tools/models/fast-models.php
http://www.arm.com/products/tools/models/fast-models.php
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-z1.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-z1.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-z1.html
http://vayavyalabs.com/technology/ddgen/
http://vayavyalabs.com/technology/ddgen/
https://www.arm.com/products/system-ip/ip-tooling/socrates-design-environment.php
https://www.arm.com/products/system-ip/ip-tooling/socrates-design-environment.php

Chapter 3
The Use of Dynamic Temporal Assertions
for Debugging

Ziad A. Al-Sharif, Clinton L. Jeffery and Mahmoud H. Said

3.1 Introduction

The growth in the software industry is rapid and the size of programs is becoming
larger and larger. In contrast, the rate of advances in the debugging literature is
relatively slow. Most debuggers are well suited for a specific class or set of bugs.
Program bugs can be caused by numerous circumstances and revealed long after
their root cause. Understanding the source code and the execution behavior of the
program is essential to locate and find the cause of most bugs. This understanding can
be achieved by different means; one is to employ different debugging sessions that
capture, depict, analyze, and investigate the state of the program at, and in between,
different points of execution.

A typical interactive source-level debugger is one of the most valuable debugging
tools, but it relies heavily on the user’s ability to conduct a live investigation. It helps
programmers locate and find the root cause of bugs by stepping through the source
code and examining the current state of execution.

Source-level debugging techniques such as conditional breakpoints and watch-
points are dynamically inserted during the debugging session. They can check execu-
tion properties and stop the execution whenever a condition is satisfied. Even though
such breakpoints may have the advantage of being conditional and dynamic with on-
the-fly insertion, deletion, and modification, they are still bounded to their locations;
the exact line number in the source code of the target program and the current state
of the referenced variables and objects at that location on that execution time. For
instance, a class variable may be assigned a bad value in a method that is not on the
stack when the bug that caused the crash or core dump is revealed. This may force

Z.A. Al-Sharif (X)) - M.H. Said

Software Engineering Department, Jordan University of Science and Technology,
P.O. Box 3030, Irbid 22110, Jordan

e-mail: zasharif @just.edu.jo

M.H. Said
e-mail: mhsaid@just.edu.jo

C.L. Jeffery

Computer Science Department, University of Idaho, Moscow, ID 83844, USA

e-mail: jeffery @uidaho.edu

© Springer Science+Business Media, LLC 2017 47

D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_3

48 Z.A. Al-Sharif et al.

a user to run multiple debugging sessions on the same bug before it is understood.
Typically, a user can investigate the current state. If there is no evidence of the bug’s
root cause, he/she may restart the execution hoping to stop at an earlier point where
the cause of the bug is still accessible [6]. In contrast, Temporal Assertions are logical
expressions that use Temporal Logic (TL) in order to validate, not one state, but a
sequence of execution states, such as a sequence of variable values changed within
a block of code [8-10].

In order to introduce Dynamic Temporal Assertions (DTA) into conventional
source-level debugging sessions, for this research a source-level debugger named
UDB [1, 4] was extended with on-the-fly temporal assertions (made from within the
live debugging session). UDB is the source level debugger for the Unicon program-
ming language; it is packaged with the Unicon language distribution on Source Forge
and downloaded from unicon.org. Aside from the temporal assertions extension,
UDB’s command set is that of GDB. UDB was used instead of GDB for this research
because its higher level execution monitoring abstractions allow UDB to be more
easily extended than is GDB [2, 3].

The new DTA assertions that UDB supports are not bounded by the limitations of
ordinary breakpoints such as locality and temporality. UDB’s DTA assertions serve
three purposes:

1. Extend the usability of conventional source-level debuggers’ conditional break-
points and watchpoints. This simplifies the ability to validate relationships that
may extend over the entire execution and check information beyond the state of
evaluation.

2. Reduce the number of times a user has to stop and single step the execution for
state-based investigation.

3. Augment a traditional breakpoint-based debugging session with testing and ver-
ification capabilities [7].

3.1.1 DTA Assertions Versus Ordinary Assertions

Standard in-code assertions are inserted into the source code to validate pre- and
post-conditions or to check the value of some variables and expressions. In general,
typical ordinary assertions suffer from three limitations:

e Locality: An ordinary in-code assertion is bounded by its location (scope); it cannot
reference a variable from another scope even if it is live based on the current
execution state. Assertions live in one of the functions; each can reference local
and global variables. If the scope is a method, it can reference any of the class
variables. In fact, typical assertions cannot check or validate local variables in other
functions or methods, even if that foreign local is static or still live somewhere
on the stack of the current program’s execution state. For example, what if a user
needs to check the value of variable x fromprocedure foo () against variable
y from procedure bar ()?see Figs.3.1 and 3.2.

3 The Use of Dynamic Temporal Assertions ... 49

10 procedure foo()

11 local a,b,c
12 x:=10

16 bar()

19 end

20 procedure bar()
21 locala, b, c
22 y:=20

26 y:=(y*a)/b-c
27 Il virtually assert always() { y >= foo:x }

30 end

Fig. 3.1 The possibility of a temporal assertion over two live procedures

10 procedure foo()
11 staticx:=0
12 X +:=1

30 end

31 procedure bar()
32 staticy :=0
33 y+:=1

60 end

61 procedure baz()
62 foo()

74 bar()
75 Il virtually assert always() { bar:y >= foo:x }

- end

Fig. 3.2 The possibility of a temporal assertion over two sibling procedures

e Temporality: An ordinary in-code assertion is bounded by the current state of
execution. It can check only the current value of the referenced variables. For
example, what if a user needs to check the value of variable x against the previous
or even the initial value of x? Ordinary assertions are found to be useless once
more.

50 Z.A. Al-Sharif et al.

e Dynamicity: An ordinary in-code assertion is bounded to the source code, where
it is written and compiled; any change or modification requires the ability to
recompile and rebuild the executable. If the ordinary assertion evaluates to false,
it may provide a warning statement or terminate the execution. If the user wants
to investigate, he/she may modify the assertion by tightening or loosening the
condition, or adding nearby assertions.

3.1.2 DTA Assertions Versus Conditional Breakpoints

Conditional breakpoints and watchpoints are dynamically inserted during the debug-
ging session. They can check execution properties and stop the execution whenever
a condition is satisfied. Even though such breakpoints may have the advantage of
being conditional and dynamic with on-the-fly insertion, deletion, and modification,
they are still bounded to their locations; the exact line number in the source code of
the target program and the current state of the referenced variables and objects at
that location on that execution time. Whereas, DTA assertions are able to reference
variables that are not accessible (not active in the current execution state) at evalu-
ation time. This feature solves the problem provided in Fig.3.2, which shows that
procedure foo () and bar () are siblings in baz ().

3.2 Debugging with DTA Assertions

In general, users of source-level debuggers suffer from:

1. The limited information provided about the execution history, and
2. The lack of automated trace-based and analysis-based debugging techniques,
which may help users validate various execution states.

DTA assertions, within a typical source-level debugger, provide an extension
of conditional breakpoints and watchpoints. They employ agents that implement
temporal logic operators, each with an automatic tracing mechanism. Traced data are
assertion-driven; relevant information is gathered and analyzed in real time. Different
DTA assertions can be applied on different execution properties with dynamicity and
flexibility. Each assertion is capable of validating program properties that may extend
over a sequence of execution states [14].

For example, a debugging process may include checking variable values from
different scopes. Figure 3.3 shows a program that prints out the prime numbers from
1 to some x. The procedure main () calls isPrime (), which returns true
when the passed argument is a primary number. The temporal assertion provided in
#1 of Fig.3.3 shows how to check the current local value of variable i against the
last value of variable i of the procedure main () (denoted by main:i). This
DTA assertion assumes that the value of parameter i should not change during the

3 The Use of Dynamic Temporal Assertions ... 51

1 procedure main()

2 local x, i

3

4 writes(“ Please enter a positive integer number : “)
5 x = read()

6

7 write("\n The following are the primary numbers <= ", x)
8 everyi:=1toxdo

9 if isPrime(i) then

10 write(i, “ is a primary number “)

11 end

12

13 procedure isPrime(i)

14 local k

15

16 k =i

17 i =1

18 assert always() { i == main:i } }#1
19 while (i> 1) do

20 {

21 if k%i =0 then

22 fail

23 i-=1

24 }

25 return k

26 end

Fig. 3.3 Using temporal assertions to check variables from various scopes

execution of 1sPrime (). However, because the program is modifying the value
of i, this assertion will evaluate to false at every change to i (temporal-state) in
this isPrime () function, and it will evaluate to false at every return from this
isPrime () function (temporal-interval).

3.3 Design

DTA assertions do not replace traditional breakpoints or watchpoints, instead they
provide a technique to reduce their number, which means they are used to reduce the
number of execution stops and improve the overall process of investigation. These
temporal assertions advance breakpoints with agents of temporal logic operators
(temporal agents). At a stop, besides the source-level debugging functionalities, the
user can delete, enable, disable, and modify existing assertions, or even insert new

52

Z.A. Al-Sharif et al.

Interval of
All-Time

Assertions :

prints odd numbers in [x .. 1]

s procedure printOddNumbers(x)

locali:=0

if x%2=0then x-=1
while (x ~= 0) do

{
write(" x =", x)
X-=2
i+=1

}

returni

Interval of
Past-Time
Assertions

b

Concerned
Location

Interval of
Future-Time
Assertions

J

Fig. 3.4 Temporal assertions: scope and interval

Table 3.1 Atomic data related agents

Agent name Return type Description

initial (x) Any The initial value of x

final(x) Any The final value of x

old (x) Any The previous value of x

current(x) Any The current value of x

new(x) Any The next value of x

max(x) Numeric The maximum of all x values

min(x) Numeric The minimum of all x values

newmax(x) True/false Evaluate True if x has new max, False otherwise
newmin(x) True/false Evaluate T'rue if x has new min, False otherwise
sum(x) Numeric The sum of all x values

avg(x) Numeric The average of all x values

DTA assertions at any location in the buggy program source code; all without the
need to recompile the target program source code or to reload it under the debugger.

UDB supports three kinds of DTA assertions, see Fig. 3.4. Each of these kinds has
its own set of temporal agents. All these DTAs can reference execution properties and
other internal extension agents such as the atomic data agents described in Table 3.1
and the behavioral agents described in Table 3.2.

3 The Use of Dynamic Temporal Assertions ... 53

Table 3.2 Atomic execution behavior-related agents

Agent name Return type Description

call(proc) Integer The number of times proc is been called

return(proc) Variable The current value returned by proc

initialized(x) True/false True if x was assigned at first reference, False
otherwise

dead(x) True/false True if x is never referenced at least once, False
otherwise

reference(x) Integer The number of times x is been read and written

assign(x) Integer The number of times x is been assigned

read(x) Integer The number of times x is been read only

alias(x) List All current x aliases

iterations(loop) |Integer The number of actual iterations of loop

3.3.1 Past-Time DTA Assertions

This category consists of four Past-Time Operators. These operators utilize informa-
tion retained between entering an assertion’s scope and a reaching assertion’s source
code location. At insertion time, the debugger starts retaining relevant information
to be used during the assertion’s evaluation. When the execution reaches the virtual
execution point, where the assertion is hooked in the buggy program space, the asser-
tion temporal interval is evaluated. If the evaluation is not able to complete due to
some missing information (maybe out-of-scope referenced data is never used during
an assertion’s lifetime), the assertion evaluation is tagged with Not Valid. These
four DTA assertions are:

1. alwaysp () {expr}:assertsthatan expression must always hold (evaluate to
true) for each, temporal state, temporal interval, and during the whole execution.

2. sometimep () {expr}: assertsthatan expression must hold at least once for
each temporal interval, and during the whole execution.

3. previous () {expr}: asserts that an expression must hold right at the last
state before the end of the temporal interval.

4. since() {condition ==> expr}: asserts that an expression must hold
right after condition is true up until the end of the temporal interval and for each
interval.

3.3.2 Future-Time DTA Assertions

This category consists of four Future-Time Operators. These operators utilize infor-
mation retained between reaching an assertion’s source code location and leaving
an assertion’s scope. The agents of those operators start watching for referenced

54 Z.A. Al-Sharif et al.

objects when the evaluation is triggered, where the debugger starts retaining rele-
vant information until the assertion’s temporal interval is evaluated completely. If
the execution is terminated before the assertion’s interval is complete, the user is
able to check temporal states in that incomplete temporal interval. These four DTA
assertions are:

1. alwaysf () {expr}:assertsthat an expression must always hold (evaluate to
true) for each, state, temporal interval, and during the whole execution.

2. sometimef () {expr}: assertsthat an expression must hold at least once for
each temporal interval, and during the whole execution.

3. next () {expr}: asserts that an expression must hold right at the very first
state in the temporal interval.

4, until () {condition ==> expr}: asserts that an expression must hold
from the beginning of the temporal interval up until condition is true or the
end of the temporal interval and for each interval.

3.3.3 All-Time DTA Assertions

This category consists of two All-Time Operators. These two operators are based
on the time interval between entering an assertion’s scope and exiting an assertion’s
scope. When the assertion scope is entered, the assertion starts retaining relevant
information and evaluates its temporal states. When the execution exits the assertion
scope, the assertion temporal interval is evaluated. These two DTA assertions are:

1. always () {expr}: asserts that an expression must always hold (evaluate to
true) for each, state, temporal interval, and during the whole execution.

2. sometime () {expr}: asserts that an expression must hold at least once for
each temporal interval, and during the whole execution.

3.4 Assertion’s Evaluation

Each reached (evaluated) assertion has at least one temporal interval. This interval
consists of a sequence of temporal states. Temporal interval is defined by the asser-
tion scope and kind. Assertion’s scope is defined based on the source code location
provided in the assert command. This scope is the procedure or method surround-
ing the assertion location. Figure 3.4 shows the temporal interval for all three kinds
of temporal assertions in reference to the provided location. Together, the assertion’s
scope and kind define the temporal interval. In particular:

e Temporal Intervals of Past-Time DTA assertions start at entering the assertion’s
scope (calling the scope procedure) and end at reaching assertion’s source code
location for the very first time after entering the scope.

3 The Use of Dynamic Temporal Assertions ... 55

State Based
Temporal Level

f’—”ﬁ;ﬂ
[H:] 15808 1001 | }LTorF])

[s}
o) Ees wa] }ar)

Interval Based Overall
Temporal Level

Temporal Level

I_H

[H] [(Sesawese 100 | }<LToF)

Fig. 3.5 Sample Temporal Assertion’s Evaluation: An assertion is hit ¢ times [H;..H;]. Each hit
represents a Temporal Interval, which consists of a various number of states; each state is evaluated
to True or False. Each Temporal Interval is evaluated based on the conjunctive normal form
of its state-based evaluations (on that particular hit /;) . Finally, on the overall temporal level, the
assertion is evaluated once more based on the conjunctive normal form of all previous interval-based
evaluations

e Temporal Intervals of Future-Time DTA assertions start at reaching an assertion’s
source code location for the very first time after entering the assertion’s scope and
end at exiting the assertion’s scope (returning from the scope procedure). In this
kind of temporal assertions, the source code location can be hit more than once
before the interval is closed.

e Temporal Intervals of All-Time DTA assertions start at entering assertion’s scope
and end at exiting that scope; regardless of the provided source code location.

During a debugging session, it is possible for a user to have multiple assertions,
each with multiple temporal intervals, and each interval with multiple temporal states.
See Figs. 3.5 and 3.6. Each DTA assertion runs through three levels of evaluations:

1. State-based: temporal level (single state change). This evaluation is triggered by
any change to the assertion referenced objects.

2. Interval-based: a sequence of consecutive states. This evaluation is triggered by
reaching the end of assertion’s temporal interval (exiting the assertion scope).

3. Overall execution-based: a sequence of consecutive temporal intervals. This eval-
uation is triggered by the end of execution.

56 Z.A. Al-Sharif et al.

[SuSa...S¢ 1011 |

DTA. Tl‘:urFJ:L'l;orFJ : \
TorF

UDB'’s
Debugging
DTA, J ‘W_F]:[,T/or FJ . Session

[SuSe.... S 101.1]

TorF é iifor E
DTA, TorF

[818p...8 101-f1

Fig. 3.6 Sample evaluation of various temporal assertions (n DTA assertions) during a debugging
session

UDB’s DTA assertions are evaluated in the debugger side. By default, whenever
an assertion evaluates to false, the source-level debugger stops execution in a
manner similar to a breakpoint. The debugger transfers control to the user with an
evaluation summary.

3.4.1 Temporal Cycles and Limits

A temporal cycle defines the maximum number of consecutive temporal intervals
(maximum number of temporal level evaluation times), which defines the overall
evaluation. The default value of cycle is unlimited number of evaluations. Temporal
1limit defines the maximum number of temporal states considered in each temporal
interval. The definition of temporal limit is changed based on the kind of temporal
assertion in reference. In particular:

1. In Past-Time DTA assertions: 1imit defines the maximum number of consecu-
tive states before reaching assertion’s source code location and after entering the
assertion’s scope.

2. In Future-Time DTA assertions: 1imit defines the maximum number of con-
secutive states after assertion’s source code location is reached and before exiting
the assertion’s scope.

3 The Use of Dynamic Temporal Assertions ... 57

3. In All-Time DTA assertions: 1imit defines the maximum number of states
before and after an assertion’s source code location is reached, all within the
assertion’s scope.

The default limit is defined by whatever temporal states (temporal-interval) are
encountered during the execution of an assertions’ scope and based on its temporal
interval. The user can reduce the number of temporal states considered in each
temporal interval by setting this limit using the 1imit command.

3.4.2 Evaluation Log

Furthermore, the assertion’s log gives the user the ability to review the evaluation
behavior of each assertion (evaluation history). The debugger maintains a hash table
for each assertion. It maps assertions’ intervals into lists with information about
their temporal state base evaluation. Each list reflects a temporal interval, which
maintains the evaluation order and result for each temporal state. Each list reflects
one temporal interval, also maintained based on their order. Completely evaluated
intervals are tagged with True or False. If the evaluation process is already started,
but the final result is still incomplete, perhaps the end of the interval is not reached yet,
these intervals are tagged with Pending until they are complete. This will convert
Pending into True or False. However, some assertions may never be triggered
for evaluation; this may occur because the execution never reached the assertion’s
insertion point during a particular run. These assertions have the hit counter set to
Zero.

3.4.3 DTA Assertions and Atomic Agents

Atomic agents are a special kind of extension agents (nontemporal logic agents) [1,
3, 4]. They expand the usability of DTA assertions and facilitate the ability to validate
more specific data and behavioral relationships over different execution states, see
Tables 3.1 and 3.2. When an atomic agent is used within a DTA assertion, it retains
and processes data and observes behaviors in relevance to the used assertions. The
assertion scope is what determines when the agent should start to work and what
range of data it should be able to retain and process. For example, if the assertion
uses the max (var) or min (var) atomic agents, the agent always retains the
maximum or minimum respectively over the assertion temporal interval.

Those atomic agents add more advancement and flexibility to the usefulness of
DTA assertions and their basic temporal logic operators. In particular, DTA asser-
tions that reference atomic agents can easily check and compare data obtained by
these atomic agents, which encapsulate simple data processing such as finding the
minimum, maximum, sum, number of changes, or average. For example, suppose

58 Z.A. Al-Sharif et al.

1. (udb) assert test.icn:50 sometimep() { x <y}

. (udb) assert test.icn:50 alwaysp() { old(x) != current(x) }

. (udb) assert test.icn:50 alwaysf() { return(foo) > 0}

. (udb) assert test.icn:50 always() { iteration(while) < 100 }

. (udb) assert test.icn:50 always() { call(baz) < 1000 }

Fig. 3.7 Sample of different UDB’s temporal assertions

that a static variable is changed based on a conditional statement where it is incre-
mented when the condition is t rue and decremented when the condition fails. What
if the user is interested in the point at which this variable reaches a new maximum
or minimum? DTA assertions provide a simple solution for such situations.

For example, the assertion number 1 of Fig.3.7 will pause the execution when
variable x becomes greater than or equal to y. As another example, suppose the user
is interested in the reasons behind an infinite recursion; perhaps a key parameter
in a recursive function is not changing. DTA assertions provide a mechanism to
retain the parameter value from the last call and compare it with the value of the
current call, see assertion number 2 of Fig.3.7. If o1d (x) == current (x), the
assertion will stop the execution and hand control to the debugger where the user
can perform further investigation. Of course, there are other reasons that may cause
infinite recursion, such as the key parameter value changing in the opposite directions
on successive calls.

Moreover, DTA assertions simplify the process of inserting assertions on pro-
gram properties such as functions’ return values, and loops’ number of iterations.
For example, a user may insert a breakpoint inside a function in order to investigate
its return value, or place an in-code assertion on the value of the returned expression.
A DTA assertion provides a simpler mechanism; see assertion number 3 of Fig. 3.7.
Assertion number 4 of Fig. 3.7 states that the while loop at line 50in file test .icn
always iterates less than 100 times. Finally, assertion number 5 of Fig.3.7 shows
how to place a DTA assertion on the number of calls to a function; the assertion will
stop execution at call number 1000. This particular assertion is difficult to accom-
plish using conventional source-level debugging features such as breakpoints and
watchpoints.

3 The Use of Dynamic Temporal Assertions ... 59

3.5 Implementation

DTA assertions are virtually inserted into the buggy program source code on-the-
fly during the source-level debugging session. UDB’s static information is used to
assist the user and check the syntax and the semantic of the inserted assertion. Each
assertion is associated with two sets of information (1) event-based and (2) state-
based. The debugger automatically analyzes each assertion at insertion time in order
to determine each set. It finds the kind of agents that are required to be encountered
in the evaluation process. If any extension agent is used, the debugger establishes an
instance of that agent and associates it with its relevant object.

The host debugger maintains a hash table that maps each assertion source code
location into its related object (agent). The assertion object is responsible for main-
taining and evaluating its assertion. It contains information such as (1) the parsed
assertion, (2) a list of all referenced variables (3) a list with all temporal intervals
and their temporal states, and (4) the assertion event mask: a set of event codes to
be monitored for each assertion; this event mask includes the event masks for any
of the referenced agents. Execution events are acquired and analyzed in real time.
Some events are used to control the execution whereas others are used to obtain
information in support of the state-based technique [2, 5].

Each assertion has its own event and value masks, which are constructed automat-
ically based on the assertion, see Fig.3.8. A union set of all enabled assertion event
masks is unified with the debugging core event mask. The result is a set of events
requested by the debugging core during the execution of the buggy program. This
set is recalculated whenever an assertion is added, deleted, enabled, or disabled. On-
the-fly, UDB’s debugging core starts asking the buggy program about this new set of
events. A change on any assertion event mask alters the set of events forwarded by the

—— Unicon’s VM

High Level In-process Access Features

Monitor i | EvGet() | s
Program > ot
¥l > | Event r z VM
Interpreter € Z Interpreter
(Thread #0) IReporl) !] e
Very Lightweight events t
S vt Virtual Machine
Instrumentation

Fig. 3.8 UDB’s use of event mask and event value within the Unicon virtual machine

60 Z.A. Al-Sharif et al.

debugging core to that assertion object. Temporal logic agents automatically obtain
the buggy program state-based information to evaluate DTA assertions. Each agent
automatically watches assertion referenced variables and retains their information in
the debugger space.

3.6 Evaluation

DTA assertions provide the ability to validate relationships that may extend over the
entire execution and check information beyond the current state of evaluation. DTA
assertions’ temporal logic operators are internal agents. Those agents can reference
other atomic agents, which provide access to valuable execution data and behavior
information. UDB’s DTA assertions have the following features:

e Dynamic insertion, deletion, enabling, disabling, and modification. Assertions are
managed on-the-fly during the debugging session without source or executable
code alteration.

¢ A nondestructive way of programming supported by an assertion-free source code.
In general, debugging information is needed only during program development,
testing, verification, validation, and debugging.

e Assertions are virtually inserted and evaluated as part of the buggy program source
code. All assertions live in the debugging session configuration; each is evaluated
by the debugger in the debugger execution space. The debugger automatically
maintains state-based techniques to determine what information is needed to eval-
uate each assertion, and it uses event-based techniques to determine when and
where to trigger each assertion evaluation process. Some program state-based
information is collected before assertion evaluation, while other information is
obtained during the evaluation process. All DTA assertions are evaluated as if they
were part of the target program space

e Optional evaluation suite, where a user can specify an evaluation action such as
stop, show, and hide. The show action enriches assertions with the sense of
in-code tracing and debugging with print statements, where a user can ensure that
the evaluation has reached some points and the referenced variables satisfy the
condition.

e The ability to log the assertion’s evaluation result. This lets the user review the
assertion evaluation history for a specific run. Evaluated assertions are marked
with True or False. Some DTA assertions may reference data in the future;
those assertions are marked with Not Valid for that exact state-based evalua-
tion. Assertions’ intervals are marked with a counter that tracks their order in the
execution. If an assertion has never been reached, it is distinguished by its counter
value, which is zero in this case. Log comparison of different runs is considered
in future works.

e Mostimportantly, DTA assertions can go beyond the scope of the inserted location.
Each assertion may refer to variables or objects that were living in the past during

3 The Use of Dynamic Temporal Assertions ... 61

previous states, but not at evaluation point, and each assertion may compare previ-
ous variable values against current or future values. Each DTA assertion implicitly
employs various agents to trace referenced objects and retains their relevant state
information in order to be used at evaluation time.

3.6.1 Performance

In consideration of the performance in terms of time, the implementation of temporal
assertions utilizes a conservative assertion-based event-driven tracing technique. It
only monitors relevant events; the event mask and value mask are generated automat-
ically for each assertion at insertion time. Temporal assertions are evaluated in three
levels. First is the state-based level, which depends on any change to the referenced
execution property. Second is the interval-based level, which is determined by the
assertion scope and kind. Third is the overall evaluation level, which occurs once
per each execution. Different assertions can reference different execution properties.
For this reason various assertions will differ in their cost.

However, in order to generally assess the role of the three evaluation levels in the
complexity of these temporal assertions, let us assume that Eg is the maximum cost of
monitoring and evaluating a state change within a temporal assertion. Furthermore,
let us assume that n is the maximum number of state changes during a temporal
interval and m is the maximum number of temporal intervals during an execution.
See Figs. 3.5 and 3.6. This means, the maximum cost of evaluating a temporal interval
for this assertion is Eg*n and the maximum cost of an assertion during the whole
execution is (Eg*n) * m which is equal to Eg*n * m. However, Eg includes the cost
of event forwarding. This means that part of Eg is (2E; + 2E.), where E. is the
cost of reporting an event to UDB and E; is the cost of forwarding an event to the
temporal logic agent (internal agent). This means the E5 dominates both n and m;
state change is the main performance issue in temporal assertions.

Furthermore, retained information is limited and driven by assertions’ referenced
execution properties. Assertions are virtually evaluated because they are in another
execution space. The evaluation occurs in the debugger space with data collected
and obtained from the buggy program space. The assertion log gives the user the
ability to review the evaluation behavior of each assertion. Temporal assertions use
in-memory tracing. A table is allocated for all assertions; it maps each assertion
source code location to the instance object of the actual assertion. Another table is
allocated for each assertion; it tracks temporal intervals, each of which is a list (stack)
with each of the state-based evaluation result. A third table is used to map assertion
temporal intervals with their evaluation result, each of which is one value True,
False, or Not Valid. Then one variable is holding the up to the point result
which is either true or false. The dominating part in the used space is the number
of state changes, E. Each state base evaluation is tracked with a record that keeps
information about the line number, file name, and the result.

62 Z.A. Al-Sharif et al.

=&—Ave Real =~ Ave User Ave Sys

._.._._.._._.
- WaA W,

Time in Seconds

—
O o b WL O =] 00O O

Fig. 3.9 UDB'’s temporal assertions evaluation time

In order to find the impact of temporal assertions on the execution of the target
program and the debugging time, a simple temporal assertion is applied on a simple
program. The program prints numbers between 1 and 100,000; see Fig.3.9. The
temporal assertion is applied with various sizes of temporal intervals. These intervals
start at size 1, 100, 1000, 10,000, 50,000, and 100,000. The experiment is based on
eight kinds of runs, each is observed for five times and the average of these times
is reported. These kinds of runs range from measuring the time for the program in
the standalone mode (no monitoring is involved), monitored under UDB with no
assertion applied, then with an assertion that has various intervals. Figure 3.9 shows
the impact of these temporal assertions on the execution time.

3.7 Challenges and Future Work

Debugging with DTA assertions provides advantages over typical assertions and con-
ditional breakpoints and watchpoints. At the same time, it faces some challenges and
limitations, some of which are based on associating assertions with the executable’s
source code, evaluating assertions in the debugger, and the source-level debugger’s
ability to obtain and retain relevant event-based and state-based information with
reasonable performance.

3 The Use of Dynamic Temporal Assertions ... 63

First, if an assertion makes a reference to a variable, which is not accessible from
within the assertion’s scope, the debugger should automatically trace those variables
and retain their relevant state information to be used at the assertion evaluation time.
This allows a DTA assertion to access data that is not live at the assertion’s evaluation
time.

Second, what if the assertion source code location is overlapping with a statement?
Which one should be evaluated first, the assertion or the statement? A conservative
approach may consider the assertion evaluation after the statement only if the state-
ment has no variables referenced by the assertion, or if the statement does not assign
to any of the assertion referenced variables. However, if the statement will assign
to any of the assertion referenced variable, the assertion can be evaluated before
and after the statement evaluation. If the two evaluations are different such as one
is true and the other is false, or both are false, the assertion will stop the
execution and hand the control to the debugger and the user to investigate. The work
presented in this paper, takes the simplest approach which is to evaluate the asser-
tion before the statement. Furthermore, if an assertion is not overlapping with an
executable statement, the AlamoDE framework cannot report a line number event
from a nonexecutable line. A line number event is only reported when a statement in
that line number is fetched to be executed. This is reached by checking the assertion
source code location before confirming that the assertion is inserted successfully. It
checks whether the line number is empty or it is commented out.

Finally, if a referenced variable is an object or a data structure such as a list,
this can cause two problems. First, the object is subject to changes under other
names because of aliasing. Second, if the object is local, it may get disposed by the
garbage collector before the evaluation time. The implementation could be extended
to implement trapped variables that would allow us to watch an element of a structure
or utilize an aliasing tracing mechanism to retain all changes that may occur under
different names. The implementation of temporal assertions presented in this paper
does not go after heap variables, which is left for future work.

3.8 Conclusion

DTA assertions bring an extended version of in-code assertion techniques, found in
mainstream languages such as C/C++, Java, and C#, into a source-level debugging
session. These temporal assertions help users test and validate different relationships
across different states of the execution. Furthermore, assertion evaluation actions
such as show provide the sense of debugging and tracing using print statements
from within the source-level debugging session. They give the user a chance to know
that the execution has reached that point and the asserted expression evaluated to
true; it also gives the user the ability to interrupt and stop the execution for more
investigation. The ability to log the assertion evaluation result provides the user with
the ability to review the evaluation process. A user can check a summary result of
what went wrong and what was just fine.

64 Z.A. Al-Sharif et al.

Source-level debuggers provide the ability to conditionally stop the execution
through different breakpoints and watchpoints. At each stop, a user will manually
investigate the execution by navigating the call stack and variable values. Source-
level debuggers require a user to come up with assumptions about the bug and let
him/her manually investigate those assumptions through breakpoints, watchpoints,
single stepping, and printing. In contrast, DTA assertions require the user to come up
with logical expressions that assert execution properties related to a bug’s revealed
behavior and the debugger will validate these assertions. Asserted expressions can
reference execution properties from different execution states, scopes, and over vari-
ous temporal intervals. Furthermore, unlike conditional breakpoints and watchpoints,
which only evaluate the current state, DTA assertions are capable of referencing vari-
ables that are not accessible at evaluation time (not active in the current execution
state).

DTA assertions do not replace traditional breakpoints or watchpoints, but they
offer a technique to reduce their number and improve the overall investigation
process. DTA assertions reduce the amount of manual investigation of the execu-
tion state such as the number of times a buggy program has to stop for investigation.

Finally, debugging with temporal assertions is not new. In 2002 Jozsef Kovacs
et al. has integrated Temporal Assertions into a parallel debugger to debug parallel
programs [12]. In 2005 Volker Stolz et al. used LTL over Aspect]J pointcuts to validate
properties during program execution that are triggered by aspects [11]. In 2008 Cemal
Yilmaz et al. presented an automatic fault localization technique using time spectra
as abstractions for program execution [13]. However, to the best of our knowledge,
we are the first to extend a typical source level debugger’s features of conditional
breakpoints and watchpoints with commands based on temporal assertion that capture
and validate a sequence of execution states (temporal states and temporal intervals).
Furthermore, these assertions can reference out-of-scope variables, which may not
be live in the execution state at evaluation time.

References

1. Al-Sharif Z, Jeffery C (2009) UDB: an agent-oriented source level debugger. Int J Softw Eng
2(3):113-134

2. Al-Sharif Z, Jeffery C (2009) Language support for event-based debugging. In: Proceedings of
the 21st international conference on software engineering and knowledge engineering (SEKE
2009), Boston, July 1-3, 2009, pp 392-399

3. Al-Sharif Z, Jeffery C (2009) A multi-agent debugging extension architecture. In: Proceedings
of the 21stinternational conference on software engineering and knowledge engineering (SEKE
2009), Boston, July 1-3, 2009, pp 194-199

4. Al-Sharif Z, Jeffery C (2009) An agent-oriented source-level debugger on top of a monitoring
framework. In: Proceedings of the 2009 sixth international conference on information technol-
ogy: new generations, vol 00, April 27-29, 2009. ITNG. IEEE Computer Society, pp 241-247.
doi:10.1109/ITNG.2009.305

http://dx.doi.org/10.1109/ITNG.2009.305

3 The Use of Dynamic Temporal Assertions ... 65

10.

13.

14.

Al-Sharif Z, Jeffery C (2009) An extensible source-level debugger. In: Proceedings of the 2009
ACM symposium on applied computing, Honolulu, Hawaii. SAC ’09. ACM, New York, NY,
pp 543-544. doi:10.1145/1529282.1529397

Boothe B (2000) Efficient algorithms for bidirectional debugging. In: Proceedings of the ACM
SIGPLAN 2000 conference on programming language design and implementation, Vancouver,
British Columbia, Canada, June 18-21, 2000. PLDI *00. ACM, New York, NY, pp 299-310
Drusinsky D, Michael B, Shing M (2008) A framework for computer-aided validation. Innov
Syst Softw Eng 4(2):161-168

Drusinsky D, Shing M (2003) Monitoring temporal logic specifications combined with
time series constraints. J Univ Comput Sci 9(11):1261-1276. http://www.jucs.org/jucs_9_11/
monitoring_temporal_logic_specification

Drusinsky D, Shing M, Demir K (2005) Test-time, run-time, and simulation-time temporal
assertions in RSP. In: Proceedings of the 16th IEEE international workshop on rapid system
prototyping, June 08-10, 2005. RSP. IEEE Computer Society, Washington, DC, pp 105-110.
doi:10.1109/RSP.2005.50

Koymans R (1990) Specifying real-time properties with metric temporal logic. Real-Time
Systems vol 2, no 4, Oct 1990. Kluwer Academic Publishers, Norwell, MA, USA, pp 255-
299. doi:10.1007/BF01995674

. Volker S, Eric B (2006) Temporal assertions using aspect. Electron Notes Theory Comput Sci

144(4):109-124

. Jozsef K, Gabor K, Robert L, Wolfgang S (2002) Integrating temporal assertions into a parallel

debugger. In: Euro-Par’02, Monien B, Feldmann R (eds) Proceedings of the 8th international
euro-par conference on parallel processing. Springer, London, UK, pp 113-120

Yilmaz C, Paradkar A, Williams C (2008) Time will tell: fault localization using time spectra.
In: Proceedings of the 30th international conference on software engineering (ICSE *08). ACM,
New York, NY, USA, pp 81-90. doi:10.1145/1368088.1368100

Al-Sharif ZA, Jeffery CL, Said MH (2014) Debugging with dynamic temporal assertions. In:
IEEE international symposium on software reliability engineering workshops (ISSREW), 3-6
Nov 2014, pp 257-262. doi:10.1109/ISSREW.2014.60

http://dx.doi.org/10.1145/1529282.1529397
http://www.jucs.org/jucs_9_11/monitoring_temporal_logic_specification
http://www.jucs.org/jucs_9_11/monitoring_temporal_logic_specification
http://dx.doi.org/10.1109/RSP.2005.50
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1145/1368088.1368100
http://dx.doi.org/10.1109/ISSREW.2014.60

Chapter 4
Automated Reproduction and Analysis
of Bugs in Embedded Software

Hanno Eichelberger, Thomas Kropf, Jiirgen Ruf
and Wolfgang Rosenstiel

4.1 Introduction

The importance of embedded software increases every year. For example, modern
cars currently contain about 100 million lines of source code in embedded software
[8]. The highest safety level of IS026262 standards demands 10°h of operation
without failure. However, projects in history show that, even with comprehensive
testing, bugs remain undetected for years. The control computer of the space shuttle
with just 500000 lines of source code was tested overall §years with an effort of
$1000 per source code line, i.e., with a total effort of $500 million [18]. However,
it was expected that one bug per 2000 lines of code remained in the last release in
1990. Such bugs may occur in very rare cases and may be only detected while testing
the embedded system in a real operation environment.

Static analysis is effectively used during early testing, e.g., unit testing [4]. How-
ever, static analysis of bugs is getting close to its limits for complex software. The
state space or control flow of big software is difficult to explore completely. Thus,
the analysis has drawbacks in performance or in precision. Furthermore, semantic
bugs are very application-specific and a wrong behavior cannot be detected even
with optimized static analysis tools. Things are getting more severe if a complete
and correct specification is not available as golden reference.

System testing describes the process of deploying and testing the software on
the target platform. Compared to unit or component testing, which only tests single
modules, the software is executed and tested with all integrated software and hard-
ware modules. About 60% of the bugs are not detected before system testing [30].

H. Eichelberger (X)) - T. Kropf - J. Ruf - W. Rosenstiel
University of Tiibingen, Tiibingen, Germany
e-mail: hanno.eichelberger @uni-tuebingen.de

T. Kropf
e-mail: thomas.kropf@uni-tuebingen.de

J. Ruf
e-mail: juergen.ruf @uni-tuebingen.de

W. Rosenstiel
e-mail: wolfgang.rosenstiel @uni-tuebingen.de

© Springer Science+Business Media, LLC 2017 67
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_4

68 H. Eichelberger et al.

However, depending on the software development process model, system testing may
be applied only very late in the development process. Real sensors and devices are
connected to the embedded system to achieve realistic inputs during system tests.
This way, incompatibilities between sensor hardware and the software under test
may be detected.

Studies show that the later a bug is detected, the more effort is required to fix it.
Some studies present an exponential growth of bug fixing costs during development
time [30]. Thus, much more effort is required when bugs are detected during system
testing compared to unit testing, caused by close hardware interaction and certi-
fication requirements. However, a small percentage of bugs (20%) requires about
60-80% of the fixing effort [11]. When a big portion of complex bugs is detected
very late in the development process, project schedules and project deadlines are
negatively affected. Thus, the product can often not be placed on the market in time.

One cause for the high effort for bug fixing is the difficulty to reproduce bugs.
Users in field or developers during operation tests are often not able to provide enough
information to reproduce the bug in the laboratory. Different nondeterministic aspects
(e.g., thread scheduling) may make it difficult to reproduce the same execution in
the laboratory as the execution observed during operation. About 17% of the bugs
of open source desktop and server applications [26] are even not reproducible based
on bug reports of the community. The amount may be higher for embedded software
with sensor-driven input.

When the bug can be reproduced with a test case, additional effort is required for
analyzing the bug. About 8 h are required for running test cases and repairing a bug
during system tests [24], if the test case is available. Open source projects like Mozilla
receive 300 bug reports a day [5]. With such high bug fixing efforts, it is difficult
to handle such high bug rates. Dynamic verification can support the developers in
fixing bugs. However, most dynamic analysis tools require the monitoring of the
software during runtime. Such monitoring tools are often only applicable on specific
platforms.

Bugs are categorized into memory bugs, concurrency bugs, and semantic bugs.
Empirical studies show that semantic bugs are the dominant root-cause [37]. The
most common semantic bugs are implementations which do not meet the design
requirements or which do not behave as expected. Tools to automatically locate root-
causes of semantic bugs are required. Memory bugs are not challenging, because
many memory profiling tools are available. Concurrency bugs are more problematic,
especially their reproduction. More than one out of ten concurrency bugs cannot be
reproduced [37].

Our own portable debugger-based approach for bug reproduction and dynamic
verification achieves the following contributions to the current state of the art in the
area of embedded software development:

e It avoids effortful manual bug reconstruction on any embedded platform by auto-
matically recording and reproducing bugs using debugger tools.
e Itimproves multi-threaded bug detection by forcing randomized thread switching.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 69

e It decreases the manual debugging effort by applying automated root-cause analy-
sis on reproduced bugs.

e It avoids expensive monitoring hardware by implementing performance optimiza-
tions with hierarchical analysis using low-cost debugging tools.

e It reduces porting costs of dynamic verification tools by implementing them in
extendable and easily adaptable modules.

Our approach supports developers to detect and reconstruct (mainly semantic and
concurrency) bugs faster. It further helps them to fix bugs faster by implementing
automated root-cause analyses. Our tool saves debugging costs and hardware invest-
ment costs. It is supported by most embedded platforms. It assists developer teams
to place their software products earlier on the market.

Section4.2 gives a brief overview of the normal manual debugging process.
Section4.3 presents methods for automated reproduction of bugs, followed by our
own debugger-based approach. Section4.4 shows how assertion-based verification
can be implemented using debugger tools. Section4.5 presents concepts for analyz-
ing the root-causes of bugs without assertions and concepts for the acceleration of
monitoring implementations with cheap debugger interfaces.

4.2 Overview

The workflow in Fig. 4.1 presents the process of manually locating and fixing a bug. It
starts by testing the embedded system and the included software during operation in a
system testing environment. For example, a navigation software can be executed in a
test drive connected to real sensors. During the execution, inputs are being traced and
logged into a bug report (A.). This bug report is submitted to a bug report repository.
In the laboratory, the developers try to manually reproduce the bug based on the bug
report (B.). If the bug can be reproduced, the developers have to manually locate the
root-cause of the failure in the source code (C.). After the bug is fixed, the software
can be executed with a regression test suite (D.). This way, it is possible to ensure
that no new bugs are added during the fixing process.

As presented in Sect.4.1, all steps of the workflow are usually time-consuming.
Our approach presented in the following sections shows that most steps can be
supported by automated tools. Automated tools to support bug reproduction (B.) and

Operation Laboratory

Bug Test Modified
A B Code D

Detect Reproduce Regression

Bug Bug Testing

Fig. 4.1 Overview of manual debugging

70 H. Eichelberger et al.

to generate regression tests (D.) are presented in Sect. 4.3. The bug detection of multi-
threaded bugs (A.) is supported by tools presented in Sect.4.3 as well. Automated
bug analyses to support manual debugging (C.) are presented in Sects. 4.4 and 4.5.

4.3 Debugger-Based Bug Reproduction

This section presents approaches of tools for the automated support of bug reproduc-
tion. For reproducing bugs, the sensor inputs have to be captured during operation.
During replay, the same sensor inputs (e.g., from a GPS or touch screen) have to
be triggered or injected to achieve the same execution or instruction sequence. The
normal execution of software is deterministic. The same instructions are executed
when a software runs with the same inputs. However, these inputs are nondetermin-
istic and are not exactly the same when executing a software twice. For example,
it is difficult to achieve the same movements on a touch screen between two test
executions. Minimal differences between executions can be determinant whether a
failure is triggered. Figure4.2 shows the different inputs of the software under test
(SUT). Zeller [41] lists the nondeterministic inputs of software which are described
below. Sensors are the most common input source for embedded software (e.g., from
a GPS sensor). User interactions are triggered with human interface devices (e.g., a
touch screen). Static data may be stored and read from a disk or flash memory (e.g.,
an XML configuration file). Access to time or randomness functions in the hardware
can change the execution and thus make reproduction difficult. Network interactions
may be used for communicating with other devices in the embedded system (e.g.,
on a CAN bus). The operating environment may be represented by an operating
system which controls schedules and memory management. Physical effects may
cause hardware changes and they are the most difficult divergence to handle. In the
perspective of the SUT, the sources of nondeterminism are categorized into [34]: OS
SDK accesses (like system calls), signals or interrupts, specific processor functions,
schedules or shared-memory access orderings as well as memory initializations and
memory allocations (presented in Fig.4.2 in the box around the SUT box).

Schedules Network Time Randomness
Shared memory Signals or Proccesor [« Static data

Operating access order interrupts functions

Environment \L _
««—— User Interaction

Memory SuT OS SDK

Physics —> mgmt —> eyx, S access
€ ««—— Sensor inputs

Fig. 4.2 Types of inputs to embedded software

4 Automated Reproduction and Analysis of Bugs in Embedded Software 71

Fig. 4.3 Different levels of | Modify App / Loader or | Application Level |
replay modules Debugger
| Modify OS / Modules | Operating System Level |
| Add Hardware / Simulate | Hardware Level |

4.3.1 State of the Art

This section presents current state-of-the-art approaches for the automated reproduc-
tion of bugs. The tracing and replaying of the different events caused by the presented
sources of nondeterminism can be implemented on different levels (see Fig.4.3).

It is possible to record/replay the execution of the software on hardware level
(Sect.4.3.1.1). Therefore, additional special hardware is added to support tracing
and replay. Another option is to simulate the hardware. In the simulation platform,
capturing modules can be integrated. The operating system has control between
software and hardware and can record/replay events as well (Sect.4.3.1.2). It is
possible to modify the operating system and to install it on the target platform.
Some operating systems provide support to integrate new modules. Furthermore, the
software can be modified to record/replay events on application level (Sect.4.3.1.3).
Therefore, the application is modified on source code or binary code level. Debugger
tools provide a layer between software and OS and can therefore record/replay events,
like presented in Sects.4.3.2 and 4.3.3. The different approaches are presented in the
following sections according to every level.

4.3.1.1 Hardware Level Replay

We examine three types of approaches in the area of hardware level replay: hardware-
supported replay, full circuit replay, and virtualization-based replay. Most hardware-
supported replay approaches consider multiprocessor platforms [21]. To achieve
similar executions, the access to shared memory between different cores is recorded
and brought into the same sequence during replay. The tracing of shared-memory
accesses can be implemented with additional hardware. The advantage of this method
compared to software-based approaches is the low overhead achieved by hardware-
based functions. Full circuit replay approaches add debug instrumentations into the
circuits for the FPGA synthesis. This way, it is possible to record and replay the
data flow of FPGA circuits in real time [17]. However, only a portion of the program
execution can be captured in real time. Other approaches implement virtualization-
based replay where the hardware is simulated. Moreover, there are approaches for the
virtual prototype platform Quick Emulator (QEMU) [10]. However, virtual prototype
platforms have a large base overhead which can disturb the interaction with the
connected sensor hardware.

72 H. Eichelberger et al.
4.3.1.2 Operating System Level Replay

We examine three different approaches for operating system level replay: event
sequence replay, synchronized event replay, and cycle-accurate event replay. For
replaying the same sequence of events, some approaches use OS SDK specific
commands to trace low-level events and to trigger the same sequence during replay.
RERAN [19] uses the getevent and an own sendevent function of the Android SDK for
tracing and replaying on Android mobile platforms. RERAN can record and replay
the top 100 Android apps without modifications. Complex gesture inputs on the
touch screen can be recorded and replayed with low overhead (about 1%). However,
there must be functions available in the OS which support event tracing and sending.
Different scheduling or parallel executions on several cores can cause another behav-
ior. Parallel executions require the synchronization of events to achieve the same
access order to shared resources. SCRIBE [27] is implemented as a Linux kernel
module for tracing and injecting. It supports multiprocessor execution and achieves
the synchronization of parallel accesses using synchronization points. Using such a
synchronization, system calls can be brought into the same order during recording
and replaying even when running on multiple cores. However, real-time systems
have strict timing requirements and require an instruction-accurate reproduction
of events, e.g., interrupts. RT-Replayer [33] instruments a real-time operating system
kernel to trace interrupts. For replaying, the instructions at memory addresses where
interrupts occurred are instrumented with trap instructions (similar to breakpoints of
a debugger). Thus, the software stops at traps during replay and the same interrupt
functions are triggered.

4.3.1.3 Application Level Replay

For tracing and injecting events on application level, we examine three different
approaches for application level replay: source code instrumented replay, binary
instrumented replay, and checkpoint-based replay. Using source code instrumen-
tation, the source code is modified to trace the control flow and the assignments of
variables. Jalangi [35] presents an approach to instrument every assignment of vari-
ables and to write the assigned values into a trace file during runtime. During replay,
the traced variable values are injected. The approach was presented for JavaScript, but
is portable to any other programming language. Drawbacks of Jalangi are: high over-
head, big trace files as well as possible side effects of the instrumentation. Dynamic
binary code instrumentation modifies the source code during execution, e.g., the
recording. It dynamically instruments the loaded binary code during runtime, and
injects additional tracing code. The instrumented code can be highly optimized and
only a low overhead is required for the execution of the code. PinPlay [34] uses
dynamic binary code instrumentation with the Pin instrumentation framework. It
considers several sources of nondeterminism, as presented in the introduction of
this section. However, the Pin framework is only available for specific instruction
sets. Checkpointing approaches capture the current process state in high frequency

4 Automated Reproduction and Analysis of Bugs in Embedded Software 73

(e.g.,[40]). Starting at a checkpoint, all nondeterministic events (like system calls) are
captured. Checkpoints commonly base on platform-dependent OS SDK operations.

4.3.2 Theory and Algorithms

The previous section presented the way state-of-the-art approaches record and replay
bugs on different system levels. This section describes our own approach for tracing
and replaying bugs for debugger tools. It considers two sources of nondeterministic
inputs: sensor inputs and thread schedules. We do not consider memory violation,
because this kind of bug can easily be detected with many available memory profiling
tools. We start by presenting the record/replay of sensor accesses followed by the
record/replay of thread schedules.

Embedded software often accesses the connected devices triggered by a timer
or an interrupt. The device state is requested in a specific frequency. A navigation
software may access the GPS sensor with 10 Hz for example. Figure 4.4 shows how
a sensor is accessed by a timer function.

The tracing can be implemented by pausing the execution of the software at the
location where the access to the device is finished (defined by us as Receive). Here,
the read data is written to a log file. Figure 4.5 shows this concept.

During the replay the execution is being paused at a location, where the interrupt
starts the access to the device (defined by us as Request). The access to the sensor is
skipped and a jump to the receive location (defined by us as Receive) is triggered. At
this point, the data is read from the log file. These data are injected into the execution.
This way, the sensor data from the recording run is replayed. This concept can be
implemented with a debugger tool, as presented in Sect.4.3.3. The debugger-based
replay is illustrated in the sequence diagram in Fig.4.6.

Other sources of nondeterminism might be thread schedules. The record/replay
of thread schedules bases on the reconstruction of sequences of thread events and
IO events [28]. This way, the active threads at thread actions, like sem_wait and
sem_post, are monitored. During replay, the same sequences of the invocations of
these events are triggered. Listings 1 and 2 show examples of two threads of a

Log GDB Interrupt Poll Driver

1:timer

2 : readSensor

Ko .
14 : process data :

Fig. 4.4 Sequence of sensor accessing

74 H. Eichelberger et al.

Log GDB Interrupt Poll Driver

1:timer

2 : readSensor

4 : break

16 : process data !

5:writeLog !

Fig. 4.5 Sequence of recording

Log GDB Interrupt Poll Driver

| 1:timer :
—_—p

2 : break
4 : read log

. @
<

6Ioggeddata 17 :inject data J

R pronemTnenene
D :
18 : process data !

Fig. 4.6 Sequence of replaying

software component for a pedestrian recognition: the thread Proc for the recognition
of pedestrians in the pictures and the thread G UT for drawing rectangles in the pictures
where pedestrians were detected. In case the two threads are alternately executed,
no failure occurs. However, when thread Proc is executed twice, one picture is not
drawn. Additionally, when Proc is executed twice, the semaphore holds the value
two and the GUI thread can be executed twice as well. Thus, the current image is
released in the thread GUI in line 4 and the next call of drawRec is triggered with
areleased image. This case occurs very rarely in normal execution, because, after a
long pedestrian recognition in the image in the thread Proc (line 2), a thread switch
is usually triggered to GUI.

Listing 1 Proc Listing 2 GUI
1 img=loadImg () ; 1 sem_wait (sem);
2 recogPed (img) ; 2 drawRec (img) ;
3 sem_post (sem); 3 showImg (img) ;
4 releaselImg (img);

Our approach implements the serializing of active threads and the randomized
switching to threads at thread actions. Therefore, the normal thread scheduler is being
locked and only one thread is active at any time. This way, the active thread cannot

4 Automated Reproduction and Analysis of Bugs in Embedded Software 75

Table 4.1 List of tool triggered thread switch actions

Breakpoint Script actions

sem_init Set initialization value to the semaphore

sem_wait If sem==0 register thread and switch thread, else continue sem——
sem_post Finish post sem++ and switch to random thread

thread_start Add available thread into list

thread_end Delete thread from list

thread_join Switch to other threads, until joined ones are finished

be preempted by other threads. In our concept, the thread switches are triggered by
our tool at thread events (e.g., sem_wait, sem_post). The scripts monitor the thread
events by pausing on the corresponding functions and triggering the thread switches.
At each thread event, our tool triggers thread switch actions (see Table4.1).

Our tool holds a counter for every semaphore sem. At every occurrence of
sem_wait, the algorithm checks whether the semaphore is higher than zero and hence
may be passed and the semaphore counter sem is decreased. If the semaphore counter
is zero, the thread is registered as waiting thread and a switch to another (nonwaiting)
thread is triggered. At the occurrence of sem_post, the post is finished and a switch
to a random thread is triggered. During replay, the same random thread switches
are invoked by setting the same seed to the random function like during the tracing.
Using this approach, thread switches are always triggered by the scripts. Therefore,
the scripts have complete control over thread scheduling.

4.3.3 Implementation

Debugger tools are used to control the execution of the SUT. A popular debugging
tool is the GNU Debugger [15], which is available on different embedded platforms.
Currently', the GDB homepage lists 80 host platforms which are supported by the
GDB. Additionally, it is adapted to other platforms by different suppliers. During
normal use, the GDB is manually controlled by a developer who types commands
into a console terminal. Table 4.2 lists the most frequently used GDB commands.
The GDB is delivered with an external API. Using this API, it is possible to take
control over the debugger executions and commands using the Python programming
language. Listing 3 shows a simple Python script that can be loaded with the GDB.
It starts loading the program to test (line 2) and sets a breakpoint on the method foo

IStatus July 2016

76

H. Eichelberger et al.

Table 4.2 Thread event
actions

Command

Action

file

Loads the program to debug

break

Sets a breakpoint at specific
method/line, where execution
pauses

run

Starts the execution of the
program to debug

continue

Runs the program until next
breakpoint

Jump

Skips the next lines and jump
to a specific location in the
code

set

Injects or modifies some
variable values

where

Prints current halt point

(line 3). It starts by running the program (line 4). The execution pauses at occurrences
of calls of foo. The script counts the calls to foo (lines 6-8).

Listing 3 Counter GDB Python Script

1 import gdb

gdb.execute ("run")

counter=0

while True:
counter=counter+l1l

O J 0o U w N

gdb.execute ("file_a.out")
gdb.execute ("break _foo")

gdb.execute ("continue")

This way, the debugger is controlled with scripted logic. Other debuggers provide
different APIs to control the execution of the software under test. Even when the
debugger only provides a terminal command interface, these terminal commands
can be simulated by scripts and the terminal output can be evaluated as well. Our
debugger-based approach records and replays the events using this debugger tool
API. Listing 4 shows the way we implemented the replay of GPS sensor data for the

Navit navigation software [1].

4 Automated Reproduction and Analysis of Bugs in Embedded Software 77

Listing 4 Record/replay of sensor inputs

1 gdb.execute ("break _gpsrequest")

2 gdb.execute ("break _gpsreceive")

3 gdb.execute ("run")

4 while running:

5 where=gdb.execute ("where", to_string=True)

6 if record and "gpsreceive" in where:

7 lat=gdb.execute ("print_lat",to_string=True)
8 # Access Ing and angle

9 trace.write(lat, lng, angle)

10 elif not record and "gpsrequest" in where:
11 data=trace.read()

12 gdb.execute ("jump_gpsreceive")

13 gdb.execute ("set_%s"% (data.lat))

14 ...# Set lng and angle

15 gdb.execute ("cont",to_string=True)

A breakpoint is set in the source code lines where the request to a device is
started and where the access to the device is finished (lines 1-2). For the recording,
the execution pauses at the location where the GPS data was received. In this case,
current GPS values are printed (lines 7-8) and written to a log file (line 9). For the
replaying, the execution pauses at the location where the access to the GPS is started.
The access is skipped with the jump command (line 12) and the data from the log is
injected (lines 13—14). If the debugger-based recording is too slow using breakpoints,
it can be implemented with printf statements or a trace buffer implementation.

The following paragraph presents how the program under test can be controlled to
achieve deterministic thread schedules. The GDB provides the commands listed in
Table 4.3 for debugging multi-threaded programs. It includes the three commands we
used for our implementation. At every breakpoint pause, the developer can manually
examine the current thread or can switch to other threads that are contained in the
thread list.

Listing 5 presents an implementation for the replay of the pedestrian recognition
(and is similar for the game case study presented in Sect.4.3.4).

Table 4.3 List of GDB commands for handling multiple threads

Command Action

info threads Shows current loaded threads

thread Switch to another thread

set scheduler-locking on This commands disables the normal thread
scheduler

78 H. Eichelberger et al.

Listing 5 Replay for two-threaded pedestrian recognition

1 gdb.execute("break main")

2 gdb.execute ("run")

3 gdb.execute ("set _scheduler-locking_on")

4 gdb.execute ("break sem _wait")

5 gdb.execute ("break_sem post")

6 random.seed(trace.readSeed())

7 while running:

8 where=gdb.execute ("where", to_string=True)
9 if "sem wait" in where:
10 if sem==0:
11 gdb.execute ("thread_%s"%Proc)
12 else:
13 sem=sem-1
14 elif "sem_post" in where:
15 sem=sem+1
16 t=random (Proc, Gui)
17 gdb.execute ("thread_%s"%t)
18 # Sensor data replay code
19

The command "set scheduler-locking on" disables the current thread scheduler
(line 5). When this option is activated, only one thread can be executed at any
time. Similar effects can be achieved with portable non-preemptive thread libraries
[16]. This way, the parallel execution of threads is serialized. For implementing the
required thread switches, our tool sets breakpoints at the used thread actions (see
lines 4-5). At every passing of a thread action, our tool triggers the thread switches
(Listing 5, line 14—17) with the thread command of the GDB based on actions pre-
sented in Table4.1. The control of thread schedules is integrated with the sensor
replay (Listing 5, after line 18).

Using randomized switching at thread actions achieves a better thread interleav-
ing coverage than the normal thread scheduler. This way, concurrency bugs can be
manifested faster.

4.3.4 Experiments

Figure 4.7 shows our measurements [14] for tracing or recording the sensor input data
of the single-threaded software Navit executed on Ubuntu Linux on an X86 Intel
platform. The measurements consider a route with 1200 GPS coordinates. These
coordinates are read from a file by a Mockup GPS server. The GPS frequency was
tested at 50, 33, 20, and 10Hz, and in parallel, the user cursor inputs (e.g., from
touch screen) was captured at 100 Hz. The overhead between the normal execution
(labeled as Normal) and the recorded execution (labeled as Rec) remains nearly

4 Automated Reproduction and Analysis of Bugs in Embedded Software 79

Fig. 4.7 Performance 180 \ \
measurements for sensor T:0) DT NOMMall - reeeemememmmmmeeeeee]
input recording for 8 qa0l . BRe |
single-threaded Navit [14] 5 _
Q20 e
(2]
B s N 1
g B0 oo e
F=A U LR N I AEEEE BN B
@ A0
il Nl Nl NN .
0
50 33 20 10
Frequency of GPS polling (in Hz)
Fig. 4.8 Performance
measurements for 100 [rrorrrrrrrmrr e S
deterministic scheduling »
. o
and recording C B0 [e
3 _
]
260 [
©
E 40
c
)
m 20 ,,,
o L —l !—l

Game5 Game10 Ped60 Ped165

constant, since the time used to pause the execution at breakpoints is caught up
by the invocations of the polling timers. This way, our approach for timer-based
software achieves minimal overhead. Tracing optimizations are required for other
types of software, e.g., by grouping several inputs and only tracing a set of inputs at
once [13].

We tested our approach for deterministic scheduling and recording with two
embedded software examples implemented with POSIX threads. The performance
measurements for these examples are presented in Fig.4.8. The first is an ASCII-
based fly and shoot game. The game uses two threads, one for drawing the scene and
one for reading from the keyboard. The second example is a pedestrian recognition
[38] in video data of a vehicle camera (see Sect.4.3.2). For every example, we used
two scenarios for each measurement, a short and a long one. We measured the game
until 5 or 10 lives were lost without interaction of the user. We measured the pedes-
trian recognition with a set of 60 or 165 pictures as inputs. Our experiments were
executed five times on an NVIDIA Tegra K1 with ARM CPU and Linux OS.

During recording the scenario of the game, in average 377 thread switches are
scheduled for the short scenario and 642 thread switches are scheduled for the
longer scenario. For the pedestrian recognition example, in average 186 (short) and
475 (long) thread switches are scheduled. The recording of the pedestrian software
requires, in average, 1.22X and 1.36X overhead. The overhead for recording the

80 H. Eichelberger et al.

game is higher with, in average, 2.86X and 2.98X, because more thread switches
have to be triggered in a shorter time.

We observed that the overhead keeps similar for short and long scenarios in both
case studies. The measurements show that performant recording can be implemented
with minimal effort. Every recording and replay script contains less that 50 lines of
source code. Additionally, the pedestrian recognition example shows that concur-
rency bugs can be detected faster when forcing randomized switches with our tool.
Hence in our tests, the example bug is detected in a few seconds with our approach,
but it is not triggered during 10 x 165 picture inputs with the normal thread sched-
uler. For the performance measurements, we triggered the alternate invocation of the
two threads for not triggering the bug.

4.4 Dynamic Verification During Replay

Even if a bug can be reproduced, it is difficult to locate the root-cause of the bug dur-
ing the replay. Manual debugging of areplay (e.g., with GDB) is effortful. The source
code is often implemented by other developers. Thus, it is difficult to comprehend
which sequence of actions (e.g., method calls) leads to the failure. Additionally, it is
difficult to understand how the faulty sequence of actions is caused. The approaches
in the area of runtime verification provide concepts for automatically analyzing exe-
cutions during runtime by comparing them against a formal specification. Runtime
verification tests whether a set of specific properties are held during the execution.
The components which observe the execution are called monitors.

4.4.1 State of the Art

The online monitors approach runs a monitor in parallel to the execution during
operation. Online monitors have to be very efficient, because the normal execution
should not be disturbed. However, online monitors may react to observed anomalies
during the execution [29]. At the occurrence of anomalies, fail-safe or recovery modes
may be activated during operation. Log monitors examine log files, captured during
a long-term execution of a software. The trace files are efficiently generated during
operation. The tracing should be lean or implemented with fast additional hardware
for not disturbing the normal execution. Offline, the trace file is analyzed in detail [6].
Wrong event sequences in the trace can be detected, pointing to the failure or even to
the root-cause of the failure. Some approaches combine record/replay and dynamic
analysis of software [32, 40, 41]. However, they do not use a framework for the
implementation of complex assertions and were not tested on embedded platforms.

Table4.4 presents the advantages and disadvantages of each mode. The two
approaches do not provide support to check whether the failure still occurs or
not (Control Test). Moreover, they cannot be applied fine-grained (Fine-grained),

4 Automated Reproduction and Analysis of Bugs in Embedded Software 81

Table 4.4 Comparison of different characteristics for the monitoring types

Type Online Log Replay
Control test X X v
Fine-grained X X 4
Recovery v X X
Long term v v X

because they would disturb the normal interaction with the user or with other sys-
tems. Our replay approach fulfills the first two categories (Control Test and Fine-
grained). However, the activation of recoveries is only possible with the online mode
as summarized in Table4.4. Long-term tracing and monitoring is, in our opinion, best
applicable with tracing logs.

4.4.2 Theory and Workflow

The concept of applying dynamic verification during replay [12] is based on the
concept of tracing only the relevant inputs to the software and replaying them offline.
During replay, fine-granular tracing can be executed. Monitors or analysis can check
these traces for anomalies. During replay, the requirements for efficient tracing and
monitoring are less compared to normal operation. Additionally, the generated replay
can be used later as a control replay, after the bug has been fixed. The replay concept
is, in our opinion, the best option for system testing, because control replays which
can be used as regression test cases later are generated. Figure4.9 shows how the
different manual steps are supported or replaced by automated tools. The detection
of multi-threaded bugs (A.) is optimized by the randomized scheduling concepts
presented in Sect.4.3.3. The replay of bugs (B.) is automized (see Sect.4.3) and can
be used as regression test (D.). Automated analyses during replay (B.) support the
manual bug fixing (C.). These analysis tools are presented in the following sections.

A. Systematic Bug Detection: The software is tested in real-world operation. The
incoming events to the software are captured during these tests. Recording mecha-

Operation Laboratory

Failure Modified

A. Trace B C. Code D.

Systematic Automated Manual Regression

Bug Replay & Bug Replay
Detection Analysis Fixing

Fig. 4.9 Workflow for debugger-based dynamic verification during replay

82 H. Eichelberger et al.

nisms are implemented with a symbolic debugger in order to avoid instrumentation
and to achieve platform compatibility. Therefore, the debugger is controlled by a
script. The developer decides which events are relevant and have to be captured.
Thus, the recording can be kept lean. To efficiently detect multi-threaded bugs, the
thread scheduler is controlled by our scripts triggering randomized switches at any
thread event.

B. Automated Replay and Analysis: The failure sequence can be loaded and
deterministically replayed in the laboratory. The replay mechanisms are implemented
with portable debugger tools. The software is executed with the debugging interface
on the same hardware as during operation for arranging the same system behavior
as during the original run. During replay, the failure occurs again based on the
deterministic replay. Manually debugging the complete execution sequence or even
several processing paths of events is very time-consuming. Therefore, we apply
dynamic verification during replay to automatically detect potential anomalies. These
information can give a hint to the fault. Analyses performed online during operation
disturb the normal execution, but do not cause drawbacks during replay, because no
interactions with the user or with external components are required for the execution
of the replay.

C. Manual Bug Fixing: Based on the report of the dynamic verification, the
developer can manually fix the fault. The step results in a patched program.

D. Regression Replay: The modified program can be tested with a control replay.
It is executed with the recorded sequence of failure inputs to observe whether the
faulty behavior occurs again. Finally, the bug replay can be archived as a test case
for a regression test suite.

4.4.3 Implementation of Assertions During Replay

In our workflow presented in the previous section, dynamic verification is applied
during replay for detecting the cause of the bug. This section shows how this cause
of a bug can be detected using assertions. Such assertions can be easily imple-
mented with a debugger. Therefore, during debugger-based replay, the execution
can be monitored with the debugger as well. The following paragraph considers the
multi-threaded replay of a pedestrian recognition software (as presented in Sect. 4.3).
During the replay of the software, the event sequence can be analyzed using assertion-
based verification. The sequence of method calls is monitored by setting breakpoints
on the corresponding methods. In the pedestrian recognition example, three events
are relevant: recogPed(), drawRec(), and showImg(). Temporal conditions can be
checked during replay, implemented with method breakpoints or watchpoints. The
automaton in Fig. 4.10 checks whether the correct sequence for loading and process-
ing the images is called. If another transition occurs, a specification violation is
detected.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 83

Fig. 4.10 Automaton for the recogPed()

action sequence of the

pedestrian recognition /\
start —>

showImg()
drawRec()

This kind of monitor can easily be implemented in a GDB Python script (see
Listing 6). Lines 1-3 set the breakpoints and watchpoints on the presented conditions.
Lines 6-14 check the reached point and the current state.

Listing 6 Runtime Verification GDB Python script

1 gdb.execute ("break_recogbPed")
2 gdb.execute ("break drawRec")
3 gdb.execute ("break_showImg")
4 state=0

5 while running:
6 where=gdb.execute ("where", to_string=True)
7 if "drawRec" in where and state==1:

8

state=1
9 elif "recogPed" in where and state==0:
10 state=1
11 elif "showImg" in where and state==1:
12 state=0
13 else:
14 print "Spec_violation!"

Sensor and Thread Replay Code

4.4.4 Experiments

Figure4.11 shows our performance measurements for different monitoring scenarios
compared to the multi-threaded recording overhead.

We measured the runtime when 2, 5, and 10% of all methods of the corresponding
software were monitored using the GDB (this represents the online monitor or log
monitor mode). The monitored methods can be compared to parallel running state
machines as presented in the previous section. We randomly selected a specific
percentage (2, 5, or 10%) of methods and set breakpoints on them. We measured the
runtime for executing our multi-threaded recording approach (labeled as Record)
as well. We used the same four scenarios as in Sect.4.3: the fly and shoot game
with 5 or 10 lives and the pedestrian recognition with 60 or 165 video pictures.
In all scenarios, the monitoring of 2% of the methods is faster than the recording.

84 H. Eichelberger et al.

Fig. 4.11 Comparing the 250
overhead for our recording
with methods monitoring
overhead

L @ Record| "~ T
| 2%

150

100

Runtime in seconds

50

Gameb Game10 Ped60 Ped165

Table 4.5 Number of GDB actions for recording and methods monitoring

Scenario Record 2% 5% 10%

Game5 383 7069 13050 13333
Gamel0 810 7069 18252 18840
Ped60 181 910 7099 17143
Ped165 496 2117 17546 47593

The monitoring of 5% of the methods is slower than the recording, especially when
considering the game scenarios. The recording of the execution of the scenarios is in
average 2.45 times faster than the runtime for monitoring of 10% methods. However,
the performance of method monitoring mainly depends on how often every method
occurs in the execution. Table 4.5 shows the amount of GDB pauses for the recording
scenarios and every method monitoring scenario (2, 5 and 10%).

The higher the number of pauses, the higher the recording or monitoring time.
However, the recording had a smaller number of pauses compared to the monitoring
scenarios, the proportional runtime overhead was higher. The reason for this finding is
that more GDB commands are required at every breakpoint pause for implementing
the recording. Additionally, we tested the monitoring of 15% of methods of the
pedestrian recognition, but the monitoring of the first picture was not finished after
10 min.

4.5 Root-Cause Analyses

In the previous section, we showed how wrong action sequences can be detected by
comparing the executed actions with a specification property. The bug was triggered
by the wrong sequence causing the program to crash. However, in many cases, a
correct or complete specification of actions is not available. Usually, this is the case,
as a specification property often already points to a potential failure, which can be
fixed manually. In this section, we consider semantic bugs (in software without a

4 Automated Reproduction and Analysis of Bugs in Embedded Software 85

specification), i.e., the root-cause of the bug is found in the value processing or
program logic. We present concepts to detect wrong or missing method calls in
processing and to identify the root-cause of the corresponding error logic.

4.5.1 State of the Art

This section presents the state of the art in the area of fault localization of noncrashing
bugs and embedded software monitoring.

4.5.1.1 Delta Debugging

The book “Why Programs Fail’ [41] presents different concepts for fault localization
in software. It describes several concepts for dynamic analyses, including delta
debugging and anomaly detection. Some of these concepts are similarly considered
in our work, e.g., for our delta computation approach. Later work of Burger and Zeller
[7] developed dynamic slicing for the localization of noncrashing bugs. They apply
several steps to isolate the failure location by following back the bug in the execution.
However, delta debugging bases on experiments with the program to automatically
generate passing runs and failing runs, which is difficult and runtime-consuming in
embedded contexts (like mentioned by [3]).

4.5.1.2 Dynamic Verification for Noncrashing Bugs

Zhang et al. [42] implement an approach to detect noncrashing bugs caused by
wrong configurations. It profiles the execution of failing and not failing configura-
tions. Many embedded softwares do not even require a configuration and the bugs
can be located in the source code. Liu et al. [31] apply support vector machines to
categorize passing runs and failing runs of noncrashing bugs. Their approach gener-
ates behavior graphs on method level to compare different runs. For classification,
a lot of input runs are required and only suspect methods can be detected (not the
relevant source code lines). Abreu [2] implement fault localization for embedded
software using spectrum-based coverage analyses. They apply model-based diag-
nosis to improve the results of the analyses. Similar to Tarantula [25], the coverage
of executed statements of each failing run is compared to the passing runs. They
assume that a big set of test cases of failing and passing runs are available. However,
all approaches require a set of failing runs, which can be used for classification. In
our use case for system testing, a big set of nonfailure runs and failure runs is not
available for classification.

86 H. Eichelberger et al.
4.5.1.3 Monitoring of Embedded Software

For the implementation of fault localization, the software has to be monitored. Amiar
et al. [3] use special tracing hardware to monitor embedded software. They apply
spectrum-based coverage analyses on a single trace. When detecting a failing cycle, it
is compared to previous similar ones to detect spectrum-based coverage deltas. How-
ever, they assume a tracing hardware for the specific embedded platform is available.
Such hardware is usually expensive. Several runtime verification approaches [20,
36] use cheap debugger interfaces with the GNU Debugger (GDB) [15] to achieve
platform compatibility, but they do not present a concept to detect bugs without a
specification. FLOMA [23] observes the software fine-grained using probabilistic
sampling, but it does not monitor every source code line. It randomly decides if
a specific execution step is monitored. However, probabilistic sampling can miss
important steps and FLOMA requires the instrumentation of the source code. Zuo
et al. [43] present a hierarchical instrumentation approach to accelerate monitor-
ing. Their approach instruments the software to monitor and analyze the method
call sequences. Afterwards, only the suspect parts are monitored on source code
line level. This way, the monitoring can be accelerated. Our approach extends this
approach and applies it to debugger tools.

4.5.2 Theory and Concepts

We apply root-cause analysis on a failure replay to automatically detect suspect
source code lines which are potential root-causes of the failure (based on [3, 13,
14]). This analysis results in a report, which can give the developer a hint where the
bug is located in the source code. In the following, we present a workflow which bases
on a failure replay and a nonfailure replay. We split the execution of the software
into parts (see Sect.4.5.2.1). Several executions of a partition have overlaps and can
be compared. Every execution of one partition is called a run. Afterwards, this run
in the replay which executes the failure has to be detected (see Sect.4.5.2.2). The
failure run in the replay is compared to several runs in the replay which are similar
and which are not categorized as failing runs (see Sect.4.5.2.3). For the comparison
of the failure run to the similar runs, we apply fine-granular analyses on source line
level, aiming at detecting the buggy source code line. We show metrics for coverage
analysis as well as invariant generation analysis (see Sect.4.5.2.4). However, fine-
grained monitoring can be very slow using cheap debugger interfaces. Therefore, we
present an acceleration approach in Sect.4.5.2.5.

We exemplify our own approach with a noncrashing bug in the open source
navigation software Navit [1]. If Navit receives GPS sensor data with an angle smaller
than —360, the vehicle pointer is not drawn for a short amount of time. This bug
might disturb the driver, e.g., when looking for the correct crossing on a busy street.
This bug does not throw an exception. It can just briefly be observed in the GUL

4 Automated Reproduction and Analysis of Bugs in Embedded Software 87

It is caused by the processing of wrong sensor data (the sensor sends angle values
<—360). Such a case occurs when the software is not compatible with the sensor
hardware outputs. The bug is caused by a wrong calculation in the Navit software
(presented in the following).

4.5.2.1 Partition Replay into Runs

The approaches of the state of the art in the area of anomaly detection provide
concepts for detecting root-causes by comparing nonfailing with failing execution
runs of the software under test [41]. However, the execution of complex embedded
software may contain parts which execute different functionalites. The comparison
of different functionalities can cause many false positives, especially when only a
small set of reference runs is available. In our approach, we split the execution of the
embedded software in several comparable parts (executing similar functionalities).
Embedded software usually processes sensor data to update the program states. This
processing is usually very similar every time it is executed. Figure4.12 exemplarily
presents the concept for the replay of Navit. A replay of Navit contains different
types of processing, e.g., GPS processing, touch screen input processing or traffic
data processing.

The processing of sensor data starts after the data has been read from the sensor
hardware (in Sect.4.3 defined as the point receive). A processing is represented by
the following tuple:

Processing = (Start, Run, End) 4.1)

Start and End represent source code lines passed in the execution. Start is the position
in the execution where the system starts to process this sensor data. End is the position
in the execution where the processing of the sensor data is finished. The processing
Run includes a list of all operations Ops and method calls M in the processing of the
sensor data:

Run = (M, Ops) 4.2)

Fig. 4.12 Partitioning of a replay into runs

88 H. Eichelberger et al.

and
M:{ml,l’Vlz,...,le} (43)
Ops = {opy,0p2, ..., 0pN2} “4.4)
opy = {vi,v2, ..., vn3} 4.5)

In our approach, the execution breaks at Start. Beginning at this breakpoint, the
processing is observed either on method or on source code line level. On method
level, every method m; € M is monitored (4.3). On source code line level, every
operation op; € Op is monitored (4.4). The monitoring stops with the execution of
End. We consider one statement or source code line as operation op;. Each operation
op, holds several global, local, and argument variables vy, v, ..., vy3 (4.5). The
runs of the same type can be compared by detecting differences considering the
executed methods, the executed operations or the observed variable values. In our
current approach, Start and End have to be specified with debugger scripts. Other
approaches implement automated cycle detection [3], which can be similarly applied
to our approach.

4.5.2.2 Detect the Failure Run

Every execution of the partition of the software is considered a run of a replay.
When running the failure replay, one or more runs of a specific sensor processing
cause the observed failure. We present a lightweight concept for the detection of the
failure run in the replay. It classifies those runs as failing which are most different
to the runs in a nonfailure replay (as described in the following). Every run of a
replay can be compared to other runs, because similar operations and methods are
executed. Differences in the run may point to the failure. To detect the failure run,
our approach expects two replays. One replay which causes the failure and a second
replay which does not cause the failure. The runs of a replay with a failure can be
compared to the runs of a replay not causing an observed failure. Two runs can be
compared by checking which source code lines or methods are covered by a run.
As being presented in Sect.4.5.2.5, it is more efficient to consider the coverage of
methods in this stage.

Table 4.6 shows an example matrix (representing the Navit bug), which contains
the coverage of methods of every run of a replay (like presented by [3] for traces).

The callable methods are represented in the rows. The runs are represented in the
columns. The value 1 in a cell means that the method in this row is executed by the run
in the corresponding column. The difference of two runs can be compared using the
hamming distance, i.e., by counting the differences in rows between the two columns
of runs. In our example: distance(Runl, Run7) = 2, distance(Run2, Run7) = 3 and
distance(Run3, Run7) = 3. For a straightforward presentation, we consider some
pseudo-methods m1 — m4 and the draw method.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 89

Table 4.6 Coverage matrix for monitored runs of a replay

Methd/run Run Runy Runj .. Runy
my 1 1 1 1
ny 1 0 1 1
ms 1 1 0 1
my 1 1 1 0
draw 1 1 1 0
T 1T PooTTTTo R — —— I :
v v v v !

Run1 Run2 Run3 Run4 Run5 Run6é Run7 Rung
mi mi mi m2 mi mi m1 mi
m2 m3 m2 m3 m2 m2 m2 m3
m3 draw draw draw m3 draw m3 draw

draw m4 m4 m4 draw m4 m4
m4 m4

Nonfailure Replay Failure Replay x

Fig. 4.13 Detect the failure run

The failure is detected by comparing every run in the failure replay with every run
in the nonfailure replay using the matrix presented above and the hamming distance.
The run in the failure replay which is not similar (or most different) to all runs
in nonfailure replay is considered a failure run. Figure4.13 shows how Run7 in the
failure replay is compared to every run in the nonfailure replay. Run7 is most different
to the nonfailure runs, because the call of the draw method of the vehicle pointer
is missing. The number of occurrences of every method can be combined with the
hamming distance as well. Differences between two cells higher than a threshold
threshold can be counted as 1 and else as 0. This way, one method of two runs can
be categorized as different if one run executes a method many more times than the
other run. It is possible to consider the call sequence as well. However, the method
coverage can be monitored faster than source code line coverage (see Sect.4.5.4).
Additionally, it is possible to categorize several runs as failing runs. For example, it
is possible to categorize those ones as failure runs which show 20% differences when
compared to the runs of a nonfailure replay. However, the following explanations
base on one failure run. Note: If several runs are ranked with same distance, the latest
is chosen (because the bug is expected to be near the end of the replay).

Here, Run7 in the failure replay is most different to all other runs in the nonfailure
replay. That means: Run5, Run6, and Run8 have a corresponding run in the nonfailure
replay with ahamming distance, which is smaller than the hamming distances of Run7
to each run of the nonfailure replay.

90 H. Eichelberger et al.

Fig. 4.14 Detect the similar h 1

I
runs \"4 — LS— :
Run5 Runé | Run7 | Rung
| 1
m1 m1 i m1 i m1
m2 m2 i m2 i m3
m3 daw } m3 I draw
draw m4 i ! m4
m4 ! E
i i
; |

4.5.2.3 Detect Similar Runs

In the previous section, we described the concept for detecting the failure run. Anom-
alies can be detected by comparing this failure run to runs with no failure. Therefore,
our approach detects several runs in the failure replay which are similar to the failure
run, but which are not categorized as failing runs, i.e., it detects those runs which
have similar method coverage to the failing run using the hamming distance (bases
on [3]). Figure4.14 shows the failure replay. In this example, the most similar run
to the failure run Run7 is Run5. This way, the failure run is compared in detail to the
runs which are most similar to it. This concept bases on the nearest neighbor model,
which was similarly applied to log files of a tracing hardware [3]. Our approach
detects similar runs in the same replay where the failure run occurs at, these similar
runs being executed under the same context as the failure run (e.g., considering the
configuration context).

In our tests, we detected three runs which are similar to the failure run. These runs
and the failing run are compared in detail using delta analysis.

4.5.2.4 Delta Computation

The failing run and the similar runs are compared in detail to detect deltas which can
point to the failure root-cause. When comparing the similar runs to the failing run
in the failure replay, different metrics can be applied to identify suspect source code
lines. We present the concepts and metrics for the delta analyses based on the Navit
bug example.

The Navit bug is based on a wrong calculation in the GPS processing (pseudocode
presented in Listing 7). If the angle is smaller than 0, the value 360 is added to the
angle in line 2. However, in the case the angle is smaller than —360, the angle keeps
a negative value after line 2 and lines 5 + 6 are skipped and the vehicle pointer is
not drawn. In a correct implementation, a mathematical modulo operation should
be applied to the angle computation to generate a positive value. Line 5 and the
parameter variable lazy are explained in the following section.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 91

In our example, the following GPS input sequence to the vehicle_update method

triggers the bug (...{42, 9, 40, 0}, {42, 9,55, 0}, {42,9,| =370] 0}, {42,9, 70, 0}).
Here, the third input sends wrong angle data, e.g., from a sensor device.

Listing 7 Navit bug example

0 void vehicle_update (latitude, longitude, angle, lazy)
1 if (angle<0)
angle+=360;

if (angle in range) {
setDrawingMode (lazy) ;
draw () ;

}

return

O 00 J o U b W N

We apply fault localization metrics to detect the root-cause of such bugs in the
failure replay (in the example, the wrong calculation in line 2). We define these
metrics with three coefficients, which are generated for every executable source code
line. These coefficients count the number of runs which fulfill a specific characteristic
for a specific source code line op. These characteristics define the amount of runs
causing a failure or not failure. And they define whether they cover the specific source
code line op or not.

o ¢,: #runs with nonfailure, which execute the line.

e ¢s: #runs with failure, which execute the line.

e n,: #runs with nonfailure, which do not execute the line.
o n;: #runs with failure, which do not execute the line.

Popular metrics for fault localization were given by Tarantula, Jaccard, and Occhiai.
The metrics are defined as follows [39]:

ef

Tarantula : dr = % (4.6)
er+ny eptny
er
Jaccard : dj = ——— 4.7
er +ep,+ny
. . er
Occhiai : dp = 4.8)

S T epie +np)

Tarantula measures which lines are primarily executed by failing runs. These
lines are considered as more likely to be the root-cause of the failure. The suspicious
ranking is decreased if many nonfailing runs execute the line as well. The Jaccard
coefficient is based on ey as well, but results in a less suspicious ranking when

92 H. Eichelberger et al.

many nonfailing runs execute the line or many failing runs do not execute the line.
Occhiai additionally weights the difference between ¢, and ny. Thus, the ranking
is lower, when many nonfailing runs execute the line and many failing runs do not
execute the line at the same time. The previously presented metrics mainly consider,
which source code lines are often represented in the failing runs. However, in case
of noncrashing bugs of embedded software, the error of the bug may be the missing
call to an OS SDK library. Additionally, missed source code lines in the failing run
may point to the wrong evaluation of conditional logic. A comparison of missing
code in the failing run compared to the nonfailing run can point to the failure. Thus,
in our opinion, it is required to rank missing features in the failing runs as well. The
AMPLE metrics (4.9) consider missing features in the failing run as well [9].

er €p

AMPLE : dy = (4.9)

er+n ety

Table4.7 shows the different results of the metrics for the presented Navit bug
example (see Listing 7) for three similar runs (Rung;,,) and one failing run (Rung,;).
The higher the resulting factor, the higher the suspiciousness of the corresponding
source code line. We observed that every metric ranks the operation with index
2 as suspect. However, operations 5 and 6, which additionally point to the wrong
conditional case, are not ranked as suspect, despite by AMPLE.

In most fault localization approaches, the metrics result in a list of source code
lines with their according suspicious rankings. However, it is difficult to evaluate the
source code manually based on this list. In our use case, our tool sets breakpoints
on the most suspect source code lines during replay. The developer can step through
the suspect lines during replay and check which lines are executed in the failing
and the nonfailing runs. Our tool only sets breakpoints on source code lines with
AMPLE suspicious ranking 1. Additionally, it notes at every suspect source code

Table 4.7 Calculation of metrics by example

Methd/op | opi op2 op3 0p4 ops opes
Runsin 1 0 1 1 1 1
Rungim 1 0 1 1 1 1
Rung;p, 1 0 1 1 1 1
Runggj; 1 1 1 1 0 0
ep 3 0 3 3 3 3
e 1 1 1 1 0 0
np 0 3 0 0 0 0
ny 0 0 0 0 1 1
Tarantula 0.5 1 0.5 0.5 0 0
Jaccard 0.25 1 0.25 0.25 0 0
Occhiai 0.5 1 0.5 0.5 0 0
Ample 0 1 0 0 1 1

4 Automated Reproduction and Analysis of Bugs in Embedded Software 93

line, whether it is executed in the failure run (but not in any similar run) or whether it
is executed in every similar run (but not in the failure run). Other approaches propose
the combination of suspicious metrics [39], e.g., combining AMPLE and Occhiai.
This way, machine learning algorithms generate weighted combinations of different
metrics. Studies show that better metric results are achieved with combined metrics.
However, a learning phase which is not possible in our use case is required.

Previously, we showed how delta computation is able to show coverage deltas
between the failure run in the failure replay and some similar runs in the replay.
However, root-causes which start to propagate at a wrong variable assignment can
often only be detected by monitoring all variable values in every source code line.

In our example, another sequence of GPS inputs may trigger the bug: ({42, 9,
~340,0}, {42, 9, -355, 0}, {42,9,[-370], 0}, {42, 9, -355, 0}). This sequence can
happen, when the sensor sends data smaller than 0 and incrementally switches to
an angle smaller than —360. Applying coverage-based analyses during the replay of
this sequence, the wrong source code line (line 2 in Listing 7) cannot be detected,
because line 2 is executed in every run. However, the root-cause can be detected
when monitoring all variable values in every source code line.

Anomalies in variable values can be detected using invariants. Invariants are char-
acteristics of variable/value pairs which are stored for each run. The invariants being
held by the nonfailing run can be compared with invariants stored from the failing
run. Therefore, we automatically generate invariants for the nonfailing and failing
run. Range invariants check, which ranges of variable values are observed during a
run. In our Navit example, the invariant in Eq.(4.10) is stored by every nonfailure
run. This invariant can be checked in the failure run, where it is violated. In our
implementation, we generate invariants for every single passed source code line.

inviipe(angle) = —360 < angle < 360 (4.10)

However, with few reference runs, it is difficult to build range invariants. Rela-
tion invariants between variable/value pairs check the relation between two numeric
variables. Variable relations are often checked in conditional branches. This relation
may be that a variable angle is always bigger than a variable lazy in a specific source
line (4.11).

inviipe(angle) = lazy < angle 4.11)

Our analysis compares each variable value to all other variable values to detect the
relations between the variables. In our Navit example, the method vehicle_update is
always called with the fourth variable lazy which defines the drawing mode and is,
for most cases, 0 or 1. Comparing the variable angle against the variable lazy, shows
that, before operation 2, angle < lazy. After operation 2, lazy < angle is fulfilled for
every nonfailure run. However, for the failing run, angle < (lazy == 0) still holds.
Figure4.15 shows the sequence of variable relations between the variables angle and
lazy.

94 H. Eichelberger et al.

Fig. 4.15 Detecting

invariant deltas between two A ETHO Galely
Navit GPS processing Opf1 angle<lazy Op1 angle<lazy
_.0p2 el skl N O Eugllee
I Op3 lazy<angle Op3 angle<lazy !
E___Q_P_‘l__ Iazy<a[19_lg__ Op4 angle<lazy____j
Op5 lazy<angle
Op6 lazy<angle

InFig.4.15 the wrong relations in lines 3 and 4 in the failure run point exactly to the
root-cause of the failure. The resulting analysis report includes anomalies detected
by comparing the coverage of the failing run to the similar runs. Additionally, the
report includes the generated relation invariants which differ between the failing run
and the similar runs.

4.5.2.5 Accelerated Monitoring

This section presents how to accelerate software monitoring based on [13, 43]. Many
approaches use special hardware to monitor the embedded software under test. How-
ever, this hardware can be expensive or is even not available for new platforms.
Therefore, we present an approach on how to optimize the monitoring to achieve fast
dynamic verification results. Most developers already use an incremental approach
to manually debug software. They first set breakpoints on methods starting to detect
anomalies in the method call sequence. Afterwards, they examine suspect methods
and they stepwise refine their examination. Our tool achieves accelerated monitoring
for bug root-cause analyses, by applying this concept in an automated way. First, we
define the basic concept for single-level (SL) monitoring.

Single-Level Monitoring—SL: Monitoring single steps through every exe-
cuted source code line during a (processing) run. It monitors the current vari-
able values for every monitored source code line.

The analyses presented in the previous section can be applied on the traces gener-
ated by SL monitoring. However, running single-level monitoring can be slow. The
methods of the software are usually executed much less frequently than the source
code lines. Therefore, it is usually faster to monitor the methods instead of monitoring
every source code line.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 95

MultiLevel Monitoring—ML: In the first replay, the method calls are moni-
tored. The following activities can be applied on this method calls trace: Detect
Failure Run and Detect Similar Runs. In a second replay, the failure run as well
as the similar runs are monitored in detail with single-step monitoring. The
Delta Computation can be applied on this generated trace. This way, all runs
despite the failure and the similar runs do not have to be monitored in detail.

The concept is illustrated in Fig.4.16. It shows two replays: one for method level
monitoring and one for monitoring the relevant runs in detail with single-stepping.
On method level, first, the failure run is detected (A.) by comparing it to a nonfailure
replay, as presented in Sect.4.5.2.2. The failure run in Fig.4.16 is Run7. Afterwards,
the similar runs to the failing run are identified on method level (B.), as presented in
Sect.4.5.2.3. Here, the similar run is Run5. However, our approach can detect and
handle several similar runs. The difference between the failing run and the similar
runs (RunS and Run7) is implemented by single-step monitoring (same as SL) and
analyzing every source code line as presented in Sect.4.5.2.4. Thus, in the example,
Run6 and Run8 are not monitored in detail.

However, pausing at every passing of method causes a high monitoring time as
well (like presented in Sect.4.5.4), especially when short methods are called in high
frequency. Thus, in the following, we propose a concept for debugger-based efficient
monitoring of the method coverage of a run.

ML Method Monitoring—MILMethd: Method coverage monitoring traces
every executed method in a run only once.

A. Detect
B. Detect Similar Runs Failure Run
[1
Method v L
Monitoring Run5 Run6 Run7 Run8

1. Failure Replay

Step Run5 \Rh\ Run7 N
Monitoring N P
~ ’

N\
N

4
\A : k/ 2. Failure Replay
C. Delta Computation

Fig. 4.16 Multi-level (ML) monitoring

96 H. Eichelberger et al.

Algorithm 1 shows the concept for MLMethd in pseudocode. This way, the moni-
toring of method coverage is efficient, because the monitoring tool only has to trace
every method once.

Algorithm 1 Efficient method coverage monitoring for a run

Require: allmethods = List of all methods to monitor
Require: context = Monitoring context
Ensure: methodcov = Set of covered methods in the run
Y meallmethodsContext .setBreakpoint (m)
while context.nextBreak() do
where = context.where()
methodcov = methodcov U where
context.removeBreakpoint(where)
end while

However, after the failure run is detected and the similar runs are computed, the
delta computation step requires a fine-grained trace. The monitoring of this trace can
be very slow. A stepwise refinement can accelerate the monitoring. MLMethd results
in a list of suspect methods (relmethds) which are either executed in the failing run
or in the similar runs.

ML Backtrace Monitoring—MULBack: The backtraces of the methods in
relmethds are identified. Every method which occurs in those backtraces is
first monitored without stepping into the called methods (side steps). Methods
which are executed either in the similar runs or the failing run are not monitored
(no comparison is possible). MLBack includes MLMethd.

For our Navit example, we consider five different methods:

e update: Updates the current vehicle state based on GPS input data.
e route: Represents the routing calculation.

e vehi.: Represents the vehicle_draw method.

e set: Changes the drawing mode.

e draw: Invokes the draw of the vehicle pointer.

Figure4.17 presents the concept of MLBack for the Navit bug. Every black line (or
solid line) represents a monitored method. Every red line (or dotted line) represents
a not monitored method.

First, a replay monitors the method coverage and detects that the draw method
misses in the failing run. Several similar runs to the failing run are detected based on
method monitoring. During MLBack, the methods which occurred in the backtrace
of the invocation of draw in the nonfailure runs are collected in relmethds. During
a second replay, the methods in relmethds are monitored in the similar runs and the
failing run without stepping into the called (or side step) methods. During stepping

4 Automated Reproduction and Analysis of Bugs in Embedded Software 97

Similar Run Failure Run
update update
route route
>] == L
First delta
set set
draw

Fig. 4.17 Multi-level backtrace (MLBack) monitoring

through these methods, the values of local variables and method parameter vari-
ables are monitored. MLBack results in a list of methods which contain anomalies
suspectmethd. The methods update and vehi. are monitored without stepping into
side steps (here, route and set). This way, the routing calculation which is not rele-
vant for our considered bug, but would require a lot of operations, is not monitored.
Additionally, draw is not monitored, because it does only occur in the similar runs,
but does not occur in the failure run (and cannot be compared). A first anomaly in
the variable values can be detected after the calculation angle+ = 360 in vehi.

Definition ML Step Monitoring—MLStep: This monitoring concept has a
list of suspect methods suspectmethd as input. These methods are monitored
in an additional replay with the called side steps. Methods which are executed
either in the similar runs or the failing run are still not monitored.

In the Navit example, a third replay is executed to additionally monitor the side steps
in suspect methods (see Fig.4.18).

Here, the method vehi. is additionally monitored with side steps. This includes
the stepping into the method set (and some other methods not presented in Fig. 4.18).
In an alternative implementation of Navit, the method set (or another method even
which is called by vehi.) may include the wrong source code line with angle+ = 360,
after which wrong relations between angle and lazy are detected.

4.5.3 Implementation

This section presents how a set of runs in a replay is monitored by single-stepping
over every source code line (Single-Stepping Monitoring). On source code level,

98 H. Eichelberger et al.

Similar Run Failure Run

update update

route route

=3

Fig. 4.18 Multi-level step (MLStep) monitoring

the variable values are monitored for every executed source code line in a run. This
implementation is required for SL as well as for ML in the second replay. We show
how method level monitoring (Method Coverage Monitoring) is implemented. On
method level, the coverage of executed methods in a run is monitored. Additionally,
we show how MLBack and MLStep can be implemented using GDB Python scripts.

4.5.3.1 Single-Stepping Monitoring

Listing 8 shows the implementation for single-stepping monitoring for the Navit
example (considering the GPS processing). Lines 1-2 set breakpoints at the locations
in the source code where the GPS processing starts and ends. In case the location
where the processing starts is reached (line 7), the monitoring is activated (line 8).
If the monitoring is activated, every step in the processing is monitored by printing
local and argument variables (lines 13—14). The next source code line in the software
under test is reached by executing the GDB step command (line 16).

4.5.3.2 Method Coverage Monitoring

Listing 9 shows the implementation for method coverage monitoring for the Navit
example (considering the GPS processing). Lines 1-2 set breakpoints at the loca-
tions in the source code where the GPS processing starts and ends. Additionally,
breakpoints are set on every method of the Navit software (lines 5-6); they are dis-
abled at the beginning of the execution (line 7). If the location where the processing
starts is reached (line 10), the monitoring is activated (line 11) and, additionally, the
breakpoints for every method in the Navit software are enabled (line 12). If only
the coverage of executed methods should be monitored, every breakpoint could be
disabled after first passing (lines 18—-19).

4 Automated Reproduction and Analysis of Bugs in Embedded Software

Listing 8 Implementation of single-stepping monitoring

99

gdb.execute ("break _gpsprocessingstart")
gdb.execute ("break _gpsprocessingend")
monitor=False

while running:

where=gdb.execute ("where", to_string=True)

if "gpsprocessingstart" in where:
monitor=True
gdb.execute ("step")

elif "gpsprocessingend" in where:
monitor=False

elif monitor:

locs=gdb.execute ("info_locals",to_string=True)

args=gdb.execute ("info_args",to_string=True)

trace.write (where, locs, args)
gdb.execute ("step")

Sensor and Thread Replay Code

Listing 9 Implementation of method coverage monitoring

18

20

gdb.execute ("break _gpsprocessingstart")
gdb.execute ("break _gpsprocessingend")
monitor=False
for m in navitmethods:
point=gdb.execute ("break %s"%m)
disable (point)
while running:
where=gdb.execute ("where", to_string=True)
if "gpsprocessingstart" in where:
monitor=True
enableAllMethodBreakpoints ()
elif "gpsprocessingend" in where:
monitor=False
disableAllMethodBreakpoints ()
elif monitor:
trace.write (where)
if coverage:
disable (where)
gdb.execute ("cont")

Sensor and Thread Replay Code

100 H. Eichelberger et al.

4.5.3.3 Method Backtrace Monitoring

Listing 10 shows the implementation for method backtrace monitoring for the Navit
example (considering the GPS processing). Lines 2-3 set breakpoints on all methods
in relmethds reported from previous method monitoring and analysis. These methods
are stepped through with the command next of the GDB (line 14), while monitoring
variable values and without stepping into called methods (side steps). The imple-
mentation of MLStep is similar, but monitors the methods reported from the MLBack
analysis. It uses the command step of the GDB instead of the command next.

Listing 10 Implementation of MLBack

1 ...
2 for m in relmethd:
3 point=gdb.execute ("break %s"%m)
4 disable (point)
5 while running:
6 where=gdb.execute ("where", to_string=True)
7 if "gpsprocessingstart" in where:
8 monitor=True
9 for b in breaks:
10 gdb.execute ("enable_%$s"%b)
11 elif monitor:
12 locs=gdb.execute ("info_locals")
13 trace.write (where, locs, args)
14 gdb.execute ("next")
Sensor and Thread Replay Code

4.5.4 Experiments

The previous sections showed how dynamic verification supports the developer to
analyze the root-causes of bugs. In Sect.4.5.2.5, we presented optimization tech-
niques to accelerate the monitoring for those analyses. We tested the multi-level
monitoring (ML) concept for the Replace tool of the Siemens Test Suite [22]. The
Replace program is delivered in 32 different versions and with several test cases. We
tested 19 of the first 20 versions, which all contain one bug (we could not manually
detect a bug in version 19). To generate a possible random replay, we implemented
a replay generator which randomly selects 99 test cases from the 5542 test cases in
the Siemens Test Suite fault matrix which do not cause the failure. In the end of the
replay, we added as run 100 a failing run which executes the bug. For the random
selection of test cases, we used the Python random function with seed 100 for every
generated replay. We generated a second replay with 200 nonfailing runs to simulate

4 Automated Reproduction and Analysis of Bugs in Embedded Software 101

250 T T T T T T T T
3 O ML
§ 2007 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, DSL ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
(0] — — — — — o M — — — — —
%) - - _
(0]
£
'—
0
L

L T A A AT O

4 7

1 3 5 6 8 12 13 14 15 16 17 18 20

Version

Fig. 4.19 Monitoring runtime for multi-level analyses for replace

noise (using same seed 100). We used this replay as nonfailure replay for the failing
run detection presented in Sect.4.5.2.2. For SL, we monitored the execution of the
100 replay runs collecting source code line coverage as well as numeric local and
argument variable values. For ML, the failing run was detected based on method
coverage. For this implementation, we additionally used the count of occurrences of
a specific method for building hamming words (as presented in Sect.4.5.2.3 using
threshold = 5). The three most similar runs to the failure run were determined based
on method coverage as well. In a second replay, the failing run and the similar ones
were monitored and compared considering line coverage and variable relations. We
observed that ML monitoring is much faster than SL monitoring. Figure4.19 shows
the runtime for single-level (SL) monitoring compared to multi-level (ML) monitor-
ing for Replace (for those versions where we could detect the respective bug, using
our algorithms).

For a general evaluation, only the monitoring runtimes were included, because
the runtimes for analyzing the monitoring result depend on the type of analysis. ML
consists of a first replay monitoring on method level and a second replay monitoring
on line level. ML and SL monitored all local variables, arguments, and macros for
the delta computation for the failing run and the three most similar runs. We found
that ML monitoring is much faster than SL monitoring. For Replace, a monitoring
acceleration of @ 9.5X was achieved. Table 4.8 shows the number of reported suspect
lines of SL and ML and the hamming distance from the failing run to the three similar
runs for the different Replace versions.

8-ML/SL presents the count of reported suspect lines. Fail Detect shows whether
the failing run could be detected on method level. Dist. Meth. and Dist. Line show the
hamming distances to the computed similar runs. Detect presents whether the buggy
lines are detected with the coverage delta computation or the variable relation delta
computation. In six versions (3, 4, 7, 13, 14, 16), the detected similar runs were the
same for ML and SL. In these cases, the reported suspect lines were the same. In the 15
experiments, every bug of the version was detected with SL and ML, either pointing
to the coverage delta (Cov) or to a delta in variable relations (Rel). Four reports for
bugs indirectly pointed to the failure (Version 12—many occurrences of MAXPAT

H. Eichelberger et al.

102

94 [°Y! [°d [°d oYt [t AOD PY! o4 [°d AOD o4 °d [°d AOD 1991ed
§Te zIor's st IS168r | 8696°9E e | LrLrst €IS6r | SISISH 1S58y e | e vevTe | eI €181 aury IsIQ
1Y 1€l 59 1L 184 611 611 L6 €S 1L €L 99 LT1 601 811 1S-¢
679 17691 6T 11680 | eroroE LT | s 99'IsES | srSIee 1Issr | rLeel e | et el 9£9€'81 qup IS
000 000 000 o £ee 000 000 999 [¢5's 000 1o I 000 roo | RN ISIg
/ X / s / X / / Vs / X / / / Vs 19919p [l
Ly S0l Ly 1L 29 611 611 01 0s 1L €8 %3 LT1 601 68 TN-¢
0CA 8IA LIA 9IA SIA YIA eIA CIA 8SA LA 9A SA YA €A 1A srdurexy

sooue)sIp Surwwey pue aoejder 10y sour| vlfop payodey §°f AqEL

4 Automated Reproduction and Analysis of Bugs in Embedded Software 103

in relation deltas, Versions 15 and 18—relation difference of other variables in buggy
line, Version 14—difference of relations in enclosed line of if-clause). We tested our
tooling with the four other versions of Replace (2, 9, 10, 11), but in these tests, the
buggy source code line could not be detected with our delta analysis with ML and
SL. Here, the bugs are mainly caused by predicates in if-clauses which access arrays
(which are only available in registers). The row Fail Detect shows the versions, for
which the failing run could be detected on method level. The failing run could not be
detected for the versions 6, 14, and 18 with the optimized lightweight classification
presented in Sect.4.5.2.2 based on a randomized selected nonfailure replay. Thus,
63% of the bugs could be automatically and efficiently localized with ML based on
one failure replay with 100 runs and one nonfailure replay with 200 runs.

In some cases, delta computation for ML reported less false positives, because the
similar runs detected by SL coincidentally caused more variable relation differences.
In general, the report quality difference between SL and ML mainly depends on the
composition of different runs in the replay. Note: Delta computation (cov+rel) for
SL between the failing and every run in the replay would cause higher runtime for
parsing and comparison of monitoring results (delta computation runtime without
monitoring of three runs was & 13.7s for Replace).

However, the ML monitoring can still be too slow for monitoring instruction-
intensive calculations. For example, the monitoring of a routing calculation of Navit
on method level (which calls transformation methods in high frequency), can be
very slow when the execution pauses at every method call. We measured the method
monitoring for 20 GPS coordinates processing including the routing calculation,
which required more than 50h on an NVIDIA Tegra K1 ARM platform.

Figure 4.20 shows our experiments for the acceleration of the monitoring for root-
cause analyses using refinement for the Navit software (MLBack and MLStep).

We measured a replay with 20 GPS and one with 30 GPS coordinates, both con-
taining the Navit bug from the previous sections. In these experiments, each analysis
(MLBack, MLStep and SL) detected the root-cause of the bug. These measurements
include the routing calculation of the Navit GPS processing.

MLBack is 1354X faster than SL for the 20 GPS scenario. MLStep is 334X faster
than SL for the 20 GPS scenario. For the 30 GPS scenario, the acceleration factors

Fig. 4.20 Acceleration of 1,000,000 T
monitoring using refinement
for root-cause analyses for
the Navit software [13]

100,000

10,000
1,000

100

Runtime in seconds

10

1

Navit20 Navit30

104 H. Eichelberger et al.

are: MLBack 1292X and MLStep 405X. The acceleration does not increase with
the longer sequence, because some GPS processing at the beginning take longer
(for recalculating and redrawing of the routing line). The Navit measurements show
that analyses with high monitoring overhead can be accelerated with hierarchical
refinement, resulting in practicable dynamic verification performance.

4.6 Summary

The approach presented in this chapter showed how the manual debugging process
can be supported by automated tools. We presented state-of-the-art approaches for
automated bug reproduction. However, these approaches are mainly developed for
specific platforms. Therefore, we developed the debugger-based approach which is
portable to different embedded platforms. It reproduces sensor inputs and implements
randomized thread scheduling for efficient concurrency bug localization. The chapter
described how assertions can be implemented with a debugger tool to locate the cause
of reproduced concurrency bugs. Afterwards, we showed how the root-cause of bugs
can be located without needing specifications or assertions. The root-cause can be
tracked down to changes in variable values which cause the bug. Based on a naviga-
tion software, we demonstrated how these root-cause localization techniques can be
accelerated. This way, the application of slow monitoring tools can be optimized to
make them applicable in practice.

The presented approach requires little adaptations for other software. However,
the implemented scripts are all very short (every record/replay or monitoring script
is shorter than 200 LOC). Thus, the tooling is highly extendable. Additionally, the
GDB is supported by most embedded platforms and our script implementations are
applicable on most embedded platforms. With few modifications, we could run all
our scripts on an ARM Linux the same way as on an X86 Linux.

References

1. Navit-car navigation system. http://www.navit-project.org. Accessed Aug 2016

2. Abreu R (2009) Spectrum-based fault localization in embedded software. PhD thesis, Univer-
sity Delft

3. Amiar A, Delahaye M, Falcone Y, du Bousquet L. (2013) Fault localization in embedded
software based on a single cyclic trace. In: ISSRE ’13: proceedings of the 24th international
automated reproduction and analysis of bugs in embedded software 39 symposium on software
reliability engineering. IEEE, pp 148-157

4. Anderson P (2008) The use and limitations of static-analysis tools to improve software quality.
CrossTalk J Defence Softw Eng 42(4):18-21

5. Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: ICSE *06: proceedings of
the 28th international conference on software engineering. ACM, pp 361-370

6. Barringer H, Havelund K (2011) Tracecontract: a scala dsl for trace analysis. In: FM ’11:
proceedings of the 17th international symposium on formal methods. Springer, pp 57-72

7. Burger M, Zeller A (2011) Minimizing reproduction of software failures. In: Proceedings of
2011 international symposium on software testing and analysis, pp 221-231

http://www.navit-project.org

4 Automated Reproduction and Analysis of Bugs in Embedded Software 105

8.
9.

10.

11.

12.

13.

14.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Charette RN (2009) This car runs on code. IEEE Spectr 21(6)

Dallmeier V, Lindig C, Zeller A (2005) Lightweight bug localization with ample. In: AADE-
BUG ’05: proceedings of the sixth international symposium on automated analysis-driven
debugging. ACM, pp 99-104

Dovgalyuk P (2012) Deterministic replay of system’s execution with multi-target gemu sim-
ulator for dynamic analysis and reverse debugging. In: CSMR ’12: proceedings of the 16th
European conference on software maintenance and reengineering. IEEE, pp 553-556

Ebert C, Jones C (2009) Embedded software: facts, figures and future. Computer 42(4):42-52
Eichelberger H, Kropf T, Greiner T, Rosenstiel W (2013) Runtime verification driven debugging
of replayed errors. In: ICTSS ’13: proceedings of the PhD workshop of ICTSS’13
Eichelberger H, Kropf T, Ruf J, Greiner T, Rosenstiel W (2015) Efficient fault localization dur-
ing replay of embedded software. In: SEAA ’15: proceedings of the 41th euromicro conference
series on software engineering and advanced applications. IEEE, pp 43-52

Eichelberger H, Ruf J, Kropf T, Greiner T, Rosenstiel W (2014) Debugger-based record replay
and dynamic analysis for in-vehicle infotainment. In: ICCSA ’14: Proceedings of the 14th
international conference on computational science and its applications. Springer, pp 387—401

. Foundation G (2016) Gdb: the gnu project debugger. http://www.sourceware.org/gdb. Accessed

Aug 2016

. Foundation G (2016) Gnu pth—the gnu portable threads. http://www.gnu.org/software/pth/.

Accessed Aug 2016

. Goeders J, Wilton S (2014) Effective fpga debug for high-level synthesis generated circuits.

In: FPL ’14: proceedings of the 24th international conference on field programmable logic and
applications. IEEE, pp 1-8

Goll J (2012) Methoden des software engineering. Springer, Wiesbaden

Gomez L, Neamtiu I, Azim T, Millstein T (2013) Reran: timing- and touch-sensitive record and
replay for android. In: ICSE *13: proceedings of the 35th international conference on software
engineering. ACM, pp 72-81

Heckeler P, Eichelberger H, Schlich B, Kropf T, Ruf J, Huster S, Burg S, Rosenstiel W (2013)
Accelerated model-based robustness testing of state machine implementations. ACM Appl
Comput Rev 13(03):50-67

Hower D, Hill M (2008) Rerun: exploiting episodes for lightweight memory race recording.
In: ISCA °08: proceedings of the 35th international symposium on computer architecture.
ACM/IEEE, pp 265-276

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In: ICSE *94: proceedings of the 16th
international conference on software engineering. IEEE, pp 191-200

Jiang B, Long X, Gao X, Liu Z, Chan W (2011) Floma: statistical fault localization for mobile
embedded system. In: ICACC ’11: proceedings of the 3rd international conference on advanced
computer control. IEEE, pp 396400

Jones C (2012) A short history of the cost per defect metric. http://www.ifpug.org/Documents/
Jones-CostPerDefectMetric Version4.pdf. Accessed Aug 2016

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localiza-
tion. In: Proceedings of 2002 international conference on software engineering, pp 467477
Joorabchi ME, Mirzaaghaei M, Mesbah A (2014) Works for me! characterizing non- repro-
ducible bug reports. In: MSR *14: proceedings of the 11th working conference on mining
software repositories. IEEE, pp 62-71

Laadan O, Viennot N, Nieh J (2010) Transparent, lightweight application execution replay on
commodity multiprocessor operating systems. In: SIGMETRICS ’10: proceedings of the 2010
ACM SIGMETRICS international conference on measurement and modeling of computer
systems. ACM, pp 155-166

Lee YH, Song YW (2010) Replay debugging for multi-threaded embedded software. In: EUC
’10: proceedings of the 2010 IEEE international conference on embedded and ubiquitous
computing. IEEE, pp 15-22

http://www.sourceware.org/gdb
http://www.gnu.org/software/pth/
http://www.ifpug.org/Documents/Jones-CostPerDefectMetricVersion4.pdf
http://www.ifpug.org/Documents/Jones-CostPerDefectMetricVersion4.pdf

106

29.

30.
3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

H. Eichelberger et al.

Leucker M, Schallhart C (2009) A brief account of runtime verification. J Logic Algebraic
Program 78(5):293-303

Liggesmeyer P (2009) Software-qualitaet. Spektrum Akademischer Verlag, Heidelberg
LiuC, Yan X, Yu H, Han J, Yu P (2005) Mining behavior graphs for “backtrace” of noncrashing
bugs. In: SDM ’05: proceedings of the 2005 SIAM international conference on data mining
Liu X, Lin W, Pan A, Zhang Z (2007) Wids checker. In: Proceedings of 4th USENIX conference
on networked systems design and implementation, pp 257-270

Maeng J, Kwon JI, Sin MK, Ryu M (2009) Rt-replayer: a record-replay architecture for embed-
ded real-time software debugging. In: SAC *09: proceedings of the 2009 ACM symposium on
applied computing. ACM, pp 1670-1675

Patil H, Pereira C, Stallcup M, Lueck G, Cownie J (2010) Pinplay: a framework for deterministic
replay and reproducible analysis of parallel programs. In: CGO ’10: proceedings of the 8th
international symposium on code generation and optimization. IEEE/ACM, pp 2-11

Sen K, Kalasapur S, Brutch T, Gibbs S (2013) Jalangi: a selective record-replay and dynamic
analysis framework for javascript. In: ESEC/FSE *13: proceedings of the 9th joint meeting on
foundations of software engineering. ACM, pp 488-498

Shin H, Endoh Y, Kataoka Y (2007) Arve: aspect-oriented runtime verification environment.
In: Proceedings of 2007 runtime verification, pp 87-96

TanL, Liu C, LiZ, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open source software.
Imperical Softw Eng 19(6):1665-1705

Wu J, Geyer C, Rehg JM (2011) Real-time human detection using contour cues. In: ICRA
"11: proceedings of the 2011 international conference on robotics and automation. IEEE, pp
860-867

Xuan J, Monperrus M (2014) Learning to combine multiple ranking metrics for fault localiza-
tion. In: ICSME ’14: proceedings of the 30th international conference on software maintenance
and evolution. IEEE, pp 191-200

Yasushi S (2005) Jockey: a user-space library for record-replay debugging. In: AADEBUG ’05:
proceedings of the sixth international symposium on automated analysis-driven debugging.
ACM, pp 69-76

Zeller A (2009) Why programs fail: a guide to systematic debugging, 2nd edn. Morgan Kauf-
mann Publishers

Zhang S, Ernst MD (2013) Automated diagnosis of software configuration errors. In: Proceed-
ings of 2013 international conference on software engineering, pp 312-321

Zuo Z, Khoo SC, Sun C (2014) Efficient predicated bug signature mining via hierarchical
instrumentation. In: ISSTA ’14: proceedings of the 2014 international symposium on software
testing and analysis. ACM, pp 215-224

Chapter 5
Model-Based Debugging of Embedded

Software Systems

Padma Iyenghar, Elke Pulvermueller, Clemens Westerkamp,
Juergen Wuebbelmann and Michael Uelschen

5.1 Introduction

Software engineering has gone through several paradigm shifts (assembly lan-
guage — structural programming — object-oriented — model-driven development
(MDD)), driven by the requirements for building more complex systems. The inher-
ent necessity to achieve reliable systems, inline with these paradigm shifts, has ush-
ered in copious verification and validation techniques.

However, debugging and runtime monitoring remains the widely used process for
finding and resolving defects (bugs) that prevent correct operation of the underlying
software system. Debugging tools, in general, help to identify errors at the various
stages of the software development process. Some of the commonly used traditional
debugging tools involve “printf” statements, data monitors, and operating system
monitors [17]. On the other hand, some sophisticated techniques available in the
embedded software development tools are profilers, memory testers, and execution
tracers [5, 8, 32], to mention a few.

P. Iyenghar () - E. Pulvermueller

Software Engineering Research Group, University of Osnabrueck, 4469,
49069 Osnabrueck, Germany

e-mail: piyengha@uos.de

E. Pulvermueller
e-mail: elke.pulvermueller @uos.de

C. Westerkamp - J. Wuebbelmann - M. Uelschen
University of Applied Sciences, 1940, 49009 Osnabrueck, Germany
e-mail: c.westerkamp @hs-osnabrueck.de

J. Wuebbelmann
e-mail: j.wuebbelmann @hs-osnabrueck.de

M. Uelschen
e-mail: m.uelschen @hs-osnabrueck.de

© Springer Science+Business Media, LLC 2017 107
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_5

108 P. Iyenghar et al.

Observing and examining the behavior of software execution at runtime can be
termed as runtime or online software monitoring and verification. Embedded sys-
tems present particular challenges for monitoring, which necessitate a nonintrusive
or a minimally intrusive monitoring methodology. This is especially true for resource
constrained, deeply embedded systems (e.g., 16-bit systems with 64 KiByte mem-
ory). Runtime monitoring techniques used for several application purposes [5, 8, 32]
often employ a target output/computer to diagnose and interpret the results in formats
such as plain text and graphs. However, with the advent of model-driven method-
ologies, the applicability and usage of models, such as Unified Modeling Language
(UML) [4] diagrams, are under evaluation for model-based runtime monitoring and
debugging of software systems.

In the field of real-time embedded software systems, model-based debugging and
visualizing embedded software systems, using diagrams, such as sequence and tim-
ing diagrams, presents an exciting outlook. Model-based visualization of embedded
software system behavior (at runtime), using sequence diagrams and state charts, is
possible in proprietary MDD tools, such as Rhapsody [14]. However, such existing
runtime monitoring and debugging methodologies are not well-suited for applica-
bility in deeply embedded systems, primarily because of the monitoring overhead
involved. The following section enumerates the drawbacks of debugging, runtime
monitoring, and visualization of target behavior in real time, in the state-of-the-art
tools and methodologies.

5.1.1 Problem Statement

The drawbacks of model-based debugging and runtime monitoring, which involve
extensive source code instrumentation in the underlying software, are discussed
below. The crux lies in the applicability of such techniques in deeply embedded
software systems. An example of such a resource constrained embedded system is a
16-bit system with less than 64 KiByte memory.

e Significant instrumented code size The instrumented code (for debugging and
monitoring) increases with an increase in the application size. The instrumented
code varies based on the application size and complexity. Hence, there arises a
question of scalability and applicability of such an approach in debugging small
embedded software systems. For instance, an existing MDD tool [14], while sup-
porting model-based monitoring of embedded systems, makes use of techniques
such as dynamic source code instrumentation or downloading a significant instru-
mented code on the target.

e Requirement for sophisticated interfaces: Often, sophisticated interfaces and
communication protocols are required to download the instrumented code and
visualize the behavior of the target in real time at the host computer. For
instance, let us consider the MDD tool Rhapsody [14], which provides a “live-
animation” feature for model-based visualization of the target behavior in real time.

5 Model-Based Debugging of Embedded Software Systems 109

Itintroduces significant (and dynamic) source code instrumentation overhead. Fur-
ther, it requires sophisticated debug communication interfaces (e.g., TCP/IP over
Ethernet) to download the debug code on the target and visualize the behavior at the
host, using UML diagrams. Itis intuitive to perceive that such techniques would fur-
ther result in protocol and performance overhead during debugging and/or runtime
monitoring. Moreover, such interfaces are not necessarily available in memory-
size constrained, deeply embedded targets.

e What you verify is not what you deliver: The instrumented code is not only sig-
nificant, it is often removed after the debugging process/verification is completed.
This implies that the behavior of the RTESS during debugging may not remain
the same after the debugging process is complete. For instance, there could be a
change in the program-instructions or clock cycles before which the specific sys-
tem code is executed (because of the execution cycles of the instrumented code).
This necessarily means that the system that is debugged/verified is not the same
system that is delivered as the end-product.

Thus, the existing tools introduce unbounded overhead and highly intrusive moni-
toring mechanisms for model-based debugging and visualization of real-time behav-
ior of targets, using UML diagrams. Clearly, such approaches are not suitable for
applicability in deeply embedded systems.

5.1.2 Contribution

Based on the problems stated above, it is clear that there is a need for an inte-
grated model-based debugging framework and monitoring approach, which provides
scalable model-based debugging for deeply embedded systems. Such a monitoring
methodology is referred to in this paper as the time and memory-size aware runtime
monitoring.

One such model-based debugging approach, which addresses the aforementioned
limitations, is discussed in [20]. With this model-based debugging approach, the
behavior of memory-size constrained RTESS can be visualized in real time, using
UML sequence and timing diagrams (at the design level using a minimally intrusive
target monitor). Performance metrics and evaluation of the debugging approach pro-
posed in [20] is discussed in [19]. This book chapter elaborates on the debugging
approach presented in [19, 20] and extends it with the following novel contributions.

e A brief outline of the model-based debugging approach is provided.

e The requirements of a time and memory-aware runtime monitoring methodology,
toward applicability for model-based visualization of target behavior, are elabo-
rated.

e Two variants of the proposed monitoring methodology, i.e., (a) software and
(b) on-chip monitoring are presented and their prototype implementation is dis-
cussed.

110 P. Iyenghar et al.

e Frame formats for sending the trace data between host and target in the proposed
model-based debugging approach is elaborated.

e An experimental evaluation of the proposed monitoring mechanisms is provided.
A discussion and evaluation of the proposed approach, in comparison with the
existing approaches, is presented.

The remainder of this paper is organized as follows. Section 5.2 deals with related
work. The model-based debugging methodology is outlined in Sect. 5.3. The runtime
monitoring methodologies are discussed in Sect.5.4. A prototype of the monitoring
methodologies and an experimental evaluation are discussed in Sect.5.5. The per-
formance metrics of the proposed approach are discussed in Sect.5.6. A discussion
on the salient features of the proposed approach is presented in Sect.5.7. Section 5.8
concludes this paper.

5.2 Related Work

The exponential growth of the embedded software systems necessitates the use of
advanced and automated methods of development and testing. In this context, Model-
Driven Architecture (MDA), proposed by the OMG [28], promises several advan-
tages and superiority, superseding the traditional way of developing the embedded
systems. This is supported by the studies conducted in [3, 9, 22, 23].

The MDA model is related to multiple standards including the UML. UML com-
prises of general purpose diagrams and profiles. UML profiles introduced by the
OMG consist of a set of new stereotypes for a particular domain. The widespread
applicability of UML (general purpose diagrams and profiles) as a modeling lan-
guage for embedded systems is evident from the numerous studies in the literature
[20, 22]. In our proposed model-based debugging methodology we use UML to
specify the design model (e.g., class diagram, state charts, etc.). UML interaction
diagrams, such as timing diagram and sequence diagram, are used for visualizing
the target behavior in real time at the design level in our approach.

Irrespective of the evolution in embedded software engineering, the model-based
tools for embedded systems continue to use monitoring approaches for applications
such as debugging and testing. Software monitoring has been in use for over 35
years for a variety of domains and application purposes [5, 29]. Some of the domains
in which runtime monitoring is applied include, distributed systems, fault-tolerant
systems, real-time critical systems, and embedded systems [32].

Domains such as the embedded systems present particular challenges for monitor-
ing, as the system internals may not be easily observable and have limited resources
or real-time constraints. Hence, utmost care must be taken to avoid incurring exten-
sive runtime overhead in the form of additional resources (e.g., memory, time).
A technique for time-aware instrumentation of embedded software is discussed in
[8]. It demonstrates how instrumentation can be used to maximize trace reliability
and computing the minimal trace buffer size. However, most of the aforementioned

5 Model-Based Debugging of Embedded Software Systems 111

monitoring approaches, except [8], concentrate on applications running on desktop
computers. They do not consider their impact on the time or memory requirement of
the applications.

Monitoring systems are classified according to the probes/instrumentation used,
as hardware, software, hybrid, and on-chip monitoring. This classification is used
both in early and late surveys on monitoring [32]. A time-aware, software-based
instrumentation methodology is presented in [8]. Similarly, a software-based moni-
toring approach discussed in [20] is used for visualizing the behavior of targets in real
time, using UML diagrams. Software monitoring with controllable overhead is dis-
cussed in [13]. A hybrid monitoring approach using a proprietary tool and In-Circuit
Emulator (ICE) for testing of embedded systems software against UML models is
discussed in [11]. A survey on monitoring approaches is presented in [32]. However,
the applicability of the monitoring approach for visualizing target behavior in real
time (esp. in deeply embedded targets) is missing in [8, 11, 13, 20, 32].

In this paper, a model-based debugging mechanism, which makes use of a tar-
get monitor in the embedded system and a target debugger at the host computer
(design level), is discussed. Two variants of the target monitor, namely (a) software
and (b) on-chip monitoring mechanisms, are presented. The target monitor sends
trace data pertinent to the behavior of the target to the host side by back annotation.
Some related work pertaining to target monitor and back annotation of trace data
from target to host are discussed here. A study conducted in [12] deals with back
annotations and continuous feedback about target behavior to the host side. This
study is conducted on Java-based microprocessors for worst-case execution time
(WCET) analysis. However, Java-based microprocessors are not necessarily the pre-
ferred choice in a memory-size constrained RTESS. In [21], an implementation of
an event-driven hardware/software collaborative monitor system, enabling system-
level monitoring on target at different abstraction levels is presented. In this work,
the monitor system is claimed to collaborate seamlessly with other components in
a model-driven testing tool chain. Though [12, 21] deal with back annotation and
monitor systems respectively, a collaborative approach toward model-based debug-
ging using a model-based target debugger is unavailable. Similarly, the suitability of
runtime verification and monitoring approaches for embedded systems is discussed
in [32]. Nevertheless, monitoring approaches for supporting model-based runtime
visualization of embedded system behavior is missing in [32].

Commercial MDD-based tools such as [2, 7, 14] are limited in terms of debug-
ging in real time at the design level for RTESS. Moreover, these tools and their
model-based debugging feature cannot be used for small RTESS, because of mem-
ory, performance and protocol overhead (TCP/IP over Ethernet, etc.) with the target
system. All these result in potentially inefficient communication between the target
and the host. The dynamic source code instrumentation introduced by these tools
could also result in affecting the real-time behavior of the RTESS.

Thus, it is evident that even though model-based development and debugging is
being used for RTESS, applicability of model-based debugging approaches for deeply
embedded systems is still in fledgling stages (both in academia and commercial tools).

112 P. Iyenghar et al.

5.3 Model-Based Debugging Framework

The proposed framework for model-based, design level debugging of deeply embed-
ded systems discussed in this paper, is shown in Fig.5.1. An outline of the proposed
framework is provided here to place in context the main focus of this paper. This
paper concentrates on a time and memory-aware runtime monitoring methodology
for debugging and visualizing the (deeply embedded) target behavior in real time
(on the host).

5.3.1 Overview

The proposed framework comprises of a target debugger on the host side with a
runtime monitoring solution on the target side as seen in Fig.5.1.

Real-Time Embedded System
(Real-Time Operating System-
RTOS)

Runtime
- - ——
monitoring

Model Driven
Development (MDD)
Requirements .
Model-based Design Level
Debugging
L4
T Design Model Model-based Targe@ D_ebugger GUI
level (MDD tool) » [UML Sequence & Timing diagrams]
(Qt)
F
|
! :
Code Generation '
! Debug
(MDD tool) ! Interface
' '
fil :
System Code it T :
(Platform Specific) |
Code % 1
level Deploy :
interf; .
intertace 1 Host side
.
v | Target side
1
I
I

Fig. 5.1 Model-based design level debugging for embedded systems

5 Model-Based Debugging of Embedded Software Systems 113
5.3.1.1 MDD Phase and System Code

Based on the requirements, the design model for the embedded software application
to be developed is specified (Fig.5.1) using a modeling language (e.g., UML using a
MDD tool Rhapsody [14]). The main functionality of the application can be specified,
for example, in UML class diagrams. The detailed functionality and reactive behavior
of each class can be represented as a state diagram, for example, using UML state
charts. The next step is the automatic code generation process, which is most often
supported in MDD tools (e.g., [14]). In the prototype, the system code is generated
in C. The system code thus obtained can be executed on the target after cross-
compilation. During the compilation of the system code, an XML file is generated at
the host side (Fig. 5.1) using an AWK script (which parses the linker map file, source,
and header files for a given project). The generated code is deployed using a deploy
interface (such as the Keil Ulink [27] adapter) on the target, which runs a real-time
operating system (RTOS). An RTOS framework suitable for resource constrained
embedded systems, namely OORTX-RXF [33], is used in the prototype. However,
this approach can also be applied to other UML-based modeling tools (e.g., [7])
and modeling alternatives, such as Matlab/Simulink [26] and LabView [24]. In the
prototype, the system code is generated in the programming language C. Note that
this approach is independent of the modeling language, the language in which the
system code is generated and the underlying RTOS in the embedded system.

5.3.1.2 Target Debugger Graphical User Interface (GUI)

The model-based, design level target debugger graphical user interface (GUI) on the
host side receives back-annotated trace data from the target monitor using a debug
communication interface. The trace data provides details about the target behavior in
real time. The target debugger reconstructs the behavior of the target in real time using
UML interaction diagrams, such as the sequence diagram and the timing diagram in
the GUI. The target debugger is implemented in the User Interface (UI) framework
Qt [30].

The target debugger GUI consists of three blocks as shown in Fig.5.2. Block (a)
shows the classes, objects, states, and attributes available in the embedded software
running on the target system. Block (b) displays the sequence of events and the
temporal behavior of the target using UML sequence diagrams with time stamps
(sequence diagram tab) and UML timing diagrams (timing diagram tab). Block (c)
displays the reconstructed messages on the host side (based on back-annotated data
from target and the XML file).

114 P. Iyenghar et al.

" Embedded UML Target Debugger

Fie Montor Help

10000008 e LD =

W Target | 1 Fikters IS Sequence Diagram |] Timing Disgram |
Edmsas ~
B Highwaker
b
~Control
[¥] Auto refresh

B cConscle | & Problems

TEPIIP log server start on port 1234, 5
Please open XML File
Please select Plugin Communication

()

Fig. 5.2 Model-based target debugger GUI

5.3.1.3 Target Monitor

The target monitor is primarily used for runtime monitoring, i.e., to send pertinent
trace data to the host about target behavior in real time. Two variants of the runtime
monitoring methodology, (a) software and (b) on-chip monitoring are discussed in
detail in Sect.5.4.

5.3.1.4 Visualizing Target Behavior in Real Time

On the host computer, the animation program in the target debugger GUI is started.
The XML file generated for the corresponding project is loaded in the target debugger.
A debug communication interface (for the communication between target and host)
is chosen. The target debugger is now ready for receiving the trace data from the
target.

5 Model-Based Debugging of Embedded Software Systems

¥, Embedded UML Target Debugger

File Monitor Heip

B Target | B Fikers |

= B [Casses

= B Controller
= [Instances
= @ itsController1
B attributes
= (3 state
ElinkingLED
=B o
= [Instances
= 0 itsLED1
B attributes
= State

B Highwater

100000 B HE 4\u=

[Sequence Diagram | 1 Timing Disgram |

Ticks: B00 ,Mi
off
Teks: 600 | V1099 3
On
O
off
Ticks: 600 b‘” b
on
. :
Control
Autto refresh
B console(86) | & Errors

- I ST B T e e
EVENT CONSUMED: src : itsController] (010000648) dest : RsLEDI (0x100006d4) evt:

evToggle Time elapsed : 600 Ticks currentState of itsLED] Is:OfF
STATE ID of object itsLED] = OFf

EVENT CONSUMED: src : itsController] { 010000648) dest : ksLED1 (01000064) evt:

evToggle Time elapsed : 600 Ticks currentState of itsLED] is:0n

v

-

Fig. 5.3 Visualizing target behavior in real time using UML sequence diagrams in the target

debugger GUI

Once the system code is deployed in the target, the target monitor (bundled with
the RTOS framework, e.g., RXF) starts sending state, event and temporal information
pertinent to the behavior of the target. This trace data is sent via the chosen debug
communication interface to the host computer.

The animation program in the target debugger receives and decodes this trace
information with the aid of the XML file. It reconstructs the target behavior on the
host computer, at the design level, using UML sequence diagrams with time stamps
and timing diagrams (Figs. 5.3 and 5.4). Thus, with the aid of this approach the target
behavior can be visualized and debugged in real time at the host computer.

116 P. Iyenghar et al.

” D'EK“"" ReLED1 Xon ot on om oe Wow ¥on Mod Win 3
& () State ARy (ATt o | |"-W |m\w- |M ww |W fovigge Temome Femoge Tetoge |
BekgleD |
=@ uo
= O instances
D esron ¥,
ok ek =
g > Rl spRRLERESELROE
= (0 State 0 ® 0 2 ARPNOEQ oo o; o
b o uw e B4 W = WM ; D R
B Hgpmate
& »
Toem cortrel
L R = B PR

B Comoledil) & Probless

EVENT CORLMED: e - EsConkrobert { G |S000608) dest + ERLED { Dl 0000 | vt welogge Tee sligeed 650 Tcks currarkStatn of RAED] n-fF e
EVENT COMSUMED: s : sControler | { G 0000648) dest : BeLED| { (x| S000A34 | vt erTopghe Tiess slased - 800 Ticks currentState of RRED -0

EVENT COMSUMED: e 1 RsControler { Dl 000058 | dest : RsLEDI { Ourl0000534) evt: erTosyghe T slapsed : 800 Ticks currentState of R5LED it -

Fig.5.4 Visualizing target behavior in real time using UML timing diagrams in the target debugger
GUI

5.4 Runtime Monitoring

To perceive a time- and memory size-aware runtime monitoring approach, this section
begins with a brief outline on the classification of runtime monitoring approaches
and a discussion on their pros and cons. The requirements for a time-and memory-
aware monitoring approach, which is capable of sufficiently observing the target
behavior in real time, are outlined. Based on the trace data generated by the runtime
monitoring approach, the target behavior is visualized/debugged using UML inter-
action diagrams on the host side. The requirements are discussed in the context of
two variants of the runtime monitoring mechanism proposed in this paper, namely,
(a) generic software-based and (b) on-chip monitoring.

5.4.1 Classification of Runtime Monitoring

Monitoring can be coarsely defined as the use of probes for producing data traces to
help the developer/tester gain insight into the origins of misbehavior in the system
under test (SUT). Based on the type of a probe used, runtime monitoring is classified
into software, hardware, hybrid, and on-chip monitoring. In software monitoring,
additional code is added to the target software to obtain the trace data. This is also
termed as software instrumentation. In hardware monitoring a dedicated monitoring
hardware is attached to the target system for obtaining the trace data. The use of
a combination of additional software and hardware to monitor a target is termed

5 Model-Based Debugging of Embedded Software Systems 117

as hybrid monitoring. On-chip monitoring refers to the use of additional built-in,
on-chip debugging hardware incorporated in the target to obtain the trace data.

5.4.1.1 Pros and Cons

A drawback of software monitoring is the overhead incurred by executing the addi-
tional code, at the target, to obtain the trace data. This incurs memory and time
overhead in the target. Interference with the target system’s normal operation may
arise if the execution of the target software is delayed because of the time spent in
the monitoring code. For example, model-based tools, such as [15, 16], make use
of software monitoring by instrumentation of the source code to debug, visualize
target behavior (using UML diagrams) or execute test cases. Since the debug code
is downloaded on the target, the instrumentation overhead is significant. To gain a
deeper understanding, consider a simple experiment comprising of application sce-
narios with 2, 4, 6, and 8 classes in the design model. To visualize the behavior of the
target, the instrumented code generated for these examples in [14] shows an increase
of 150-250%" of source code in comparison with the respective application code
size. Clearly, such approaches are not suitable for resource constrained embedded
systems. Hence, when using a software monitoring mechanism, it is imperative to
minimize the monitoring overhead (e.g., [8]).

The significant advantage of hardware monitoring arises from the nonintrusion
benefits obtained by using additional hardware [31]. However, scalability of hardware
monitors is affected with respect to monitoring more complex systems [32]. On
the other hand, hybrid monitoring makes use of advantages of each approach (i.e.,
software and hardware monitoring) while at the same time attempts to mitigate their
disadvantages.

The key advantage for on-chip monitoring is the presence of an on-chip trace unit,
which provides watch points, data tracing, and system profiling for the processor [4].
This can be treated as the major enabling technology, in the future, for target mon-
itoring and testing. A prerequisite is that the underlying processor in the embedded
system should support this feature. Whereas, the trace data obtained from the on-chip
trace units is in a standardized format (e.g., Manchester encoding) a disadvantage,
at this juncture, is the lack of open source/standard tools for communicating the
real-time trace data. For example, the real-time trace data from the microcontroller
(e.g., MCB1700 evaluation board with Cortex-M3) can be sent to the host only by
using proprietary tools (e.g., ULINKpro [6] for Cortex-M3 [4] architecture).

!Obtained by measurement.

118 P. Iyenghar et al.

5.4.2 Time-and Memory-Aware Runtime Monitoring
Approaches

In the case of embedded systems, the main factor influencing the usage of a monitor-
ing mechanism is the monitoring overhead [32]. Toward this direction, this section
focuses on proposing a time-and memory-aware monitoring approach for debugging
and visualizing the target behavior in real time. In this context, the requirements
of the two variants of runtime monitoring, relating to the main scope of this paper,
are discussed. The two variants are the (a) generic software-based and (b) on-chip
(software) monitoring methodology for debugging/visualizing the target behavior on
the host side.

5.4.2.1 Software Monitoring

For a software-based monitoring approach to be applicable for deeply embedded
systems, with minimal or ideally no overhead, it is imperative that it satisfies the
following constraints:

e Generic monitoring routine i.e., independent of the application (size, complexity)

e Minimally intrusive runtime monitoring routine (e.g., a few bytes of memory)

e Modular software monitoring approach, independent of the debug communication
interface used

e Minimizing communication overhead between the monitoring routine and the
application (e.g., target debugger), which is decoding and interpreting the trace
data at the host

With a minimal, generic monitoring routine and bounded, measurable/predeter-
mined overhead (memory, time), the software-based target monitor can be deliv-
ered along with the final production code. Now, the additional monitoring overhead
(memory, time), which is known beforehand, can be accommodated during the sys-
tem design phase. This can be achieved by allocating additional resources (memory)
or adjusting the scheduling properties (time).

5.4.2.2 On-Chip (Software) Monitoring

Another alternative of runtime monitoring is the on-chip monitoring methodology.
However, open source standards for communicating the real-time trace data from
the microcontroller to the host, i.e., accessing real-time trace data without the use
of proprietary debug adaptors (e.g., ULINKpro [6] for Cortex-M3 [4]) is currently
unavailable. On the other hand, on-chip monitoring can be treated as a major enabling
technology for the future in the context of minimally intrusive debugging/testing
of embedded systems. Hence, the on-chip monitoring approach is chosen as an

5 Model-Based Debugging of Embedded Software Systems 119

alternative for visualizing the target behavior in real time, using the model-based
debugging approach proposed in this paper.

However, at this juncture, in order to insert the test stimuli/input data to the
embedded system and receive the test results using the real-time trace functional-
ity, without proprietary tools, additional hardware, and/or software components are
necessitated. In this paper, such an approach (of adding additional software com-
ponents) is followed in the experimental evaluation for debugging using on-chip
monitoring (Sect.5.5). Hence, this approach is denominated as on-chip (software)
monitoring in the following section. On the other hand, to apply a memory and
time-aware runtime monitoring methodology, such an additional software compo-
nent, if included, should be a generic monitoring routine with minimal, bounded,
and measurable overhead parameters.

An example of on-chip monitoring is available in the recently introduced Cortex-
M3 processor/architecture (e.g., used in an evaluation board [27]) that supports real-
time tracing using a built-in debug unit called Data Watchpoint and Trace (DWT)
and Debug Access Port (DAP). However, to inject the test stimuli from the host com-
puter (e.g., using the test framework approach) additional hardware and/or software
components need to be developed.

5.5 Experimental Evaluation

An experimental evaluation based on the two monitoring approaches described above
is presented in this section.

5.5.1 Software Monitoring

A prototype implementation of the proposed software-based runtime monitoring
approach is described in this section. The aforementioned generic, software-based
target monitor can be implemented in programming languages such as C and bundled
with the RTOS framework in the embedded system. The target monitor routine is
then either invoked by the host or the RTOS (and the generated code from the model)
to send and receive debug data respectively. For example, the target monitor routine
is invoked by the host (e.g., by the target debugger in the proposed model-based
debugging approach) to inject the debug stimuli, in the form of events to the target,
i.e., host input target monitor.
—_—

Similarly, the target monitor is invoked whenever an event is consumed at the
target, to send an event-consumed notification to the host, i.e., target monitor
result host. This trace data is then reconstructed at the host by the target debugger,
as UML sequence/timing diagrams to visualize the target behavior in real time.

120 P. Iyenghar et al.

Application’s sources

AWK
- Script | Intermediate Target Debugger
-c & .hfiles > — Format > GUI
(XML file) (e.g: Using QT, C++)
A
Application.map Debug communication
| interface: Used to
Host side send trace data
Application’s linker map file / (Design level)
Target side
A
MonitorlOc.)ch
Q MonitorlO.
RTOS o< Buffer
Application software | framework ‘E§
ox
(e.g. RXF) s§
=
Target Monitor
(C language)
Embedded System

Fig. 5.5 Software-based runtime monitoring at the target side and XML file creation at the host
side

Thus, the generic target monitor routine in the prototype (Fig.5.5.) comprises of
two main functionalities, namely, (a) communicating with the RTOS framework and
(b) communicating with the host.

The target monitor implementation is modularized based on these two functional-
ities in Monitor.h/.c and MonitorlO.h/.c routines respectively. The RTOS framework
used in the prototype (OORTX-RXF [33]) comprises of a scheduler that handles the
events. The target monitor functionality is used at this point by invoking (a send
function in) Monitor.c in the RTOS framework for consumed events. The module
Monitor.c in turn uses the functions in MonitorlO.c to send and receive data between
the host computer and the embedded system via a debug communication interface
(Fig.5.5). MonitorlO.h/.c is configurable and implemented based on the APIs and
functionalities available in a given debug communication interface (e.g., EIA-232[1]
or JTAG-based). The monitor implementation uses a configurable buffer to handle
the trace data.

For example, when an event is processed and dispatched to its respective receiver
in the embedded system, Monitor_sendEvent(unsigned int* pEventData) function
in Monitor.c is used to notify the host about the event consumption at the embedded
system. This in turn invokes the respective function in MonitorlO.c to send the
trace data to the host computer, which is decoded by the target debugger in the host

5 Model-Based Debugging of Embedded Software Systems 121

computer. The target monitor prototype using a RS-232 debug interface requires a
total memory size of approximately 1 Kbyte (1061 bytes ROM plus 135 bytes RAM).
A comparison of the target monitor implementation for various debug interfaces and
their experimental evaluation is described in Sect.5.5.

5.5.1.1 Target Debugger

A prototype of the target debugger comprises of a decoding and animation program.
The target debugger is implemented in the programming language C++ using the
user interface framework Qt [30]. The target debugger decodes and interprets the
trace data which is sent via a debug communication interface as seen in Fig.5.5.

5.5.1.2 XML File Creation

During the compilation of the (application) system code, an AWK script parses the
linker map file, source files, header files (of the application), and creates a symbol
table data. This is stored in an intermediary format such as an XML file as seen in
Fig.5.5. The decoding program at the host makes use of this XML file (Fig.5.5) to
decode and interpret the incoming trace data which is sent via a debug communication
interface as seen in Fig. 5.5. Significant overhead involved in sending trace data back
and forth between the host and the target system is avoided by the use of the XML
file at the host and predefined frame format for notifications [18].

5.5.1.3 Predefined Frame Format for Notifications

The predefined frame format for notifications, i.e., debug-input data (e.g., inject
event) from the host computer and the debug results (e.g., event consumed notifica-
tion) to the host computer are shown in Fig.5.6.

The predefined frame format is based on the following design considerations,
namely, (a) compactness, (b) minimum number of operations on the target and
(c) extensibility. The frame format in the prototype implementation is shown in
Fig.5.6. The “length” field is mandatory, one byte in length and indicates the length
of the parameters. The mandatory “command_id” field is also one byte in length.
It denotes the command corresponding to the frame sent. The “parameters” field is
optional and can be between 0 and 255 bytes in length. It denotes the data about
the current command. The minimum length of the monitor frame is two bytes (1
byte each for length and command_id). The frame format for injecting events (from
host to target) and the trace data format for sending the event-consumed notification
(from target to host) is shown in Fig.5.6. To inject an event (i.e., debug-input data)
the required parameters are the destination of the event, the event to be injected,
source of the event, and event parameters (if any). In this frame format, the event,
source, and destination values occupy 4 bytes each.

122 P. Iyenghar et al.

| Length ‘ Command_Id ‘ Parameters |
I‘ 1 byte ’I‘ 1 byte ’|‘ 0to 255 ’|
Notification type bytes
(Target to host)
<Event> <Source> [<Destination> <C|:|rrent <Current (Event)
New event d Time> State> <Par S
on target I 4bytes >« 4 bytes >}< 4 bytes >{< 4 bytes >}< l1byte >« Variable*>)
New object created <Create <Object
function id> created>
< 4bytes > 4bytes >

) <Destroyed
Object destroyed object>
< 4 bytes >
Time out event ‘ <Event> |<Destinations| <€Urrent <Current |
consumption on target Time> State>

|< 4 bytes >|< 4 bytes >|(4 bytes >|< 1 byte >|

Notification type

<Event> <Source> |[<Destination>, (Event)
(Host to target) ven ur ination <Parameters>i
Inject event |< 4 bytes >|< 4 bytes)l(4 bytes >|< Variable* >|

* Varies based on the type of the parameter (e.g. int, char)

Fig. 5.6 Trace data frame format

For example, to inject an event, evIoggle(int LedNr) from class Controller to class
LED, to turn on an LED indicated by LedNr, i.e., Controller evToggle(LedNr)

LED, the parameters for the debug-input data in predefined format is <LED evToggle
Controller LedNr>. However, in the proposed approach, since the object addresses
of the above parameters are available at the host computer in the XML file, the
debug-input data is <0X18097098 0X00004374 0X18074897 0X00000001>. This
is received by the MonitorlO.c/h routine in the target. The Monitor.c/h routine, in
turn, decodes, and inserts the corresponding debug-input data to the target. Simi-
larly, the parameters for the debug result for this example in the predefined frame
format (Fig.5.6) are <evToggle Controller LED CurrentTime ON LedNr>. In other
words, the 21 bytes for the parameters, for the event-consumed notification indicat-
ing the debug result, are <0X00004374 0X18074897 0X18097098 0X00009870 02
0X00000001>. Note that all events described at the design level, i.e., available in
the system code, can be monitored.

Hence by this generic, software-based runtime monitoring methodology, only the
debug-input data is injected to the target and the corresponding debug results are
obtained as trace data from the target. This implies that the only instrumentation
overhead required for debugging in the target is the software-based runtime moni-
toring overhead. However, note that by optimizing the software monitoring routine

5 Model-Based Debugging of Embedded Software Systems 123

and/or further minimizing the memory requirement, the generic software-based run-
time monitor can also be part of the final production code.

5.5.2 On-Chip (Software) Monitoring

An example of on-chip monitoring is available in the recently introduced Cortex-M3
processor/architecture (e.g., used in an evaluation board [27]) that supports real-
time tracing using built-in debug units such as DWT and DAP. The real-time trace
functionality in this microcontroller can be used readily with proprietary tools such
as pVision [6]. Whereas such proprietary tools cannot be used for inserting the debug
stimuli or monitoring the target behavior.

To realize this goal and in order to provide a generic approach toward on-chip
monitoring in this paper, a minimal (generic) software monitoring routine is intro-
duced in the target. This can be termed as on-chip monitoring with additional software
instrumentation. On the other hand, a trace adaptor (hardware circuit) is necessitated
to forward the trace data from the on-chip unit to the host (without the use of any
proprietary tools). The aforementioned trace adaptor unit and the generic software
instrumentation used in the prototype evaluation are discussed below.

5.5.2.1 Trace Adaptor

Figure 5.7 provides an overall view of the on-chip monitoring arrangement in the
prototype. It comprises of a DWT unit that provides support for monitoring data as it
is being changed at the target. An additional trace adaptor circuit, with a FIFO buffer,
is developed in the prototype. The trace adaptor, as the name implies, is necessary
to adapt the trace data from the microcontroller (i.e., serial data stream to UDP data
stream) and forward the trace data to the host. This arrangement provides sufficient
time to process the data stream (byte-wise) at the FIFO buffer and eventually decode
the trace data by the end application at the host computer (i.e., the target debugger
in this paper). The DAP debug unit is used to provide support for inserting the input
data (debug stimuli) to the embedded system.

There exist two paths for data transfer (Fig.5.7) between the target and the host
(indicated by two different line formattings). Each path is responsible for one func-
tionality, namely injecting the debug input/stimuli to the target and sending the trace
data to the host respectively. For example, the debug-input data in the form of events
is injected to the embedded system with the aid of the DAP unit, using the JTAG
interface. The debug-input data (e.g., regarding an event) comprises of an event, its
source, destination and event parameters. The debug data result (i.e., the trace data)
from the DWT unit is sent via a Serial Wire Output (SWO) interface, which is part
of the on-chip debug unit. This is processed by the trace adaptor circuit for further
usage at the host. The trace data indicating the debug results (i.e., an event-consumed

124 P. Iyenghar et al.

Application’s sources

\

AWK
Script | Intermediate
.c &.h files > , Format ,| TargetDebugger | = -
(XML file) Gul (C:"' at) i
i~ i
Application.map H Ethernet/serial

(sending trace data) |

Host computer 1
Application’s linker map ﬁIe/ (Design level) :

Target side ;
1
Application . FIFO buffer| |
s&:f};tc\;vMa)re RAM “[PLOWT [SWO Je- Trace adaptor circuit |
i DAP JTAG «—|- -
uss !
I o JTAG hardware O
RTOS On-chip

monitor

Embedded System/Cortex-M3

Trace adaptor
-To read trace data sent by DWT

Software instrumentation
- To write test input data in variables (used by DAP)
- To write trace data (test result) in variables (used by DWT) — .« = Test input from host

------ + Test result (trace data) from target

DWT: Data Watchpoint and Trace, DAP: Debug Access Port,
SWO: Serial interface [4],
JTAG: Industry standard JTAG interface [4]

Fig. 5.7 On-chip (software) monitoring arrangement

notification) comprises of an event (consumed on target), its source, destination and
event parameters.

5.5.2.2 Software Instrumentation

Software monitoring is necessitated at the target for writing the trace data in data
structures, such as predefined (debug) variables of the given application. These vari-
ables are monitored by the comparators of the DWT unit. The trace data is sent to the
host, when the (debug) variables, monitored by the comparator units, are changed
in the target. Thus, the major advantage in the on-chip monitoring approach is that
no additional functionality is required to transfer the trace data from the embedded
system to the host. Hence, the software instrumentation (in the case of the on-chip
monitoring approach) is limited to a few write operation cycles at the target. Then,
the trace data, which is now stored in variables/comparators at the DWT unit, is

5 Model-Based Debugging of Embedded Software Systems 125

available at the serial interface (SWO) (Fig.5.7). Therefore, no additional software
routines are required for sending the trace data to the host.

Similarly, to inject the debug-input data (comprising an event, its source, destina-
tion, and event parameters) sent from the host, software instrumentation is required.
The debug-input data is written to the data structures such as predefined (debug)
variables monitored by the DWT comparator units. An inject event flag is set after
sending the debug-input data to the target. The RTOS used in the prototype detects
that an event has to be injected by polling (during idle cycles) the status of the flag
(injectEvent) at the target, as seen below.

if (injectEvent==1){/xcheck flag, generate eventx/
EVT gen(source, destination, eventld);
injectEvent=0;/xreset flag+/ }

w0 =

Note that EVT_gen(source, destination, eventld) is a macro to generate an event
in the underlying RTOS framework. Thus, additional software routines to convey
the debug-input data from the host or debug results from the target are eliminated
by the on-chip debug units such as DWT and DAP in the on-chip (software) runtime
monitoring methodology.

5.6 Performance Metrics

Performance metrics such as memory and time overhead of the runtime monitoring
mechanisms are discussed here.

5.6.1 Software Monitoring

The monitoring overhead for the software monitoring approach, such as target mon-
itor size, event (bursts) handling, target monitor buffer overflow, time spent in the
target monitor routine, and a comparison with the instrumentation overhead in the
existing approaches, is presented here.

5.6.1.1 Debug Communication Interface and Target Monitor Size

The software monitoring mechanism introduced in this paper, for debugging, is
intended to be independent of the application, its size and complexity. Moreover a
modularized implementation of the monitoring routine is proposed in this paper such
that the communication of the monitoring routine with the RTOS ((i.e., in Monitor
routine) and the debug interface (MonitorlO routine) are available in two separate
routines.

126

P. Iyenghar et al.

TableS5.1 Memory requirement on target for various debug interfaces using software-based runtime

monitoring
Interface Memory requirement
RAM (byte) ROM (byte)
Generic-EIA-232 112 1290
JTAG-Keil (uVision) 84 1194
JTAG-Lauterbach (Trace32) 84 1396

The implementation of the MonitorlO routine is dependent on the debug interface
under consideration (e.g., APIs available). In the prototype, the MonitorlO routine is
implemented for the generic EIA-232 [1] serial interface and two industry standard
JTAG-based interfaces, such as Keil-u Vision [6] and Lauterbach-Trace32 [25]. The
memory requirement for the monitor routine in the prototype for these three debug
interfaces is shown in Table 5.1.

From Table5.1, it is clear that the total memory (RAM, ROM) requirement is
approximately 1 KiByte for all the three debug interfaces. Thus, this software-based
monitoring routine, which is independent of the application, can also be accommo-
dated in the final production code.

5.6.1.2 Time Spent in the Monitoring Routine

The time spent in the monitoring routine for sending an event-consumed notification
obtained by measurement (using alogic analyzer), is shown in Table 5.2. It is clear that
the time spent in the monitor routine can be predetermined and is independent of the
application and its complexity. The differences in the time spent in the monitor routine
for various debug interfaces is based on the implementation and the functionality
supported by the APIs for the various debug interfaces [19]. Thus, by the proposed
software monitoring technique, the memory (approx. 1 KiByte) and time overhead
(in the order of us), known beforehand, can be accommodated in the earlier phases
of the development cycle.

To summarize, target behavior can be visualized online (at the host side), in
resource constrained embedded systems without downloading any debug/test harness
on the embedded system, using the proposed software-based runtime monitoring
mechanism. This is a significant advantage over the existing approaches. The only

Table 5.2 Time spent in . Interface Time in monitor (jLs)
software-based target monitor
for sending an event EIA-232 74.52
consumed notification Vision 265
Trace32 16.5

5 Model-Based Debugging of Embedded Software Systems 127

Table 5.3 Number of events

) . Debug interface Events per second
handled per interface
EIA-232 556
uVision 3770
Trace 32 3268

space requirement in the target is the memory requirement of the software-based
runtime monitoring routine.

5.6.1.3 Event (Bursts) Handling

Events consumed at a higher frequency in a short period of time by the target can
be termed as event bursts. Since the target monitor implementation depends on the
debug interface used, the number of events (and event bursts) the target monitor
can handle, also depends significantly on the debug interface under consideration.
However, in order to handle the event bursts, the target monitor is implemented with a
send/receive buffer interface (Fig.5.5). The applicability of the target monitor buffer
and its dimensioning is again dependent on the debug interface used.

The values shown in Table 5.3 provide a comparison of the number of events
that each debug interface can handle theoretically before the use of target monitor
send/receive buffers (in our prototype implementation). For example, for the EIA-232
interface, the theoretical maximum number of events that it can handle per second is
556 (115200 [baud rate]/9 [8bit+stop bit]/23 [number of bytes per event-consumed
notification]). However, when there is a burst mode in the target system (i.e., number
of events per second higher than the theoretical estimation in Table 5.3), this can be
handled with the use of a target monitor buffer. Handling of burst-mode data can also
be taken over by the APIs provided by the debug interface used. Thus, when there
is a consistent burst of events, appropriate dimensioning of the target monitor buffer
size and/or selection of a debug interface by the end user is necessary.

5.6.1.4 Target Monitor Buffer Overflow and Real-Time Characteristics
of the Target

In the prototype, the target monitor is handled as a lower priority task in comparison
with the system tasks. This implies that the target monitor is invoked during the
“idle” state of the main loop of the RTOS framework. Let us consider a burst-mode
scenario, in which there is a possibility that the target monitor buffer overflows. The
target monitor buffer is implemented as a ring buffer. This implies that whenever
there is a buffer overflow, the data in the ring buffer could be overwritten. This can
lead to a loss of data (notifications about target behavior) stored in the monitor buffer.
This is also because of the fact that the target monitor is assigned as a lower priority
task and can access the system resources once they are freed by the higher priority

128 P. Iyenghar et al.

(system) tasks. In this case, whenever the target monitor buffer is full, the target
debugger is notified about the possible loss of data.

For this scenario there are two possible configuration options, whereby the end
user has to compromise between target monitor buffer size and the influence on
real-time characteristics of the embedded target. For instance, since the buffer size
is configurable, it is up to the end user to allocate a smaller/larger buffer size. As the
target monitor implementation is dependent on the debug interface used, the buffer
size and its usage is also dependent on the debug interface under consideration. On
the other hand, the user could also assign the target monitor as a higher priority task.
However, when the end user gives a higher priority to the target monitor (and/or
increases the buffer size), he has to compromise between the influence on the real-
time characteristics and the loss of target behavior data/notifications.

5.6.1.5 Traditional Versus Proposed Approach—-Memory Overhead

The proposed approach has been evaluated for four example scenarios. Similarly, the
existing model-based debugging feature (live animation) in the MDD tool [14] was
applied to the same evaluation scenarios. Note that the four application scenarios
consist of increasing system code (size) and complexity.

For instance, application scenarios 1, 2, and 3 consist of 2, 4, and 8 classes respec-
tively (based on the small “blinky” example [20]). Scenario 4 is based on a more
sophisticated case study involving a MIDI system (15 classes). Detailed description
of the MIDI system evaluation for the proposed approach is available in [18, 20].
The complexity of the system also varies based on the number of events handled and
dependencies on other modules.

The memory overhead incurred (in the target) using both the approaches for the
four scenarios (for model-based debugging) are shown in Fig.5.8. From Fig.5.8, it
is evident that the memory overhead increases with an increase in the application
size using the model-based (live animation feature) approach in an MDD tool such
as Rhapsody [14]. On the other hand, the size (and the percentage increase) of the
target monitor memory footprint is negligible in comparison with the increasing
application size as seen in Fig. 5.8 for our proposed approach.

5.6.2 On-Chip (Software) Monitoring

In this case, the only monitoring overhead (time & memory) is that of the addi-
tional software instrumentation used to write the test input stimuli/trace data in the
debug variables (of the application) monitored by the comparators in the DWT.
The additional memory required for the software instrumentation in this approach
is approximately 100 bytes (Table5.4). The time taken to write the trace data
for an event-consumed notification (with 23 bytes of trace data denoting the test
result), is 360 ns (obtained by measurement using a logic analyzer). The on-chip

5 Model-Based Debugging of Embedded Software Systems 129

Legend
Memory overhead in embedded system for Application Number
existing vs proposed approach Scenario of classes
- 1 4
_GEJ g 400 —e— MDD tool[Rhapsody] 2 6
g % 300 —=— Proposed approach 3 .
©
E 3 200 4 20
g E 100
x £ 0 = - = -

1 2 3 4
Application Scenario (increasing size and complexity)

Fig. 5.8 Memory overhead (in target) for model-based debugging of various application scenarios

Table 5.4 Memory RAM (byte) ROM (byte)
requirement on target for 4 ”

software instrumentation

monitoring mechanism is also independent of the application and its complexity.
Thus, the overhead parameters for executing the test cases using this monitoring
methodology (memory approx. 100 bytes and time = 360 ns) is also known and
measurable beforehand.

5.7 Discussion and Evaluation

Debugging RTESS is a challenging task in comparison with debugging desktop sys-
tems. While there are some traditional and model-based tools for debugging RTESS,
these have limitations. Model-based debugging techniques in the existing tools usu-
ally involve dynamic source code instrumentation. This instrumented code increases
with the increase in the application size and necessitates sophisticated debug inter-
faces. The protocol and performance overhead incurred during debugging could also
result in modifying the temporal behavior of the embedded system. All these factors
make the existing model-based debugging techniques unsuitable for the memory-size
constrained RTESS.

In order to overcome the aforementioned limitations, a model-based debugging
methodology for small RTESS was outlined in this paper. Using the proposed
methodology, RTESS behavior can be visualized in real time using UML sequence
and timing diagrams. Some salient features in the proposed approach, which over-
come the limitations of the existing approaches, are discussed below.

130 P. Iyenghar et al.

5.7.1 Salient Features in the Proposed Approach

e Dynamic source code instrumentation is eliminated with the introduction of an
optimized monitoring software routine in the target monitor (implemented in the
programming language ‘C’). The target monitor (library) is bundled with the RTOS
used (RXF [33]). The target monitor is now independent of the application, its size,
complexity, and source code. The target monitor occupies approximately 1 KiByte
of memory, which is accommodative for small embedded platforms. Moreover,
because of its size, the target monitor can be bundled along the final production
code as well.

e In addition to the optimized target monitor size, the information exchange between
the target debugger and the target monitor is handled via a custom-defined protocol.
The protocol design is extensible, compact, and requires a minimum number of
operations. For example, the minimum frame-size for the protocol is 2 bytes and
an event consumed notification requires 23 bytes of data. The frame format of this
protocol is described in detail in Sect.5.5.

e A major factor influencing the real-time behavior of the embedded system is the
communication overhead between the target system and the host computer (i.e.,
huge debug data being sent back and forth between the target and the host com-
puter). In order to minimize this, an AWK script parses the source files, header
files, and linker map file (for a given project) and creates a symbol table at the host
computer in our approach (Figs.5.5 and 5.6). This symbol table enables identify-
ing each element in the system code, such as class, instance, event, etc., by an ID.
This symbol table data is stored in an intermediary format, such as an XML file, at
the host computer. On receiving the trace data from the target, the target debugger
decodes the trace data with the aid of this XML file. The trace data from the target
is translated and the animation program in the target debugger GUI re-constructs
the target behavior in the form of UML sequence and timing diagrams in real time.

e Based on the runtime monitoring mechanisms discussed above, it can be stated
that the proposed techniques are time-and-memory aware (supported by the per-
formance metrics discussed in Sect.5.6). This is primarily because, the overhead
(time & memory) introduced by the two variants of the monitoring technique is
measurable beforehand, minimal, bounded, and independent of the application.
On the other hand, tools such as [14] introduce unbounded and variable overhead
for debugging and/or visualizing the target behavior (using UML diagrams) in real
time for different application scenarios. These features eliminate the risks due to
the change in program behavior before and/or after debugging the system code.
Therefore, the proposed time-& memory-aware runtime monitoring mechanisms
provide a significant improvement over the existing techniques.

e The proposed mechanisms also address the aspect of scalability and applicability
for resource constrained targets and industrially relevant examples. For example,
the solution proposed in this paper already concentrates on resource constrained
embedded systems, thereby addressing the question of scalability. For industrial
applications involving several complex interactions and entities, the overhead

5 Model-Based Debugging of Embedded Software Systems 131

parameters can be accommodated in the earlier phases of the development cycle.
A robust implementation of the software instrumentation may further reduce the
overhead parameters.

5.8 Conclusion

While monitoring/testing an embedded system and acquiring the trace data, one often
faces the so-called “Heisenberg’s effect”: Inspecting a system tends to influence the
system’s behavior [10]. Whereas a time & memory-aware runtime monitoring mech-
anism is introduced in this paper, a runtime monitoring mechanism which introduces
(ideally) no overhead in the target is an ambitious goal. Therefore, while employ-
ing a generic software-based runtime monitoring approach, the goal should be to
minimize the monitoring overhead as far as possible. An example of this approach
is discussed with a prototype in this paper. For embedded systems with microcon-
trollers supporting the real-time trace functionality [10] (i.e., on-chip debug units),
the overhead parameters can be further minimized using an on-chip mechanism such
as the one introduced in this paper. When the nature of the embedded software
described requires the system to meet real time requirements in debugging/testing
mode, the overhead parameters from monitoring can be included in the earlier stages
of the development cycle. By doing so, the influence on the real-time characteristics
of the embedded system because of the overhead introduced by monitoring can be
eliminated.

Application of the proposed time-& memory-aware runtime monitoring, to indus-
trial case studies, adding UML state chart diagrams in the target debugger GUI for
visualizing the target behavior and evaluation on other target platforms are some
items for future work.

Acknowledgements This work was supported by a grant from BMWi-ZIM, DAAD, and industrial
partner Willert Software Tools GmbH. We would like to thank the project teammates at Willert
Software Tools GmbH and UAS-Osnabrueck for their cooperation.

References

1. Axelson J (2007) Serial port complete: COM Ports, USB Virtual COM Ports, and Ports for
Embedded Systems, 2nd edn. Lakeview Research

2. BridgePoint UML Tool (2016) http://www.mentor.com/

3. Bunse C, Gross H-G, Peper C (2007) Applying a model-based approach for embedded sys-
tem development. In: 33rd EUROMICRO conference on software engineering and advanced
applications

4. Cortex-M3 Processor (2016) http:/www.arm.com/

5. Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans Softw Eng 30(12):859-872

6. Embedded development tools (2016) http://www.keil.com/

http://www.mentor.com/
http://www.arm.com/
http://www.keil.com/

132

10.
11.

12.

13.

14.
15.
16.
17.

20.

21.

22.
23.
24.
25.
26.
217.
28.
29.
31.
32.

33.

P. Iyenghar et al.

. Enterprise Architect tool (2016) http://www.sparxsystems.com/
. Fischmeister S, Lam P (2010) Time-aware instrumentation of embedded software. IEEE Trans

Ind Inform 6(4):652—-663

. France RB, Ghosh S, Dinh-Trong T, Solberg A (2006) Model-driven development using UML

2.0: promises and pitfalls. Computer 39(2):59-66

Ganssle J (2008) The art of designing embedded systems, 2nd edn. Newnes

Graf P, Muller-Glaser KD, Reichmann C (2007) Nonintrusive black- and white-box testing
of embedded systems software against UML Models. In: Proceedings of the 18th IEEE/IFIP
international workshop on rapid system prototyping, pp 130-138, Washington, DC, USA, 2007.
IEEE Computer Society

Harmon T, Klefstad R (2007) Interactive back-annotation of worst-case execution time analysis
for Java microprocessors. In: 13th IEEE international conference on embedded and real-time
computing systems and applications, RTCSA 2007, pp 209-216

Huang X, Seyster J, Callanan S, Dixit K, Grosu Radu, Smolka Scott A, Stoller Scott D, Zadok
Erez (2012) Software monitoring with controllable overhead. Int J Softw Tools Technol Transf
14(3):327-347

IBM Rational Rhapsody Developer, Ver 8.2 (2016) http://www.ibm.com

IBM Rational Rhapsody Test Conductor Add-on (2016) http://www.btces.de/

IBM Rational Test Real Time (2016) http://www-01.ibm.com/software/awdtools/test/realtime/
Iyenghar P, Wuebbelmann J, Westerkamp C, Pulvermueller E (2013) Model-based test case
generation by reusing models from runtime monitoring of deeply embedded systems. IEEE
Embedded Syst Lett 5(3):38—41

. Iyenghar P (2012) A test framework for executing model-based testing in embedded systems.

PhD thesis, University of Osnabrueck

. Iyenghar P, Pulvermueller E, Westerkamp C, Uelschen M, Wuebbelmann J (2011) Model-

based debugging of embedded software systems. Gesellschaft Informatik (GI), softwaretechnik
(SWT), pp 31-33

Iyenghar P, Westerkamp C, Wuebbelmann J, Pulvermueller E (2010) A model based approach
for debugging embedded systems in real-time. In: Proceedings of the tenth ACM international
conference on Embedded software, EMSOFT *10, NY, USA

Jiao Y,Zhu K, Yu Q, Wu B (2006) Towards model-driven methodology: a novel testing approach
for collaborative embedded system design. In: 10th International conference on computer
supported cooperative work in design, 2006. CSCWD ’06, pp 1-5

Karsai G, Sztipanovits J, Ledeczi A, Bapty T (2003) Model-integrated development of embed-
ded software. Proc IEEE 91(1):145-164

Kashif H, Mostafa M, Shokry H, Hammad S (2009) Model-based embedded software devel-
opment flow. In: 4th International design and test workshop (IDT), pp 1-4

LabVIEW System Design Software (2016) http://www.ni.com/labview/
Lauterbach-Microprocessor development tools (2016) http://www.lauterbach.com/

Matlab and Simulink (2016) http://www.mathworks.com/

MCB1700 evaluation board (2016) http://www.keil.com/mcb1700/

Object Management Group (2016) http://www.omg.org

Plattner B (1984) Real-time execution monitoring. IEEE Trans Softw Eng SE-10(6):756-764

. Qt. User interface framework (2016) http://qt.nokia.com/

Tsai JJP, Fang K-Y, Chen H-Y, Bi Y-D (1990) A noninterference monitoring and replay mech-
anism for real-time software testing and debugging. IEEE Trans Softw Eng 16(8):897-916
Watterson C, Heffernan D (2007) Runtime verification and monitoring of embedded systems.
IET Softw 1(5):172-179

Willert Software Tools GmbH (2010) http://www.willert.de/

http://www.sparxsystems.com/
http://www.ibm.com
http://www.btces.de/
http://www-01.ibm.com/software/awdtools/test/realtime/
http://www.ni.com/labview/
http://www.lauterbach.com/
http://www.mathworks.com/
http://www.keil.com/mcb1700/
http://www.omg.org
http://qt.nokia.com/
http://www.willert.de/

Chapter 6
A Mechanism for Monitoring Driver-Device
Communication

Rafael Melo Macieira and Edna Barros

6.1 Introduction

The use of electronic embedded systems for general or multipurpose applications
has increased substantially. IoT and cyber-physical systems are some examples in
which embedded systems require more flexibility for processing a different kind of
applications and communication and control protocols.

The need for this flexibility with high processing power makes the modern embed-
ded systems, composed even more by multiple general purpose processors and several
software layers, extremely complex. Additionally, these systems also require critical
and extremely tight constraints as task deadlines and area and power consumption
limitations, for example.

The whole design can become very complicated in the case of cyber-physical sys-
tems (CPS). Cyber-physical systems integrate computation with physical processes.
They include embedded computers, networks monitor, and physical processes con-
trollers usually with feedback loops where physical processes interfere and guide
computations and vice versa [12]. Thus, it can be tough and time-consuming to
construct a reliable system without appropriate techniques and tools.

For CPSs, either the hardware and the software design are extremely complex.
There is a trend requiring them to be highly dependable, reconfigurable and, in some
cases, certifiable [3]. Thus, it is almost impossible to construct a reliable system
without appropriate techniques and tools. If even the design of platforms with single
conventional general purpose processors needs time and means to produce a reliable
system, for emergent technologies like NoC-based MPSoCs and CPSs this need is
even greater.

Besides, it is common to see CPSs applied to critical environments, such as mass
transportation, power plants, or medical equipment, which involve several lives and

R.M. Macieira (X)) - E. Barros
ClIn - Informatics Center, UFPE - Federal University of Pernambuco, Recife, Brazil
e-mail: rmm2 @cin.ufpe.br

E. Barros
e-mail: ensb@cin.ufpe.br

© Springer Science+Business Media, LLC 2017 133
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_6

134 R.M. Macieira and E. Barros

expensive infrastructure. So even being a challenge to design such systems, the
existence of flaws in its execution is unacceptable.

In addition to the failure issue, another motivation in optimizing embedded soft-
ware designs is the reduction of the time-to-market. The market window requires
the manufacture of electronic devices in short time intervals, which requires the
reduction of time for modeling, simulation, and verification of the hardware/soft-
ware system. Thus, techniques and computational tools must be developed to allow
costs and design time reduction.

Trying to cope with this productivity gap, also increasing the reliability of com-
plex embedded systems, the author of this document requesting the scholarship pro-
poses a nonintrusive technique for detecting critical errors and behaviors patterns in
hardware-dependent software during their development or their update on runtime
environment.

Detecting critical behaviors during the design phase prevent releasing faulty
devices. The costs of repairing a software flaw during maintenance are 500 times
higher than a fix in an early design phase [4]. However, sometimes the devices suffer
update, and their whole system must be ready for detect e react to critical situations,
being fault tolerant. Several research works [7, 10, 11, 20, 22] show the importance
and viability of fault tolerant systems, isolating failure and taking over the system,
leading it to a safe state. But to take advantage of this technique, the system must be
ready to identify or predict critical behaviors.

So, the main idea of the proposed approach is monitoring on runtime every access
made by the embedded software to system platforms resources and, based on their
modeled reference standard behavior, implemented as a finite-state machine, check-
ing if embedded software is respecting critical properties of the platform.

The front-end of this approach is a set of high-level specifications written in a
domain-specific language (DSL) called TDevC, that contain structural and behavioral
descriptions of the devices and the whole platform, and the communication between
the devices and the embedded software. This language has been developed since
2009 and has been extended to allow more complex specification of registers accesses
constraints as well as allowed sequences of registers accesses, as can be seen in [15,
16], until this current syntax and expression power.

Added to this description, a set of assertions, described through linear temporal
logic (LTL) formulae, are also specified.

The architecture of the proposed mechanism includes a monitoring module called
MDDC containing a finite-state machine set (FSM-set), which can fire the assertions,
based on the sequence of accesses to the device. Synthesized to SystemC models
and SystemVerilog components, these modules must be integrated into a platform
model (either a virtual prototype or FPGA prototype).

Some experiments performed with simple and complex devices and environments
has shown the feasibility of this approach. The monitor module controlled all asser-
tions. An interesting characteristic observed during the experiments was the ability
of specifying and catching cross-layer behaviors in the software stack.

6 A Mechanism for Monitoring Driver-Device Communication 135

In the further sections, this paper discusses related works, describes how the lan-
guage performs the checking, details the language TDevC and shows the experiments
performed and theirs results. In the end, it concludes the work, discussing a little bit
about the contributions.

6.2 Related Works

Several approaches try to cope with correctness issues related to embedded software.
Different ways of looking at the problem provide a different method to reduce the
presence of bugs, increasing the reliability of embedded systems.

Correct-by-construction is one method used to decrease the occurrence of errors.
The bet of this kind of technique is the reduction of software coding. Through a
high-level specification, such as domain-specific languages (DSL), a synthesis tool
automatically generates the device driver code. Some approaches, as described in [1,
14, 18], proposes the automatic generation of device drivers. However, as a common
drawback of this technique when applied to the synthesis of device drivers, the part of
the software dependent of the hardware (the driver) (Hardware dependent Software
HdS) is not generated completely. Thus, in these cases, always there is a need for
coding some part of the generated software by a human being, which can be a source
of failure. Besides, this kind of technique looks only for the lowest level of the
software stack, however sometimes the systems’ failure are in a higher layer.

Another way to increase the reliability of the HdS layer is betting on system’s
resilience [7, 10, 11, 22]. Some approaches focus on the fault tolerance of the drivers,
isolating failure and taking over the system, leading it to a safe state. Despite being
effective, this kind of technique commonly generates a considerable overhead in
the system’s execution and, in spite of isolating the failure, the fault in some cases
continues existing.

Several approaches deal with faulty device drivers performing formal or semi-
formal verification during the development phase [2, 5, 6, 13, 17, 21].

However, the works proposed by Lettnin and Behrend [5, 6, 13], for example, need
some code instrumentation, which sometimes can decrease performance or change
timing behavior. Besides, applied only for high-level models, for cycle-accurate
simulation, the checking simulation can be very time-consuming. Even proposing
the reduction regarding verification time, these works [5, 6] do not provide any cycle-
accurate verification, which limits the validation of significant embedded software
constraints.

Reinbacher, in [17], proposes a microcontroller embedded software runtime test-
ing environment based on accesses to memory-mapped areas. However, this approach
needs the software binary to extract the variables addresses, what makes this approach
extremely dependent on the software stack. The result of the validation as well as the
configuration of the environment must be analyzed and controlled by a host machine
through a USB port, making difficult its application for resilience and adaptation of
systems.

136 R.M. Macieira and E. Barros

Another point of concern related to reliable systems that none of the approaches
presented above took into account involves software maintenance. Any software
layer modification may imply in an environment verification modification. Software
variables names and addresses may change and libraries, frameworks,and operating
systems that surround the HdSs also may change. These modifications may imply
in binding properties changes. It is important to highlight that with an independent
relationship with the software layer implementation, its source code and its binaries,
the proposed technique applied to on-the-market devices can prevent them from faulty
and unreliable software updates. Additionally, it and can aggregate basic resilience to
the system in case of failure of devices, once this nonintrusive validation environment
runs on the same platform of the device and it can provide feedback to its system.

6.3 Proposed Approach

As mentioned in Sect. 6.1, this work proposes a technique for monitoring and check-
ing the correctness of embedded software and the communication between them and
the peripherals of the platform.

To perform the monitoring, the proposed approach defines a strategy for synthe-
sizing specific assertion monitors, the MDDCs, which, during the execution of the
platform, snoops the communication interconnection between the processing ele-
ment and the peripherals and verify the veracity of system assertions, in order to
guarantee the correct and reliable platform’s execution.

The abstract idea of the use of the MDDC can be seen in Fig. 6.1. The sequence
of frames in the Figure, starting from the 1 to the 6, simulates the use of a platform
containing one CPU, two peripheral named as Dev #I and Dev #2, and the MDDC
module. At the frame 1, the whole platform in a previous stage can be seen, before
performing any communication with the devices. At the frame 1, it can be seen the
communication interconnection, which in this example is a bus, connecting all the
components. Additionally, the interconnection links the MDDC module to the CPU
and the bus and directly connected to the CPU through an interrupt line.

From the frame 2 to 6 there is a sequence of accesses to devices. Accesses means
readings and writings to registers of peripherals. For this hypothetical example only
Dev #1 is under verification. Thus, the frame 2 shows that when the CPU makes
a writing access to the Dev #I, the MDDC module recognizes this writing as a
legitimate access to the verification and accepts it as an input. Following, at frame 3,
the CPU performs another writing, but now to the Dev #2. However, Dev #2 is not
an under validation device and, then, the MDDC module ignores that access as an
input.

The next access showed in Fig. 6.1-frame 4 is an example of a reading access to the
Disp #1. The MDDC module catches the access, accepts it and waits for the response
with the data requested by the CPU. The MDDC module captures that returned data,
as showed at frame 5, and adds it to the previously mentioned reading access.

6 A Mechanism for Monitoring Driver-Device Communication 137

1 1
1 1
CPU | |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Dev Dev# 1 Dev Dev# 1 Dev Dev#
#1 2 n'_ #1 2 _n' #1 2 B
1 1
1 1
CPU : CPU : CPU
1 1
1 1
1 1
1 1
1 1
1 1
Dev Dev# : Dev Dev# : Dev Dev#
#1 2 n #1 2 H #1 2 n

Fig. 6.1 General basic approach

To finish the example, the Fig.6.1-frame 6 shows a case of a detection of an
assertion. Supposing that the reading access performed at frame 5 has triggered an
assertion, the MDDC module reports the event and, in this case, interrupts the CPU.

It is important to highlight that the interrupt line is one of the several possible
ways to report an assertion detection by the MDDC module. In the example showed
in Fig. 6.1, the CPU can use information about the assertion to make any decisions in
the software execution. Despite it being an intrusive technique, it is widely used for
resilient, self-aware and adaptive systems, such as Cyber-Physical Systems (CPSs).

Once we described how the MDDC module works together with the platform, now
it will be explained how it uses the accesses to monitors the behavior specified through
assertions. The MDDC module includes two state machines for supporting assertions
monitoring: the Hierarchical finite-sstate machine with data assignment(HFSM-D)
and the Biichi Automaton (BA). Only one MDDC module is enough for monitor-
ing the communication between one processing element and several devices. Thus,
an instance of an MDDC module contains information about each device under
validation, in which, the main information is related to the devices’ execution basic
behaviors, represented by the HFSM-D state machine, reflecting the device response,
as a reference model.

The Fig. 6.2 shows a simplified example of an HFSM-D state machine, showing
how it reflects the execution behavior of a device under validation, and demonstrates
how the writing to this device, as the example of Fig. 6.2-Frame 2, would act internally
in the monitor.

138 R.M. Macieira and E. Barros

Fig. 6.2 Approach flow in progress

Once the MDDC module accepts it as valid, the access is translated into transac-
tions in an HFSM-D state machine. Based on the example of Fig. 6.2, the initial state
of the state machine is the state Idle. Thus, as the HFSM-D state machine is a stan-
dard behaviors model of the execution of the under validation device, it is expected
that the device is initialized in an equivalent state Idle internally.

Referencing again the Fig.6.2, one can see that each state contains a block rep-
resenting the set of properties that must be respected at the state. There is a set of
properties (P0) out of any state, where the properties belonging to the set PO are
global. The following section includes a more detailed description of scopes and
hierarchies of both properties and states.

These properties, which states must comply, are implemented using Biichi
Automata (BA). They are formal representations of linear temporal logic proper-
ties [19], i.e., properties that must be met over time. Based on temporary events the
BAs perform state transitions always after updates of states and values in the HFSM-
D state machine. Temporal events are events that occur in time slots, not necessarily
in constant time. Examples of temporal events: clock in integrated circuits, banking
transactions, sending and receiving network packages, access to devices, and so on.
In this approach, the temporal events are the accesses made by processing elements
to devices and clock ticks in the case of real-time properties.

This is the overall simplified goal of the proposed approach. However, to imple-
ment and to integrate the MDDC module using a general purpose language or an
HDL is not a simple task and can consume a good amount of design time, since each
MDDC is specific to the target platform.

Moreover, the implementation of a validation environment from scratch using
general purpose languages may make it highly susceptible to errors, since the manual
coding of functional and nonfunctional design constraints needs to be taken into
account. Thus, it is ideal that the verification environment can be specified using a
high-level abstraction and taking into account only the functional requirements of
the design.

6 A Mechanism for Monitoring Driver-Device Communication 139

Model’s
Specification (DSL).

Synthesis

Monitor’s

Source Code
SystemC / SV

Step 1 Step 2 Step 3 Step 4
Parsing | Mounting FSMs Code
FSMs Validation Gen.

Real HW Execution X FPGA
Runtime Validation Platform

HW Simulation SystemC

Runtime Validation o0C © Platform

I

Fig. 6.3 Approach’s main flow

TDevC
Device Model

v
TDevC
Platform Model

TDevC
Device Model

TDevC
Device Model

Platform TDevC Models

Fig. 6.4 TDevC models’ diagram

Thus, this approach proposes a technique for developing a verification and exe-
cution environment through the sequence of steps that can be seen in the flow shown
in Fig.6.3.

The proposed flow starts with the specification of high-level abstraction models
of structures and behaviors of the under validation device and the whole platform.
These models are described in a DSL called TDevC, proposed in this paper.

As it can be seen in Fig. 6.4, there are two types of TDevC models: device model
and platform model. Using the device model the system designer specifies the struc-
tures and behaviors of each device in the platform, and can specify the assertions
related to each single device.

Through the platform model, the system designer can specify custom behaviors
of the whole platform execution and system assertions based on shots of devices’
assertions.

140 R.M. Macieira and E. Barros

A TDevC device specification mechanism supports in its syntax constructions the
description of structures such as registers, their formats and fields, data patterns, and
masks. It also supports constructors for specifying behaviors as access protocols to
the registers, finite-state machines reflecting devices behavior and assertions through
temporal properties.

On the other hand, the TDevC platform specification approach supports only
behavioral constructors. Besides the declaration the devices under validation, an
HFSM-D state machine also can be specified, however with transitions and assertions
triggers different from the HFSM-D state machine modeled in the TDevC device
models. More information about the TDevC language will be given in Sect. 6.5.

After specifying the device models described in TDevC, the designer can use the
proposed toolset called TDevCGen for synthesizing the monitor module that includes
the mentioned state machines. Including four steps, the synthesis begins with the
parsing of the TDevC specifications. The TDevCGen then creates the control lists of
structural and behavioral elements and then in step 2, translate the models described
in TDevC to an intermediate format, assembling in memory the state machines in a
hierarchical manner and linking its states to the structural elements associated with
their transitions.

With the intermediate format in memory, the toolset can then perform the third step
by validating the specified model. This validation aims to check for inconsistencies
and nondeterminism in the state machine and contradictions between the assertions of
states, their immediate descendants and between the device models and the platform
model.

With the validated model, it follows to step 4. The TDevCGen then generates the
source code in SystemC or synthesizable SystemVerilog. With its full source code,
the monitor can be integrated into the platform. Currently, the integration in done by
the designer manually.

The integration step consists in connecting the MDDC generated into the target
platform. The physical ports (low-level of abstraction) or SystemC functions (high-
level of abstraction) that provide to the masters devices the accesses to memory-
mapped addresses, available through platforms libraries, are snooped or encapsu-
lated. So, the data handled by these snooped or encapsulated ports and functions are
sent to the snooping port of the monitor.

After manual integration, the MDDC module is ready to intercept all data sent
from a master device to the peripheral devices during the execution of embedded
software and determine whether the accesses represent the desired behavior or not.

All data exchanged between the master device and the device under validation
are assessed and, depending on the type of access, the related address and read or
assigned value, a state transition in the hierarchical machine can be triggered. So with
the hierarchical state machine reflecting the standard behavior of the device under
validation and associating assertions to the states, the monitor can detect any time
during system execution the state of peripherals and the occurrence of assertions
associated with the current state.

Importantly, in addition to the monitor being a spy mechanism used to snoop
the communication between master and slave elements within the platform, it is

6 A Mechanism for Monitoring Driver-Device Communication 141

also seen as a slave device. Therefore, the processing element can configure it and,
occurring a specified behavior fired by an assertion, requests the MDDC module
for more information about the event. As said before, this is interesting not only for
the detection of faulty behaviors and debugging software but also for any decision-
making in the face of their occurrence.

6.4 Definition of the HFSM-D State Machine

This approach makes use of state machines to represent the basic behaviors of the
device under validation and the system assertions.

The HFSM-D state machine is used to represent the standard behavior of the device
under validation, from the embedded software. On the other hand, the assertions are
translated to Biichi automata. This section will explain in detail the HFSM-D state
machine. The definition of Biichi automata can be found in [8].

Each state of the HFSM-D state machine represents an execution possible state
of the device. To support different abstraction levels, a hierarchical description is
allowed. A state can contain a complete substate machine, including more states,
known as child states. The deepest in the hierarchical level, the more granular and
detailed is the specification of the device execution.

The root state of an HFSM-D state machine called Global state, is always a unique
state, ancestral of all the states in a hierarchical machine description. Within each
parent state, that is, those who, in the perspective of hierarchy, are not a leaf state,
there are one or more parallel and separate substate machines that reflect concurrent
behavior. Within a state is said that each parallel substate machine is inside an orthog-
onal region. Thus, each non-leaf state can contain one or more orthogonal regions
containing, each one, a separate state machine and parallel execution. These regions
inherit the same principles introduced by Statecharts [9].

The Fig.6.5 shows an example of an HFSM-D state machine proposed in this
work. In this example it can be seen that there are 17 states, called s/ to 516, plus the
Global State g. Still in the same example we can see that there are four orthogonal
regions, two of them (ol and 02) belonging to the state g and the other two, to the
state s3.

Orthogonal regions are explicitly specified in the model to prevent the occurrence
of direct transitions between different substate machines. As distinct execution lines,
joints in the transition flows of different parallel substate machines and different
hierarchy levels are not allowed.

Using the Fig. 6.5 to make this explanation clearer, the transition from the state
s12 to the state s/3 may occur at the same time of the transition between the states
s8 and s9, for example, depending on the transitions’ trigger.

Transitions are fired based on a Boolean expression, for devices models, and
based on device assertions, for platform models. The atomic propositions of devices
models are boolean expressions, variables value comparison, current execution states,

142 R.M. Macieira and E. Barros

“n

Global state “g

Fig. 6.5 Hypothetical example of a HFSM-D

accesses information, and time delays. All transition expression of a current state is
tested if it is truly every time an access occurs or when a time delay ends.

During the synthesis of an HFSM-D state machine, some transitions are automat-
ically created depending on their types. As a simplification, each state transition can
be defined as exit points or entry points. The exit point is treated as normal transi-
tions, starting at the state that has specified it and reaching a target state. On the other
hand, the specification of entry point transitions informs to the synthesis tool that
every state of that orthogonal region must have a transition to the state which has
declared the entry point transition. This situation is common during devices resets,
for example. Normally all transitions to a reset state in the orthogonal region have
the same trigger. So, it is not necessary to specify one transition for each state with
the same trigger and the same target state. The target state itself specifies it.

Even well structured and with some transitions automatically inferred, a lot
of inconsistencies can remain in the generated model. Thus, the toolset fulfills a
sequence of model checking. The first checking looks for transitions to different
state machines, i.e., different orthogonal regions. As said before, each orthogonal
region contains only one substate machine. Thereby, their states only can have tran-
sitions to states in the same substate machine. Again using the Fig. 6.5, the state
S12 can only have transitions to the states s/2 to s16, but never to the states s8§ to
s11, for example. This checking analysis prevents the merging of sub-state machines
execution lines.

Another inconsistency that must be verified is the nondeterminism. Using a theo-
rem prover, every transition of a certain state is compared with the others transitions
of the same state. The theorem prover resolves the Boolean logic expression and

6 A Mechanism for Monitoring Driver-Device Communication 143

checks if at least two transitions can occur at the same moment. The occurrence of
a transition means that the Boolean logic expression is true in a transition event for
a certain state.

The last checking performed by the toolset is to look for properties contradictions.
However, before talking about it, it is essential to clarify some information about these
properties. Expressed in LTL formulae and translated to Biichi automata applying
the technique proposed by [8], these properties represent behavioral characteristics
of the execution that can be identified and signalized by the validation environment.
Note that, if every state may specify a set of properties, the scope of them is limited
to that state and their child state. These temporal properties only must be held to be
signalized when the execution is in that state and, consequently, in its child states.
This elements are represented in the figure by symbols p1, p2 and p3. The properties
pl and p2 are directly associated with the state g and hence indirectly associated
with all other states of the HFSM-D state machine. The p3 is directly related to state
s3 and indirectly associated to its child states s8, 9, s10, s11, s12, s13, s14, s15, and
s16. For all other states, p3 has no effect.

It is important to clarify that, for the state s3 and its child states, both properties
pl and p2 as p3 must be considered. Because of the hierarchy, parent’s properties
are also valid within the child states.

To make clearer the commented hierarchy levels relationship, Fig. 6.6 shows a
hierarchical view of the example showed in Fig. 6.5. In this figure, it can be seen the
Global State g at the top and consequently at level 0. Below, at level 1, are its two
orthogonal regions (0! and 02) and their child states (s/ to s7). Following, at level
2, the orthogonal regions of s3 (03 and 04) and its child states (s8§ to s16).

Nivel 0

Fig. 6.6 Hierarchical point of view of the HFSM-D of Fig.6.5

144 R.M. Macieira and E. Barros

6.5 The TDevC Language

As mentioned in Sect. 6.1, the front-end of the proposed approach is a high-level
specification described in a DSL language called TDevC. This language has been
developed since 2009 and is being adapted, as it can be seen in [15, 16], to have more
expression power to capture system assertions and constraints.

To maintain the central features of a high-level specification mechanism, the
TDevC permits to describe the structural specification of the device, devices memory
access protocols, devices behaviors, and platform behaviors. The two last as it will be
explained in the following paragraph are expressed through syntax constructions used
for defining the hierarchical finite-state machine with data assignment (HFSM-D).

As explained in the previous section, there are two types of TDevC models.
Thereby, despite very similar, they have different syntax. So for a better organization
of this paper, this document will split the explanation in two subsections: TDevC
Device Model Section (6.5.1) and TDevC Platform Model (6.5.2).

6.5.1 TDevC Device Model

The TDevC device models describe the behavior of the peripheral devices of a given
platform, based on their fundamental structural components. Thus, these models
include language constructors to support the specification of both the structure and
the behaviors.

Thus, this section will describe these constructions. For each one of them, exam-
ples extracted from the TDevC device model of the Ethernet Controller DM9000A
will be used to make the explanation more understandable.

In the following, this section will be split in two subsections: Structural Section
of TDevC Sect.6.5.1.1 and Behavioral Section of TDevC Sect.6.5.1.2.

6.5.1.1 Structural Description of a TDevC Device Model
The structural section of the TDevC device model is composed by the specification of

device registers, registers formats, and data patterns through the constructors register,
format and pattern. Listing 16 shows an example of these constructions.

device (dm9000a) {

1

2 pattern RXNOERROR = mask(....0000) ;

3

4 format physicalAddrfmt {

5 RW PAB[7:0];

6 }

7

8 external register indexReg (0x00) alias

9 INDEXREG {

10 RW INDEX [15:0];
11 }

12

6 A Mechanism for Monitoring Driver-Device Communication 145

13 internal IntRegsProt register

14 networkStatusReg (0x00) alias NSR{

15 READ SPEED [7];

16 READ LINKST [6];

17 RW WAKEST [51];

18 reserved [4];

19 RW TX2END [3];

20 RW TX1END [2];

21 READ RXOV [11;

22 reserved [0];

23 }

24

25 internal IntRegsProt register phyAddrReg5 (0x15) alias
PAR5 = physicalAddrfmt;

26

Listing 16 Example of the structural section of TDevC device model

First of all, every TDevC specification starts with the constructor device
(device_name), as shown in Listing 16-line 1, where device_name is the name of
the device under validation.

In the following, Listing 16-line 2 shows an example of a pattern declaration.
Using pattern is the way to specify numbers and mask patterns. It makes the behavior
description cleaner and less error-prone. It looks like a constant variable of general
purpose languages, but, besides a fixed value, it can also represent a fixed format of
data. In line 3 of Listing 16 there is the declaration of RXNOERROR pattern, which
represents the absent of error during the package transmission. In this example, the
mask constructor means that any register field or variable compared to this pattern
must contain the last four bit equal to zero to be true.

The register constructors, as the name already say, reflect the physical registers
of the device. They can be explicitly declared with its visibility scope, name, alias,
fields, physical addresses, and access permissions, as shown in Listing 16-lines 8 to
21, or can use a previous format that was declared using the format constructor. The
format constructor is declared similarly to the register constructor. They are used to
define a format common to various registers. By this way, the designer must declare
the format once, as shown in Listing 16-lines 4 to 6, and then bind the register to its
respective format, adding the register’s physical address and alias, as it is shown in
Listing 16-lines 23.

As it can be seen in the Listing 16-lines 8 and 12, there are two types of visibility
scope for registers: external, represented by the construction external and internal,
represented by the construction internal. External registers are those that are mapped
to platform addressing range, i.e., the registers are directly accessed by the platform’s
master elements. On the other hand, internal registers are those that are not addressed
directly in the range of system address. They are accessed through an access pro-
tocol, commonly implemented by the hardware-dependent software layer, and uses
the external registers as input. Listing 16-lines 24 and 22 shows examples of two
internal registers using an access protocol called IntRegsProt. The declaration and
construction of the protocols will be detailed in Sect.6.5.1.2.

It is important to highlight that the registers addressing is absolute within the
range of devices, however, to external registers, it is about the platform’s addressing.

146 R.M. Macieira and E. Barros

In the case of the external register indexReg, it can be seen that its address in the
device scope is 0x00. However, if the device in question is in the system address
range Ox00A-0Ox00E, its relative address in the device’s addressing remains 0x00,
where it is translated to the absolute address OxO0A on the platform’s addressing.

Also, concerning registers addressing, external registers are in a different address
scope than internal registers, since the external register has its addresses linked and
translated directly to the target platform and the internals registers are dependent on
the access protocols.

So with this relationship between the internal registers and its protocols, it becomes
evident that each defined protocol carries with it a different scope of addressing,
allowing internal registers with different protocols and external registers sharing the
same address numerical value. An example of this can be seen in the Listing 16-line
8 and 12.

The optional attribute alias, as the name already says, defines an alias to the
register and can be used at behavioral sections of the model. The purpose of this
constructor is to allow the simplified registers reference in the specification and at the
same time to maintain its complete and precise description. Typically the datasheets
includes the registers by their full name and refer an alias, usually their initials, in
their applications.

Fields of registers, as it can be seen in Listing 16-lines 5, 9, and 13 to 20, are
logical subdivisions, commonly described in the datashrets of devices. Typically
each subdivision has a specific function. A value assigned to a field can lead to a
behavior of the device. Therefore, to clarify the description in TDevC and reduce
the possibility of errors in the comparison of registers values, the language supports
specifying nested fields. Registers contain fields, their fields, consequently, may also
contain fields and so on.

Additionally, another mandatory attribute is the field name. Every field must
contain a name, even if it has subfields. These names are used in the behavioral
section of TDevC. Fields of a register are referenced by registers’ name or alias
followed by the field, only separated by a “.”. The same pattern can be used for fields,
subfields, and so on. An example of this constructor is showed in the following.

‘ indexReg . INDEX ‘

If, for example, the field INDEX of the register indexReg had a subfield called
INDEXH]I, its reference would be made like the following TDevC code.

‘ indexReg.INDEX.INDEXHI ‘

and so on.

6.5.1.2 Behavioral Specification of a TDevC Device Model

The behavioral specification of a TDevC device model consists of constructors with
the syntax for protocol declaration, context variables, and the HFSM-D, its data
assignment and assertions. For the sake of a better understanding, this document will

6 A Mechanism for Monitoring Driver-Device Communication 147

address in the following, each one of these constructors, starting with the protocols
declarations, following with the declarations of variables and the HFSM-D state
machines, ending with the declaration of assertions.

protocol IntRegsProt {
address: INDEXREG (0X00) ;
data: DATAREG;

}

address: EPAR.REGADDR (0X00) ;
data: {EPDR.EE_PHY_H;EPDR.EE_PHY_ L}

1
2

3

4

5

6| protocol ProtPHYRegs {
7

8

9 readingtrigger{
0

1 write (EPCR) = 0x0C;
11 }

12 writingtrigger {

13 write (EPCR) = O0x0A;

14 }
15|}

Listing 17 Example of protocol declaration in behavioral section of a TDevC device model

As explained in the previous section, protocols are used to define the access pro-
cedures of internal registers, from access to external recorders, directly or indirectly.
The Listing 17 shows two examples of this construction.

The protocol block includes the reserved word protocol followed by an identifier.
Within the block the designer can specify the registers or register fields representing
the address and the data of the internal register covered by that protocol through the
constructors address and data, respectively. Listing 17-lines 2, 3, 7, and 8 shows
examples of these constructors.

In Listing 17-lines 2 and 3, the protocol IntRegsProt describes that all internal
registers covered by it will be accessed whenever their address is in the register
INDEXREG and there is a reading or writing of a value in the register DATAREG.
The same can be observed in the Listing 17-lines 7 and 8. However, the register field
that defines the address of all registers covered by the protocol ProtPHYRegs is the
EPAR.REGADDR and the register fields that define the data read or written from
registers covered by this protocol are EPDR.EE_PHY _H and EPDR.EE_PHY L.
In the protocol ProtPHYRegs the attribute data is formed by concatenated fields,
once EPDR.EE_PHY_H is the most significant part and EPDR.EE_PHY_L, the less
significant.

In some cases, it is necessary to inform a trigger that defines when the data is ready
to be read or written. For this, the constructors readingtrigger and writingtrigger have
been defined. The specification of Ethernet DM9000A says that to perform readings
and writings to internal registers thought this protocol it is necessary to write the
values 0x0C and Ox0A, respectively, in register EPCR informing that the address and
the data are configured. This feature is captured in Listing 17-lines 9-14.

Itis important to clarify that the use of the constructor protocol aims to simplify the
specification, making it clear and direct the visualization when the registers are being
used. However, one can describe a protocol in TDevC defining the access to internal
registers indirectly using external register only on all properties and transactions of
the state machine, which would make the specification rather obscure, but correct.

148 R.M. Macieira and E. Barros

var tl = 1;

var rxlowlen;
var pkgcounter;
var rxlen;

globalstate {
orthoregion ethOperationMode {
initialstate UNDEF_OPER_MODE {

0 N W A W —

9 addexitpoint (OPER16BITS) {
10 read (ISR.IOMODE) == 0
1 }

12

13 addexitpoint (OPER8BITS) {
14 read (ISR.IOMODE) == 1
15 }

16

17 addentrypoint {

18 write (CR.RST) == 1

19 }

20 }

21 state OPER16BITS {

22 addexitpoint (OPER8BITS) {
23 read (ISR.IOMODE) == 1
24 }

25 }

26 state OPERS8BITS {

27 addexitpoint (OPER16BITS) {
28 read (ISR.IOMODE) == 0

29 }
30 }

31 }

32

Listing 18 Example of Variables and HFSM-D declarations in behavioral section of a TDevC
device model

The declaration of variables and the HFSM-D state machine, as it can be seen in
the example in Listing 18, uses the constructors var and globalstate respectively.

The variables are used when you want to add some context for validation. The use
of variables, its assignments, and the HFSM-D state machine makes all the validation
stateful. These constructors were supported in the previous versions of the TDevC
language, where validation had no context and no notion of execution states, being
completely stateless. In the current version, every variable has a global scope and
all assignments occur during transitions of states in the HFSM-D state machine. The
Listing 18-lines 1 to 4 show examples of variable declarations. In Listing 18-line 1
it is shown exactly a variable declaration with assignment of an initial value.

Since all variables were declared, now it can specify the HFSM-D state machine.
Indeed, even the reserved word used already makes clear, globalstate indicates the
root state, unique, and parent state of all state machine’s states, on the first hierarchical
level of the HFSM-D state machine. As well as any state of the hierarchical state
machine, the global state is segmented into orthogonal regions through subblocks
starting with the reserved word orthoregion, respecting the definition of the HFSM-D
state machine described in Sect. 6.4. The Listing 18-line 6 shows the beginning of
the global state block and, hence, of the HFSM-D state machine.

6 A Mechanism for Monitoring Driver-Device Communication 149

Each orthogonal region is an independent execution line within a state. Thus, its
syntax also contains the declaration of child states, allowing the declaration of a
hierarchical machine, as it can be seen in Listing 18 lines 8, 21, and 26.

Every orthogonal region must have a single initial state declared by the construc-
tor initiated by the reserved word initialstate. Other states are optional, however,
according to the definition of hierarchical machine, all other states are intermediate,
declared by the constructor initiated by the reserved word state.

The example shown in Listing 18 contains an orthogonal region called ethOpera-
tionMode, located in line 7. Its initial state, in line 8, is the UNDEF _OPER_MODE
and their two intermediate states, located in lines 21 and 26 respectively, are called
OPERI6BITS and OPERSBITS. This orthogonal region is the selection of the oper-
ating mode of the Ethernet DM9000A. It is initially undefined for the embedded
software layer and, according to the selection, becomes 8-bit or 16-bit.

Inside the state definition blocks, it can be seen in Listing 18-lines 9, 13, 22, and
27 the use of the attribute addexitpoint, and in line 17 the use of the attribute adden-
trypoint. These constructors are used to specify the state transitions. As mentioned in
the previous section, there are two types of transitions: exit points and entry points.
Thus, these two constructors are used, respectively, for specifying them.

Taking the exit point specified in Listing 18-line 9, it can be seen a transition
from the state UNDEF_OPER_MODE to the state OPERI6BITS, depending if the
Boolean expression read(ISR.IOMODE) == 0 is true, that specified inside the block.
This expression is true when the embedded software layer knows, through a reading
access, that the register field ISR.IOMODE contains the value zero (0). The attribute
addentrypoint works the same way; however, it does not require a target state.

addproperty (critical) UndefinedOperMode {
1tlf ([] (! UNDEF_OPER_MODE))

}

addproperty (critical) WriteBeforeLen ({
1t1lf (! TXWRPKGLEN U TXWRPKGWR)

}

addproperty (critical) LenBeforeSend({
1tlf (! TXSDPKGSDING U TXWRPKGLEN)

0 N U AW —

9 }

10| addproperty (warning) NeverLenAndSend ({

11 1tlf([]1(! (TXSDPKGSDING && TXWRPKGLEN)))
12|}

Listing 19 Example of assertions declarations in behavioral section of a TDevC device model

Another important attribute specified inside the state block is the addproperty.
It is used to define the assertions a particular state must check. Listing 19 shows
examples of assertions specified inside the state PHYUP. The state PHYUP means
that the physical layer of the DM9000A is on and it is ready to transmit or to receive
network packages.

As mentioned earlier, the assertions are specified through an LTL formulae,
expressed through the attribute Iflf, as it can be seen in Listing 19-lines 2, 5,
8, and 11. The LTL formulae show the properties that must be held. So, for
example, using the assertion in Listing 19-lines 2, the LTL formulae is
equivalentto G(~ UNDEF_OPER_M O DE), what means that always the state

150 R.M. Macieira and E. Barros

UNDEF_OPER_MODE must be negated while inside the state PHYUP. In other
words, the physical layer of the DM9000A cannot be on without knowing its opera-
tion mode.

The attribute addproperty also supports specifying a qualitative information, that
can be: critical, warning and info. In the current version of TDevC, only the type
critical has a different treatment. It means that such assertion is critical for the whole
system, and it may lead to a system execution for a critical and unpredictable state,
and maybe generating a desynchronization of the HFSM-D state machine. Facing
a critical assertion, the MDDC signalizes the event and stops the validation until
a system reset. The others types of assertions are, for now, only informative and
they can be used for modeling the TDevC platform model. With these properties, a
meta-model, called TDevC platform model, can join the properties feedback from
the TDevC device models to perform a complete validation, involving the whole
platform. The TDevC platform model will be detailed in the next section.

6.5.2 TDevC Platform Model

Differently from the TDevC device models, the platform models do not contain
structural section. Their primary goal is modeling the behaviors and properties of
the whole platform, only based on the devices’ behaviors. So for the meta-models,
the devices’ structures are completely transparent and irrelevant.

So, the main difference between the two models is that before the beginning of the
HFSM-D state machine declaration, in the platform model the designer must specify
which devices will be used for that meta-model.

For the syntax presentation in this section, an example of two separated simple
devices will be used, which control a bank of sensors and a bank of actuators. These
devices contain, each one, four 1-bit sized ports called channels. The sensors device
receives from the input channels the activation signals of the physical sensors and
the actuators device sends to the output channels the activation signal to the physical
actuators. However, the embedded software will decide and control when to activate
an actuator depending on a feedback from the sensors. For this example, the sensors
channels are numerically correspondent to the actuators channels, i.e., the sensor
channel 1 is used with the actuator channel 1 and so on, for all channels.

import "mysensors.tdevc";
import "myactuators.tdevc";

platform (uClinuxNiosV2) {

device mysensors alias mys;

1
2
3
4
5
6
7 device myactuators alias mya;
8

Listing 20 Example of declaration of a TDevC platform model

The first constructor that must be taken into account is the import. Through this
constructor, the meta-model defines that devices models will be used. Just to make

6 A Mechanism for Monitoring Driver-Device Communication 151

clear, the device models’ assertions are still fired by the MDDC regardless of platform
model. Listing 20-lines 1 and 2 show examples of the constructor import.

The meta-model definitions start with the reserved word platform, followed by an
identifier, in which, for the example of Listing 20-line 4, is the uClinuxNiosV2. This
identifier is necessary to distinguish different platform models covering different
properties for the same hardware platform. This feature is interesting once several
systems and applications can be set for the same platform configuration. By using
a fixed hardware set, it is possible to vary the whole software layer and the system
application. Thus, it is possible to have a platform models library composed by
models covering different system’s properties, only depending on the layer software
configuration. The platform design varies according to the system purpose, unlike
the device models, that are fixed for each device.

In the following, the designer declares all devices that will be used in HFSM-
D state machine. The constructor device is used to define an alias for each device.
The alias, as the registers alias in the device models, simplifies the code making the
codification agiler. This constructors can be seen in Listing 20-lines 6 and 7.

var chanLen 4;

globalstate {

1

2

3 addproperty (critical) ChannellSafety {

4 1tlf (

5 [](mys.ChannellOn -> mya.ChannellOn)
6)

7 }

8 addproperty (critical) Channel2Safety {

9 1tlf(

10 [](mys.Channel20n -> mya.Channel20On)
11)

12 }

13 addproperty (critical) Channel3Safety {

14 1tlf(

15 [](mys.Channel30On -> mya.Channel3On)
16)

17 }

18 addproperty (critical) ChanneldSafety {

19 1tlf(

20 [](mys.Channel4On -> mya.Channeld4dOn)

21)
22 }
23 }

Listing 21 Example of assertions declarations in a TDevC platform model

The last syntactical portion of the platform model includes the variable declaration
and the HFSM-D state machine definition, already explained in the previous sections.
There is not any syntactical difference, only semantic variations.

This semantic difference is related to the atomic propositions of the state transi-
tions’ Boolean expression and the LTL formulae. Once the platform models do not
have any structural component, replacing the registers and registers fields references,
they use assertions’ feedback from the instantiated devices.

As it can be seen in Listing 21-lines 5, 10, 15 and 20, the atomic propositions used
in the LTL formulae are composed by the device, followed by the identifier of the
assertion, separated only by a “.”. For example, in line 5, the LTL expression says

152 R.M. Macieira and E. Barros

that whenever (operator always) the device assertion Channell On from the device
mysensors is held, the assertion Channell On from the device myactuators must be
held.

6.6 Architecture of the Monitoring Module

As said before, from a TDevC specification the monitoring module called MDDC
is synthesized. As it is shown in Fig.6.7, the monitor is composed of four main
components: Bus Slave Interface (BSI), Bus Snooping Interface (BSPI), Protocol
Translator (PT) and FSM Controller. BSI is the interface that connects the monitor to
the platform as a standard slave peripheral or an external host. Through this interface,
the processing element or a remote host knows when a property is signalized, and
it can request information about the validation, such as last accessed devices, states,
and behavioral properties.

The BSPI is the gateway of the validation. Through this interface all the accesses
made by the processing element are captured, identified and, if they belong to an under
validation device, they are dispatched to the component PT (protocol translator).

The protocol translator, as the name implies, translates the protocols used to access
internal registers of the devices. Based on the protocols specified in the high-level
models, the tool-set synthesizes the PT. The protocol information is used to infer
which internal register the embedded software is accessing. Thus, it is possible to
perform the state transitions based on internal registers.

After the protocol translation, accesses’ information is sent to the finite-state
machine (FSM) Controller. This component contains all the state machines of all
models located into the subcomponent FSM-Set.

There are two types of FSM modules into the FSM-Set: FSM-Devices, for each
device under validation, and one FSM-Platform, representing the platform meta-
model, as it can be seen in Fig.6.7. All FSM-Devices are connected to the FSM-

IRQ Line
BUS FSM Controller
Slave BSI
Interface FSM-Set
BUS BSPI | DS J PT \.
Snooping Ipieptentententantentantanlaniel
Port I_ T

Fig. 6.7 Architecture of the monitoring module

6 A Mechanism for Monitoring Driver-Device Communication 153

platform through feedback ports. These feedback ports are output ports of the FSM-
devices that signalizes the occurrence of assertions.

The FSM Controller can request information about each state machine and sends
them to the BSI. Every time an assertion is fired the FSM Controller informs the BSI
about it. Thus, the BSI uses the IRQ Line to inform the processing element about
the occurrence of the event and, depending on the need, the processing element can
request that information through the slave interface.

6.7 Experiments and Results

For validating the effectiveness of the approach, some experiments were done using
four devices: a DM9000A Ethernet controller, a sensors bank controller, and a fan
controller, composing a temperature control system, and an Altera UART controller.
All experiment have used a platform based on the NIOS II processor and running a
embedded pClinux. Figure 6.8 shows the infrastructure used for the experiments.
The experiments performed with the DM9000A Ethernet Device controller cov-
ered the physical layer (PHY) services, such as power down, power up, PHY reset,
data transmission, and reception, the definition of the operation mode and state link
monitoring. These experiments were performed regarding only the DM9000A. Thus,
There was not any reference to the DM9000A device in the TDevC platform model.
The experiment were done using the UNIX tool ifconfig to start and shut down the
Ethernet’s physical layer and the SSH protocol and a web server to access a remote
machine and perform packages transmission and reception. The TDevC device model
was specified in the proposed DSL, and the DM9000A device driver was modified
to add randomly unwanted behaviors during its execution. With no impact on the

Fig. 6.8 Real infrastructure used for the experiments

154 R.M. Macieira and E. Barros

Temperature
Sensor

MDDC

Temp. Fan
Sensor Controller
TYY FPGA

Tpare Engine Power
Level Divider Source

(analog) (analog)
|

Fig. 6.9 Temperature control system’s diagram

execution time, the technique detected all purposeful failures, instantly when they
occur. All feedback of the behavior detection was made through LEDs installed on
the hardware board. Thus, there was not any software interference, including CPU
interruption.

The temperature control system was fully built to validate the proposed approach.
The system is composed of two separate devices, as said before. As it can be seen
in Fig. 6.9, the temperature sensor consists of an analog temperature sensor, with its
signal being converted to four 1-bit size channels (four temperature zones) through
an analog temperature level divider. The fan controller is actuator used to reduce the
temperature of the measured object. The sensors and the actuators are independents
and are software’s responsibility to use and control them.

The platform used in this experiments remains the same of other experiments, but
now running a particular application, also built for this approach.

As it is shown in Fig. 6.9, the sensor measures the temperature of a night vision
camera, which heats when the air conditioning is off and at night, because of the
infrared lights. Thus, the primary constraint on the whole application is to guarantee
that the temperature stays always below a certain threshold. The fan cannot turn off
before the temperature reaches a safe zone and it should turn off after the temperature
reaches a safe zone.

This experiment aims to validate if the approach can identify assertions regardless
of their location in the software stack. So, For this purpose, the TDevC models were
specified and synthesized. Due to the purpose of these experiments and the number
of devices involved, a TDevC platform model had to be created.

Two procedures have been adopted for these experiments: Shut down the appli-
cation and to insert a failure in the application, turning on and off the fan randomly.

For the two procedures, both device and platform assertions were instantly
detected. Again, all feedback of the behavior detection was made through LEDs
installed on the hardware board, what means that there was not any software inter-
ference, including CPU interruption. Like the DM9000A experiment, there was not
any overhead in the execution time.

For the Altera UART, it was developed a driver used to control the MDDC and a
monitoring application used to control it from the command console. The monitoring

6 A Mechanism for Monitoring Driver-Device Communication 155

module’s driver was written to provide management capability over its registers.
Also, it is responsible for treating the interruptions generated by errors found by the
module.

A Linux application that uses this driver was written to provide the user with a
simple way to interact with the monitoring module, turning it on or off and reading
information about previous validation errors detected.

From the UART datasheet, two properties were extracted to be verified by the
validation mechanism. These properties are related to the requirements for reading
and writing data from the received data buffer and the transmitting data buffer. Such
as the DM9000A, these experiments were also performed regarding only the Altera
UART. Thus, There was not any reference to the UART device in the TDevC platform
model.

For testing the impact of the monitoring module on the system performance, two
tests were made with the UART. One of the tests no errors were inserted in the
UART driver, on the other, errors that violated the previously commented properties
extracted from the UART datasheet were inserted. The time to transfer a sequence
of 100 kilobytes through the UART interface was measured in each test.

These experiments have showed that, when there were no errors in the UART
driver, the presence of the monitoring module had no effect on the performance, in
fact, the time was even better with it. But this difference in times is due only to the
nature of the operating system and it is context switching that makes the execution
times of the experiment varies each time it is executed.

When errors were inserted in the driver, the use of the Monitoring Module rep-
resented a loss of about 1% in performance. This feature is due to the Monitoring
Module generates interruptions each time a property violation is detected. These
interruptions make the processor stop its current activity to treat them. During the
tests, all properties violations inserted in the driver were detected and reported cor-
rectly.

Concluding the experiments, Table 6.1 shows the added overhead during the plat-
form execution, for each device. Besides, the table summarizes if there was any
software interference.

Continuing with the experiments results, the Table 6.2 presents, for each device,
the number of code lines of the model, using the high-level DSL, and the number o
code lines that the toolset has generated after the synthesis.

Table 6.1 Additional runtime overhead and software interference

Device Additional overhead (%) Interference
Ethernet 0 No
Temp. controller 0 No
UART 1 Yes

156 R.M. Macieira and E. Barros

Table 6.2 Developed code sizes (Line of codes)

Device Device model Platform model Synthesized monitor
Ethernet 623 0 1682
Temp. controller 134 34 1639
UART 96 0 705

Table 6.3 FPGA area usage (Logic elements)

Device Platform Isolated monitor %

Ethernet 7620 870 114
Temp. controller 7620 864 11.3
UART 4576 390 8.5

Finally, Table 6.3 shows the FPGA area usage, for each device, covering the whole
platform, the single monitor, and the relation between the monitor area and the
platform area.

6.8 Conclusions

The experiments have shown that the use of this technique has increased the reliability
of systems, detecting unwanted behaviors, and increasing the resilience, predictabil-
ity, and adaptivity of systems by reporting the occurrence of specified behaviors.

They also have shown the importance of this technique applied for CPS, finding
improper misunderstanding of sensors feedback or usage of actuators, preventing,
for example, the degradation of components or, the must important, loss of life.

Another significant improvement in system design is the low time consumption
used for modeling and performing the system validation and debugging. Once this
technique proposes a synthesis of high-level models, the time would be used to
develop the whole validation environment is significantly reduced.

6.8.1 Future Works

The next main feature is to support multicore platforms. Introducing several process-
ing elements in a single platform can cause serious concurrency problems. Sharing
almost the same resources, they must respect critical sessions, synchronizing their
accesses. To guarantee that the sharing is being performed correctly, the validation
environment must know the critical sections and must be able to identify behavioral
issues such as deadlock and starvation.

6 A Mechanism for Monitoring Driver-Device Communication 157

The first stage of the design of this new feature, in which is already in progress,

is the TDevC models’ adaptation. Each state of the HFSM-D or a group of them can
be associated with a critical section. Thus, for example, if two or more processing
elements lead, at the same moment, the device execution to the same critical section,
the monitor must signalize a violation of that critical section.

Acknowledgements This research is being supported by Brazilian Research Council CNPq (Grant
nr. 485829/2012-6).

References

10.

11.

12.

13.

14.

15.

. Acquaviva A, Bombieri N, Fummi F, Vinco S (2013) Semi-automatic generation of device

drivers for rapid embedded platform development. IEEE Trans CAD Integr Circuits Syst
32(9):1293-1306

Amani S, Chubb P, Donaldson A, Legg A, Ong KC, Ryzhyk L, Zhu Y (2014) Automatic
verification of active device drivers. ACM Operating Syst Rev 48(1)

Baheti R, Gill H (2011) Cyber-physical systems. The impact of control technology, vol 12, pp
161-166

Baier C, Katoen J-P (2008) Principles of model checking (Representation and mind series).
The MIT Press

Behrend J, Gruenhage A, Schroeder D, Lettnin D, Ruf J, Kropf T, Rosenstiel W (2014) Opti-
mized hybrid verification of embedded software. In: Test workshop—LATW, 2014 15th Latin
American, pp 1-6, March 2014

Behrend J, Lettnin D, Heckeler P, Ruf J, Kropf T, Rosenstiel W (2011) Scalable hybrid verifi-
cation for embedded software. In: DATE, pp 179-184. IEEE

Ganapathy V, Balakrishnan A, Swift MM, Jha S (2007) Microdrivers: a new architecture for
device drivers. In: Hunt GC (ed) HotOS. USENIX Association

Gastin P, Oddoux D (2001) Fast 1t] to biichi automata translation. In: Berry G, Comon H, Finkel
A (eds) Computer aided verification. Lecture notes in computer science, vol 2102. Springer,
Berlin, pp 53-65

Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8(3):231-274

Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2007) Failure resilience for device
drivers. In: Proceedings of the 37th annual IEEE/IFIP international conference on dependable
systems and networks, DSN *07, pp 41-50, Washington, DC, USA. IEEE Computer Society
Kadav A, Renzelmann MJ, Swift MM (2009) Tolerating hardware device failures in software.
In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles, SOSP
’09, pp 59-72, New York, NY, USA. ACM

Lee EA (2008) Cyber physical systems: design challenges. Technical Report UCB/EECS-
2008-8, EECS Department, University of California, Berkeley, Jan 2008

Lettnin D, Nalla PK, Behrend J, Ruf J, Gerlach J, Kropf T, Rosenstiel W, Schonknecht V,
Reitemeyer S (2009) Semiformal verification of temporal properties in automotive hardware
dependent software. In: Design, automation test in Europe conference exhibition, 2009. DATE
’09, pp 1214-1217, April 2009

Lisboa E, Silva L, Chaves I, Lima T, Barros E (2009) A design flow based on a domain specific
language to concurrent development of device drivers and device controller simulation models.
In: Proceedings of the 12th international workshop on software and compilers for embedded
systems, SCOPES °09, pp 53-60, New York, NY, USA. ACM

Macieira RM, Barros E, Ascendina C (2014) Towards more reliable embedded systems through
a mechanism for monitoring driver devices communication. In: 2014 15th international sym-
posium on quality electronic design (ISQED), pp 420—427, March 2014

158 R.M. Macieira and E. Barros

16. Macieira RM, Lisboa EB, Barros ENS (2011) Device driver generation and checking approach.
In: 2011 Brazilian symposium on computing system engineering (SBESC), pp 72-77,Nov 2011

17. Reinbacher T, Brauer J, Horauer M, Steininger A, Kowalewski S (2014) Runtime verification
of microcontroller binary code. Sci Comput Program 80, Part A(0):109-129. Special section
on foundations of coordination languages and software architectures (selected papers from
FOCLASA’10), Special section—Brazilian Symposium on Programming Languages (SBLP
2010) and Special section on formal methods for industrial critical systems (Selected papers
from FMICS’11)

18. Ryzhyk L, Chubb P, Kuz I, Le Sueur E, Heiser G (2009) Automatic device driver synthesis
with termite. In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems
principles, SOSP 09, pp 73-86, New York, NY, USA. ACM

19. Sistla AP, Clarke EM (1985) The complexity of propositional linear temporal logics.] ACM
32(3):733-749

20. Swift MM, Martin S, Levy HM, Eggers SJ (2002) Nooks: an architecture for reliable device
drivers. In: Proceedings of the 10th workshop on ACM SIGOPS European workshop, EW 10,
pp 102-107, New York, NY, USA. ACM

21. Villarraga C, Schmidt B, Bao B, Raman R, Bartsch C, Fehmel T, Stoffel D, Kunz W (2014)
Software in a hardware view: new models for hw-dependent software in soc verification and
test. In: 2014 IEEE international test conference (ITC), pp 1-9, Oct 2014

22. Weggerle A, Himpel C, Schmitt T, Schulthess P (2011) Transaction based device driver devel-
opment. In: MIPRO, pp 195-199. IEEE

Chapter 7
Model Checking Embedded C Software

Using k-Induction and Invariants

Herbert Rocha, Hussama Ismail, Lucas Cordeiro
and Raimundo Barreto

7.1 Introduction

The Bounded Model Checking (BMC) techniques based on Boolean Satisfiabil-
ity (SAT) [8] or Satisfiability Modulo Theories (SMT) [2] have been successfully
applied to verify single- and multi-threaded programs and to find subtle bugs in real
programs [11, 12, 25]. The idea behind the BMC techniques is to check the negation
of a given property at a given depth, i.e., given a transition system M, a property
¢, and a limit of iterations k, BMC unfolds the system k times and converts it into
a Verification Condition (VC) v such that i is satisfiable if and only if ¢ has a
counterexample of depth less than or equal to k.

Typically, BMC techniques are only able to falsify properties up to a given depth
k; however, they are not able to prove the correctness of the system, unless an upper
bound of k is known, i.e., a bound that unfolds all loops and recursive functions
to their maximum possible depth. In particular, BMC techniques limit the visited
regions of data structures (e.g., arrays) and the number of loop iterations. This limits
the state space that needs to be explored during verification, leaving enough that
real errors in applications [11, 12, 21, 25] can be found; BMC tools are, however,
susceptible to exhaustion of time or memory limits for programs with loops whose
bounds are too large or cannot be determined statically.

Consider, for example, the simple program in Listing 22 (left), in which the loop
in line 2 runs an unknown number of times, depending on the initial nondeterministic
value assigned to x in line 1. The assertion in line 3 holds independent of x’s initial

H. Rocha ()
Federal University of Roraima, Boa Vista, Brazil
e-mail: herberthb12 @gmail.com

H. Ismail - L. Cordeiro - R. Barreto
Federal University of Amazonas, Manaus, Brazil
e-mail: hussamaismail @ gmail.com

L. Cordeiro
e-mail: lucasccordeiro@gmail.com

R. Barreto
e-mail: xbarretox @gmail.com

© Springer Science+Business Media, LLC 2017 159
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_7

160 H. Rocha et al.

value. Unfortunately, BMC tools like CBMC [11], LLBMC [25], or ESBMC [12]
typically fail to verify programs that contain such loops. Soundness requires that
they insert a so-called unwinding assertion (the negated loop bound) at the end of
the loop, as in Listing 23 (right), line 5. This unwinding assertion causes the BMC
tool to fail if k is too small.

unsigned int x=x;
while(x>0) x—;
assert(x==0);

W -

Listing 22 Unbounded loop

unsigned int x=x;
if (x>0)] .
. k copies
X—;
assert (!(x>0));

1
2
3
4
5
6| assert(x==0);

Listing 23 Finite unwinding

In mathematics, one usually attacks such unbounded problems using proof by
induction. A variant called k-induction has been successfully combined with contin-
uously refined invariants [6], to prove that (restricted) C programs do not contain data
races [14, 15], or that design-time time constraints are respected [16]. Additionally,
k-induction is a well-established technique in hardware verification, where it is easy
to apply due to the monolithic transition relation present in hardware designs [16,
18, 32]. This paper contributes a new algorithm to prove correctness of C programs
by k-induction in a completely automatic way (i.e., the user does not need to provide
the loop invariant).

The main idea of the algorithm is to use an iterative deepening approach and check,
for each step k up to a maximum value, three different cases called here as base case,
forward condition, and inductive step. Intuitively, in the base case, we intend to find
a counterexample of ¢ with up to k iterations of the loop. The forward condition
checks whether loops have been fully unrolled and the validity of the property ¢ in
all states reachable within k iterations. The inductive step verifies that if ¢ is valid
for k iterations, then ¢ will also be valid for the next unfolding of the system. For
each step of the algorithm, we infer program invariants using affine constraints to
prune the state space exploration and to strengthen the induction hypothesis.

These algorithms were all implemented in the Efficient SMT-based Context-
Bounded Model Checker tool (known as ESBMC!), which uses BMC techniques
and SMT solvers (e.g., [10, 13]) to verify embedded systems written in C/C++ [12].
In Cordeiro et al. [12] the ESBMC tool is presented, which describes how the input
program is encoded in SMT; what the strategies for unrolling loops are; what are
the transformations/optimizations that are important for performance; what are the

! Available at http://esbmc.org/.

http://esbmc.org/

7 Model Checking Embedded C Software Using k-Induction and Invariants 161

benefits of using an SMT solver instead of a SAT solver; and how counterexamples
to falsify properties are reconstructed. Here we extend our previous work in Rocha et
al. [29] and Ramalho et al. [17] and focus our contribution on the combination of the
k-induction algorithm with invariants. First, we describe the details of an accurate
translation that extends ESBMC to prove the correctness of a given (safety) prop-
erty for any depth without manual annotations of loops invariants. Second, we adopt
program invariants (using polyhedra) in the k-induction algorithm, to speed up the
verification time and to improve the quality of the results by solving more verification
tasks in less time. Third, we show that our present implementation is applicable to
a broader range of verification tasks, which other existing approaches are unable to
support [14, 15, 18].

7.2 Motivating Example

As a motivating example, a program extracted from the benchmarks of the SV-
COMP [3] is used as a running example as shown in Listing 24, which already
includes invariants using polyhedra.

1| int main(int argc, char sxargv)
21 {
3| uint64_t i=I, sn = 0;

4| assume(i=l && sn=0); // Invariant
5| uint32_t n;

6| assume(n>=1);

7| while (i<=n) {

8 assume(1<=i && i<=n); // Invariant
9 sn = sn+a;

10 1++;

| }

12| assume(I<=i && n+l<=i); // Invariant
13| assert(sn=nxa);

14] }

Listing 24 Running example for the k-induction algorithm.

In Listing 24, a is an integer constant and note that variables i and sn are declared
with a type larger than the type of the variable n to avoid arithmetic overflow. Math-
ematically, the code above represents the implementation of the sum given by the
following equation:

Si=Y a=nanx1 (7.1)
i=1

In the code of Listing 24, the invariants produced by PIPS are included as assume
statements; the property (represented by the assertion in line 13) must be true for
any value of n (i.e., for any unfolding of the program). In contrast from our k-
induction algorithm, BMC techniques have difficulties in proving the correctness of

162 H. Rocha et al.

this (simple) program since the upper limit value of the loop, represented by n, is
nondeterministically chosen (i.e., the variable n can assume any value from one to the
size of the unsigned int type, which varies between different types of computers). Due
to this condition, the loop will be unfolded 2" — 1 times (in the worst case, 232 — 1
times on 32 bits integer), which is thus impractical. Basically, the bounded model
checker would symbolically execute several times the increment of the variable i and
the computation of the variable sn by 4, 294, 967, 295 times. To solve the problem of
unfolding the loop 2" — 1 times, the translations previously described are performed.

7.3 Induction-Based Verification of C Programs Using
Invariants

The transformations in each step of the k-induction algorithm take place at the inter-
mediate representation level, after converting the C program into a GOTO-program,
which simplifies the representation and handles the unrolling of the loops and the
elimination of recursive functions.

7.3.1 The Proposed k-Induction Algorithm

Listing 25 shows an overview of the proposed k-induction algorithm. We do not add
additional details about the transformations in each step of the algorithm; we keep
it simple and describe the details in the next subsections so that one can have a big
picture of the proposed method. The input of the algorithm is a C program P together
with the safety property ¢. The algorithm returns true (if there is no path that violates
the safety property), false (if there exists a path that violates the safety property), and
unknown (if it does not succeed in computing an answer true or false).

In the base case, the algorithm tries to find a counterexample up to a maximum
number of iterations k. In the forward condition, global correctness of the loop with
regard to the property is shown for the case that the loop iterates at most k times; and
in the inductive step, the algorithm checks that, if the property is valid in k iterations,
then it must be valid for the next iterations. The algorithm runs up to a maximum
number of iterations and only increases the value of & if it cannot falsify the property
during the base case.

7.3.1.1 The Difference to Other k-Induction Algorithms

Our k-induction algorithm is slightly different than those presented by Grofie et
al. [18], Donaldson et al. [15], and Hagen et al. [19]. In GroB3e et al., the forward
condition and the inductive step are computed differently from our approach (as

7 Model Checking Embedded C Software Using k-Induction and Invariants 163

described in Sect. 7.3.1) and the value of k is increased only at the end of the algorithm;
in this particular case, computational resources are thus wasted since loops are usually
unfolded at least two times. Donaldson et al. [15] and Hagen et al. [19] propose
the k-induction with two steps only (i.e., the base case and the inductive step);
however, the inductive step of the approach proposed by Donaldson et al. requires
annotations in the code to introduce loops invariants. It is worth noting that Donaldson
et al. improve the method and reduce the annotation overhead [14]. However, our
method is completely automatic as in Hagen et al. [19]. Additionally, as observed
in the experimental evaluation (see Sect.7.4), the use of the forward condition, in
our proposed method, improves significantly the quality of the results, because some
programs that are hard to be proved by the inductive step can be proved by the forward
condition using affine constraints.

1| input: program P and safety property ¢
2| output: true, false, or unknown

sk =1

4| while k <= max_iterations do

s| if base_case(P, ¢, k) then

6 show counterexample s[0..k]

7 return false

s| else

9 k=k+1

10 if forward_condition(P, ¢, k) then
1 return true

12 else

13 if inductive_step(P, ¢, k) then
14 return true

15 end—if

16 end—if

17| end—if

13| end—while

return unknown

o

Listing 25 An overview of the k-induction algorithm.

7.3.1.2 Loop-Free Programs

In the k-induction algorithm, the loop unwinding of the program is done incremen-
tally from one to max_iterations (cf. Listing 25), where the number of unwindings is
measured by counting the number of backjumps [27]. In each step of the k-induction
algorithm, an instance of the program that contains k copies of the loop body corre-
sponds to checking a loop-free program, which uses only if-statements in order to
prevent its execution in the case that the loop ends before k iterations.

Definition 7.1 (Loop-free Program) A loop-free program is represented by a
straight-line program (without loops) by providing an ize (9, p1, p») operator, which
takes a Boolean formula 6 and, depending on its value, selects either the second p;
or the third argument p,, where p; represents the loop body and p, represents either

164 H. Rocha et al.

another ite operator, which encodes a k-copy of the loop body, or an assertion/assume
statement.

Therefore, each step of our k-induction algorithm transforms a program with loops
into a loop-free program, such that the correctness of the loop-free program implies
the correctness of the program with loops.

If the program consists of multiple and possibly nested loops, we simply set the
number of loop unwindings globally, that is, for all loops in the program and apply
these aforementioned translations recursively. Note, however, that each case of the k-
induction algorithm performs different transformations at the end of the loop: either
to find bugs (base case) or to prove that enough loop unwindings have been done
(forward condition).

7.3.1.3 Program Transformations

In terms of program transformations, which are all done completely automatically by
our proposed method, the base case simply inserts an unwinding assumption, to the
respective loop-free program P’, consisting of the termination condition o after the
loop, as follows I A T Ao = ¢, where [is the initial condition, T is the transition
relation of P’, and ¢ is a safety property to be checked.

The forward case inserts an unwinding assertion instead of an assumption after
the loop, as follows I A T = o A ¢. The forward condition, proposed by Grofie et
al. [18], introduces a sequence of commands to check whether there is a path between
an initial state and the current state k, while in the algorithm proposed in this paper, an
assertion (i.e., the loop invariant) is automatically inserted by our algorithm, without
the user’s intervention, at the end of the loop to check whether all states are reached in
k steps. Our base case and forward condition translations can easily be implemented
on top of plain BMC.

However, for the inductive step of the algorithm, several transformations are car-
ried out. In particular, the loop while(c) {E; } is converted into

A; while(c){S; E; U; } R, (7.2)

where A is the code responsible for assigning nondeterministic values to all loop
variables, i.e., the state is havocked before the loop, c is the exit condition of the
loop while, S is the code to store the current state of the program variables before
executing the statements of E, E is the actual code inside the loop while, U is the
code to update all program variables with local values after executing E, and R is
the code to remove redundant states.

Definition 7.2 (Loop Variable) A loop variable is a variable v C V, where V =
Vatobat Y Viecar given that V., is the set of global variables and Vi, is the set of
local variables that occur in the loop of a program.

7 Model Checking Embedded C Software Using k-Induction and Invariants 165

Definition 7.3 (Havoc Loop Variable) A nondeterministic value is assigned to a
loop variable v if and only if v is used in the loop termination condition o, in the
loop counter that controls iterations of a loop, or repeatedly modified inside the loop
body.

The intuitive interpretation of S, U, and R is that if the current state (after executing
E) is different than the previous state (before executing E), then new states are
produced in the given loop iteration; otherwise, they are redundant and the code
R is then responsible for preventing those redundant states to be included into the
states vector. Note further that the code A assigns nondeterministic values to all
loop variables so that the model checker can explore all possible states implicitly.
In contrast, Grof3e et al. [18] havoc all program variables, which makes it difficult
to apply their approach to arbitrary programs since they do not provide enough
information to constrain the havocked variables in the program. Similarly, the loop
for can easily be converted into the loop while as follows: for(B;c; D){E;} is
rewritten as

B; while(c){E; D;} (7.3)

where B is the initial condition of the loop, ¢ is the exit condition of the loop, D
is the increment of each iteration over B, and E is the actual code inside the loop
for. No further transformations are applied to the loop for during the inductive step.
Additionally, the loop do while can trivially be converted into the loop while with
one difference, the code inside the loop must execute at least once before the exit
condition is checked.

The inductive step is thus represented by y A 0 = ¢, where y is the transition
relation of P/, which represents a loop-free program (cf. Definition 7.1) after applying
transformations (7.2) and (7.3). The intuitive interpretation of the inductive step is
to prove that, for any unfolding of the program, there is no assignment of particular
values to the program variables that violates the safety property being checked.
Finally, the induction hypothesis of the inductive step consists of the conjunction
between the postconditions (Post) and the termination condition (o) of the loop.

7.3.1.4 Invariant Generation

To infer program invariants, we adopted the PIPS [24] tool, which is an interproce-
dural source-to-source compiler framework for C and Fortran programs and relies on
a polyhedral abstraction of program behavior. PIPS has been developed for almost
20 years to analyze large size programs automatically [28]. PIPS performs a two-step
analysis: (1) each program instruction is associated to an affine transformer, repre-
senting its underlying transfer function. This is a bottom-up procedure, starting from
elementary instructions, then working on compound statements and up to function
definitions; (2) polyhedral invariants are propagated along with instructions, using
previously computed transformers.

166 H. Rocha et al.

In our proposed method, PIPS receives the analyzed program as input and then
it generates invariants that are given as comments surrounding instructions in the
output C code. These invariants are translated and instrumented into the program
as assume statements. In particular, we adopt the function assume (expr) to limit
possible values of the variables that are related to the invariants. This step is needed
since PIPS generates invariants that are presented as mathematical expressions (e.g.,
2j < 5t), which are not accepted by C programs syntax and invariants with #init
suffix that is used to distinguish the old value from the new value.

Algorithm 2 shows the method proposed, which receives as inputs the code gen-
erated by PIPS (PIPSCode) with invariants as comments, and it generates as output
a new instance of the analyzed code (NewCodeInv) with invariants, adopting the
function assume (expr), where expr is a expression supported by the C program-
ming language. The time complexity of this algorithm is O (n?), where n is code
size with invariants generated by PIPS. The algorithm is split into three parts: (1)
identify the #init structure in the PIPS invariants; (2) generate code to support the
translation of the #init structure in the invariant; and finally (3) translate mathe-
matical expressions contained in the invariants, which is performed by the invariants
transformation in the PIPS format to the C programming language.

Line 5 of Algorithm 2 performs the first part of the invariant translation, which
consists of reading each line of the analyzed code with invariants and identifying
whether a given comment is an invariant generated by PIPS (line 6). If an invariant
is identified and it contains the structure #init, then the invariant location (the
line number) is stored, as well as, the type and name of the variable, which has the
structure prefix #init (line 8).

After identifying the #init structures in the invariants, the second part of Algo-
rithm 2 performs line 12, which consists of reading again, each line of the analyzed
code with invariants (PIPSCode), and identifying the beginning of each function in
the code. For each identified function, the algorithm checks whether that function has
identified some #1init structure (line 15). If it has been identified, for each variable
that has the suffix #init, a new line of code is generated at the beginning of the
function, with the declaration of an auxiliary variable, which contains the old vari-
able value, i.e., its value at the beginning of the function. The new created variable
has the following format type var_init = wvar, where type is the identified
variable type, and var is the identified variable name. During the execution of this
algorithm, a new instance of the code (NewCodeInv) is generated.

In the third (and final part) of Algorithm 2 (line 22), each line of the new code
instance (NewCodeInv) is read to convert each PIPS invariant into expressions
supported by the C programming language. This transformation consists in applying
regular expressions (line 27) to add operators (e.g., from 2j to 2 x j) and replacing
the structure #init to _init. For each analyzed PIPS comment/invariant, we
generate a new line of code to the new format, where this line is concatenated with
the operator && and added to the __ESBMC_assume function.

7 Model Checking Embedded C Software Using k-Induction and Invariants 167

Algorithm 2 Translation algorithm of PIPS invariants

1: Input: PIPSCode - C code with PIPS invariants

2: Output: NewCodelnv - New code with invariant supported by C programs
// dictionary to identify #init

3: dict_variniteloc < { }
// list for the new code generated in the translation

4: NewCodelnv « { }
// Part 1 - identifying #init in the invariants

5: for all line of the PIPSCode do

6: if is a PIPS comment in this pattern // P(w,x) {w ==0, x#init > 10} then
7: if the comment has the pattern ([a-zA-Z0-9_]1+) #init then

8: dict_variniteloc[line] < the variable suffixed #init

9: end if

10: end if

11: end for

// Part 2 - code generation to support #init structure
12: for all line of PIPSCode do
13: NewCodelnv <« line
14: if is the beginning of a function then

15: if has some line number of this function € dict_variniteloc then

16: for all variable € dict_variniteloc do

17: NewCodelnv < Declare a variable with this pattern type var_init = var
18: end for

19: end if

20: end if

21: end for

// Part 3 - correct the invariant format
22: for all line of NewCodelnv do
// list to the translated invariants
23: listinvpips < { }
24: NewCodelnv < line
25: if is a PIPS comment in this pattern // P (w,x) {w ==0, x#init > 10} then

26: for all expression € {w == 0, x#init > 10} do

27: listinvpips <— Reformulate the expression according to the C programs syntax and
replace #init by _init

28: end for

29: NewCodelnv «<— __ ESBMC_ assume(concatenate the invariants in listinvpips with &&)

30: endif

31: end for

7.3.2 Running Example

In this section, we explain how the k-induction algorithm (see Listing 25) can prove
correctness of the C program shown in Listing 24.

168 H. Rocha et al.

7.3.2.1 The Base Case

The base case initializes the limits of the loop’s termination condition with nondeter-
ministic values so that the model checker can explore all possible states implicitly.
The pre- and postconditions of the loop shown in Listing 24, in static single assign-
ment (SSA) form [27], are as follows:

n; = nondet_uint Any > 1
Pre .= .
Asn=0Ai; =1

Post :=[ix = 1A ix >ny = snp=n; xa]

where Pre and Post are the pre and postconditions to compute the sum given by
Eq.(7.1), respectively, and nondet_uint is a nondeterministic function, which can
return any value of type unsigned int. In the preconditions, n; represents the first
assignment to the variable n, which is a nondeterministic value greater than or equal
to one. This ensures that the model checker explores all possible unwindings of the
program. Additionally, sn| represents the first assignment to the variable sn and i is
the initial condition of the loop. In the postconditions, sn; represents the assignment
n + 1 for the variable sn in Listing 24, which must be true if iy > n,. The code that
is not pre or postcondition is represented by the variable Q (i.e., the sequence of
commands inside the loop for) and it does not undergo any transformation during
the base case. The resulting code of the base case transformations can be seen in
Listing 26 (cf. Definition 7.1). Note that the assume (in line 11), which consists of the
termination condition, eliminates all execution paths that do not satisfy the constraint
i > n. This ensures that the base case finds a counterexample of depth k without
reporting any false negative result. Note further that other assume statements, shown
in Listing 24, are simply eliminated during the symbolic execution by propagating
constants and checking that the resulting expression evaluates to frue [12].

1| int main(int argc, char ssargv) {
2| uint64_t i, sn=0;

3| uint32_t n=nondet_uint();

4 assume (n>=1);

5 i=1;

6| if (i<=n) {

7 sn = sn + a;]kcopies

8 1++;

|)

1| assume(i>n); // unwinding assumption
12 assert(sn=nxa);

13| }

Listing 26 Example code for the proof by mathematical induction - during base case.

7 Model Checking Embedded C Software Using k-Induction and Invariants 169
7.3.2.2 The Forward Condition

In the forward condition, the k-induction algorithm attempts to prove that the loop is
sufficiently unfolded and whether the property is valid in all states reachable within
k steps. The postconditions of the loop shown in Listing 24, in SSA form, can then
be defined as follows:

Post .= [ik >n; ASng = n xa]

The preconditions of the forward condition are identical to the base case. In the
postconditions Post, there is an assertion to check whether the loop is sufficiently
expanded, represented by the constraint iy > n;, where i represents the value of the
variable i atiteration n + 1. The resulting code of the forward condition transforma-
tions can be seen in Listing 27 (cf. Definition 7.1). The forward condition attempts
to prove that the loop is unfolded deep enough (by checking the loop invariant in line
11) and if the property is valid in all states reachable within k iterations (by checking
the assertion in line 12). As in the base case, we also eliminate assume expressions
by checking whether they evaluate to true by propagating constants during symbolic
execution.

int main(int argc, char sargv) {

uint64_t i, sn=0;

uint32_t n=nondet_uint();
assume (n>=1);

i=1;

if (i<=n) {
sn = sn + a; t k copies
i++;

}

1 assert(i>n); // check loop invariant
12 assert(sn=nx*a);

i3]}

Listing 27 Example code for the proof by mathematical induction - during forward condition.

7.3.2.3 The Inductive Step

In the inductive step, the k-induction algorithm attempts to prove that, if the property
is valid up to depth k, the same must be valid for the next value of k. Several changes
are performed in the original code during this step. First, a structure called statet
is defined, containing all variables within the loop and the exit condition of that
loop. Then, a variable of type statet called cs (current state) is declared, which is
responsible for storing the values of a given variable in a given iteration; in the current
implementation, the cs data structure does not handle heap-allocated objects. A state

170 H. Rocha et al.

vector of size equal to the number of iterations of the loop is also declared, called sv
(state vector) that will store the values of all variables on each iteration of the loop.

Before starting the loop, all loop variables (cf. Definitions 7.2 and 7.3) are initial-
ized to nondeterministic values and stored in the state vector on the first iteration of
the loop so that the model checker can explore all possible states implicitly. Within
the loop, after storing the current state and executing the code inside the loop, all
state variables are updated with the current values of the current iteration. An assume
instruction is inserted with the condition that the current state is different from the
previous one, to prevent redundant states to be inserted into the state vector; in this
case, we compare sv; [i]tocs; forO < j < kand 0 <i < k. In the example we add
constraints as follows:

sv1[0] # cs
sv1 [0] # cs1 A svp [1] # cs2

sv1[0] # csy Asva [1] £ cso AL s [i] # sk (7.4)

Although we can compare svi [i] to all cs; for i < k (since inequalities are not
transitive), we found the encoding shown in Eq. (7.4) to be more efficient, leading to
fewer timeouts when applied to the SV-COMP benchmarks.

Finally, an assume instruction is inserted after the loop, which is similar to that
inserted in the base case. The pre- and postconditions of the loop shown in Listing 24,
in SSA form, are defined as follows:

n; = nondet_uint An; > 1
Asni=0Ai; =1

Pre := | A cs1.vo = nondet_uint
VAN
A CS1.Vy, = nondet_uint

Post := [ik >n| = Sng = nxa]

In the preconditions Pre, in addition to the initialization of the variables, the
value of all variables contained in the current state ¢s must be assigned with non-
deterministic values, where m is the number of (automatic and static) variables that
are used in the program. The postconditions do not change, as in the base case; they
only contain the property that the algorithm is trying to prove. In the instruction set
0, changes are made in the code to save the value of the variables before and after
the current iteration i, as follows:

svli—1]1=cs; A S
N CS;.Vy = Vo
VAN

N CS; Vg = Vi

7 Model Checking Embedded C Software Using k-Induction and Invariants 171

In the instruction set Q, sv[i — 1] is the vector position to save the current state
cs;, S is the actual code inside the loop, and the assignments cs;.vo = vo; A ... A
CS;.Vym = Vy; represent the value of the variables in iteration i being saved in the
current state c¢s;. The modified code for the inductive step, using the notation defined
in Sect.7.3.1, can be seen in Listing 28. Note that the if-statement (lines 18-26) in
Listing 28 is copied k-times according to Definition 7.1. As in the base case, the
inductive step also inserts an assume instruction, which contains the termination
condition. Differently from the base case, the inductive step proves that the property,
specified by the assertion, is valid for any value of n.

Lemma 7.1 [fthe induction hypothesis {Post A — (i < n)} holds for k 4+ 1 con-
secutive iterations, then it also holds for k preceding iterations.

After the loop while is finished, the induction hypothesis {Post A — (i <n)}is
satisfied on any number of iterations; in particular, the SMT solver can easily verify
Lemma 7.1 and conclude that sn == n * a is inductive relative to n. As in previous
cases, we also eliminate assume expressions by checking whether they evaluate to
true by propagating constants during symbolic execution.

1| //variables inside the loop

2| typedef struct state {

3| long long int i, sn;

4| unsigned int n;

5| } statet;

6| int main(int argc, char sxargv) {
7| uint64_t i, sn=0;

8| uint32_t n=nondet_uint();

9| assume (n>=1);

0| i=1;

1| //declaration of current state

12| //and state vector

13| statet cs, sv[n];

14| //A: assign nondeterministc values

15| cs.i=nondet_uint();

16| c¢s.sn=nondet_uint();

17| cs.n=n;

18| if (i<=n) { //c: exit condition

19| sv[i—l]=cs; //S: store current state
| sn = sn + a; //E: code inside the loop } k copies
21| //U: update variables with local values
2| c¢s.i=i; c¢s.sn=sn; c¢s.n=n;

2| //R:remove redundant states

24| assume(sv[i—1]!=cs);

25 i++;

26| }

2| assume(i>n); //unwinding assumption
29| assert(sn=n+a);
30| }

Listing 28 Example code for the proof by mathematical induction - during inductive step.

172 H. Rocha et al.

7.4 Experimental Evaluation

This section is split into two parts. The setup is described in Sects.7.4.1, 7.4.2
describes a comparison among DepthK,> ESBMC [12], CBMC [23], and CPAchecker
(Configurable Software Verification Platform) [7] using a set of C benchmarks from
SV-COMP [4] and embedded applications [26, 30, 33].

7.4.1 Experimental Setup

The experimental evaluation is conducted on a computer with Intel Xeon CPU E5 —
2670 CPU, 2.60GHz, 115GB RAM with Linux 3.13.0 — 35-generic x86_64. Each
verification task is limited to a CPU time of 15 minutes and a memory consumption
of 15 GB. Additionally, we defined the max_iterations to 100 (cf. Listing 25). To
evaluate all tools, we initially adopted: 142 ANSI-C programs of the SV-COMP 2015
benchmarks?; in particular, the Loops subcategory; and 34 ANSI-C programs used
in embedded systems: Powerstone [30] contains a set of C programs for embedded
systems (e.g., for automobile control and fax applications); while SNU real time [33]
contains a set of C programs for matrix and signal processing functions such as matrix
multiplication and decomposition, quadratic equations solving, cyclic redundancy
check, fast fourier transform, LMS adaptive signal enhancement, and JPEG encoding;
and the WCET [26] contains C programs adopted for worst-case execution time
analysis. Additionally, we present a comparison with the tools:

e DepthK v1.0 with k-induction and invariants using polyhedra, the parameters are
defined in the wrapper script available in the tool repository;

e ESBMC v1.25.2 adopting k-induction without invariants. We adopted the wrapper
script from SV-COMP 2013* to execute the tool;

e CBMC v5.0 with k-induction, running the script provided in [5];

e CPAChecker’ with k-induction and invariants at revision 15596 from its SVN
repository. The options to execute the tool are defined in [5]. To improve the
presentation, we report only the results of the options that presented the best results.
These options are defined in [5] as follows: CPAchecker cont.-ref. k-Induction (k-
Ind InvGen) and CPAchecker no-inv k-Induction.

Zhttps://github.com/hbgit/depthk.
3http://sv-comp.sosy-lab.org/2015/.
“http://sv-comp.sosy-lab.org/2013/.
Shttps://svn.sosy-lab.org/software/cpachecker/trunk.

https://github.com/hbgit/depthk
http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2013/
https://svn.sosy-lab.org/software/cpachecker/trunk

7 Model Checking Embedded C Software Using k-Induction and Invariants 173

7.4.2 Experimental Results

In preliminary tests with the DepthK, for programs from the SV-COMP 2015 loops
subcategory, we observed that 4.92% of the results are false incorrect. We believe
that, in turns, this is due to the inclusion of invariants, which over-approximates the
analyzed program, resulting in incorrect exploration of the states sets. We further
identify that, in order to improve the approach implemented in DepthK tool, ones
needs to apply a rechecking/refinement of the result found by the BMC procedure.
Here, we re-check the results using the forward condition and the inductive step of
the k-induction algorithm.

In DepthK, the program verification with invariants modifies the k-induction algo-
rithm (Listing 25), as presented in Algorithm 3. In this new k-induction algorithm, we
added the following variables: last_result, which stores the last result identified
in the verification of a given step of the k induction, and force_basecase, which
is an identifier to apply the rechecking procedure in the base case of the k-induction.
The main difference in the execution of Algorithm 3 is to identify whether in the
forward condition (line 18) and the inductive step (line 22), the verification result
was TRUE, i.e., there was no property violation in a new k unwindings.

After running all tools, we obtained the results shown in Table7.1 for the SV-
COMP 2015 benchmark and in Table7.2 for the embedded systems benchmarks,
where each row of these tables means: name of the tool (Tool); total number of
programs that satisfy the specification (correctly) identified by the tool (Correct
Results); total number of programs that the tool has identified an error for a program
that meets the specification, i.e., false alarm or incomplete analysis (False Incorrect);
total number of programs that the tool does not identify an error, i.e., bug missing or
weak analysis (True Incorrect); Total number of programs that the tool is unable to
model check due to lack of resources, tool failure (crash), or the tool exceeded the
verification time of 15 min (Unknown and TO); the run time in minutes to verify all
programs (Time).

Table 7.1 Experimental results for the SV-COMP’ 15 loops subcategory

Tool DepthK ESBMC + CPAchecker | CPAchecker | CBMC +
k-induction | no-inv cont.-ref. k-induction
k-Induction | k-Induction
(k-Ind
InvGen)
Correct results 94 70 78 76 64
False incorrect 1 0 0 1 3
True incorrect 0 0 4 7 1
Unknown and TO 47 72 60 58 74
Time (min) 190.38 141.58 742.58 756.01 1141.17

174

H. Rocha et al.

Algorithm 3 The k-induction algorithm with a recheck in base case.

Input: Program P’ with invariants and the safety proprities ¢

1:

2: Output: TRUE, FALSE, or UNKNOWN
3: k=1

4: last_result = UNKNOWN

5: force_basecase = 0

6: while k <= max_iterations do

7 if force_basecase > 0 then

8

k=k+5
9: endif
10: if BASECASE(P’, ¢, k) then
11: show the counterexample s[0. . . k]
12: return FALSE
13: else
14: if force_basecase > 0 then
15: return last_result
16: end if
17: k=k+1
18: if FORWARDCONDITION(P’, ¢, k) then
19: force_basecase = 1
20: last_result = TRUE
21: else
22: if INDUTIVESTEP(P’, ¢, k) then
23: force_basecase = 1
24: last_result = TRUE
25: end if
26: end if
27: endif

28: end while
29: return UNKNOWN

Table 7.2 Experimental results for the Powerstone, SNU, and WCET benchmarks

Tools DepthK ESBMC + CPAchecker | CPAchecker | CBMC +
k-induction | no-inv cont.-ref. k-induction
k-Induction | k-Induction
(k-Ind
InvGen)
Correct results 17 18 27 27 15
False incorrect 0 0 0 0 0
True incorrect 0 0 0 0 0
Unknown and TO 17 16 7 7 19
Time (min) 77.68 54.18 1.8 1.95 286.06

We evaluated the experimental results as follows: for each program we identified
the verification result and time. We adopted the same scoring scheme that is used
in SV-COMP 2015.° For every bug found, 1 score is assigned, for every correct

Ohttp://sv-comp.sosy-lab.org/2015/rules.php.

http://sv-comp.sosy-lab.org/2015/rules.php

200 -
180 -
160 -
140 -
120 -

7 Model Checking Embedded C Software Using k-Induction and Invariants 175
100 -
80 -

140
101 i
65
60- 53
40-
20 -
0,

CBMC CPAchecker CPAchecker DepthK ESBMC
cont.-ref. no-inv
k-Induction k-Induction
(k-Ind InvGen)

Score (Max: 235)

Fig. 7.1 Score to loops subcategory

safety proof, 2 scores are assigned. A score of 6 is subtracted for every wrong alarm
(False Incorrect) reported by the tool, and 12 scores are subtracted for every wrong
safety proof (True Incorrect). According to [6], this scoring scheme gives much more
value in proving properties than finding counterexamples, and significantly punishes
wrong answers to give credibility for tools. Figures7.1 and 7.2 present the compar-
ative results for the SV-COMP and embedded systems benchmarks, respectively.
It is noteworthy that for the embedded systems programs, we have used safe pro-
grams [12] since we intend to check whether we have produced strong invariants to
prove properties.

The experimental results in Fig.7.1 show that the best scores belong to the
DepthK, which combines k-induction with invariants, achieving 140 scores, ESBMC
with k-induction without invariants achieved 105 scores, and CPAchecker no-inv k-
induction achieved 101 scores. In Fig. 7.2, we found that the best scores belong to the
CPAchecker no-inv k-induction with 54 scores, ESBMC with k-induction without
invariants achieved 36 scores, and DepthK combined with k-induction and invariants,
achieved 34 scores. We observed that DepthK achieved a lower score in the embed-
ded system benchmarks. However, the DepthK results are still higher than that of
CBMC and in the SV-COMP benchmark, DepthK achieved the highest score among
all tools. In DepthK, we identified that, in turns, the lower score in the embedded
system benchmarks is due to 35.30% of the results identified as Unknown, i.e., when

176 H. Rocha et al.
70 -

60 -

54 54
50 -
40-
34 36
30
30-
20-
10-
O ..

CBMC CPAchecker CPAchecker DepthK ESBMC
cont.-ref. no-inv
k-Induction k-Induction
(k-Ind InvGen)

Score (Max: 68)

Fig. 7.2 Score to embedded systems

it is not possible to determine an outcome or due to a tool failure. We also identified
failures related to invariant generation and code generation that is given as input to
the BMC procedure. It is noteworthy that DepthK is still under development (in a
somewhat preliminary state), so we argue that the results are promising.

To measure the impact of applying invariants to the k-induction based verification,
we classified the distribution of the DepthK and ESBMC results, per verification step,
i.e., base case, forward condition, and inductive step. Additionally, we included the
verification tasks that result in unknown and timeout (CPU time exceeded 900
seconds). In this analysis, we evaluate only the results of DepthK and ESBMC,
because they are part of our solution, and also because in the other tools, it is not
possible to identify the steps of the k-induction in the standard logs generated by
each tool. Figure 7.3 shows the distribution of the results, for each verification step,
to the SV-COMP loops subcategory, and Fig. 7.4 presents the results to the embedded
systems benchmarks.

The distribution of the results in Figs.7.3 and 7.4 shows that DepthK can prove
more than 25.35 and 29.41% of properties, during the inductive step, than ESBMC,
respectively. These results lead to the conclusion that invariants helped the k-
induction algorithm to prove that loops were sufficiently unwound and whenever
the property is valid for £ unwindings, it is also valid after the next unwinding of
the system. We also identified that DepthK did not find a solution in 33.09% of the

7 Model Checking Embedded C Software Using k-Induction and Invariants 177

%
'_)%
3 6
3 ~6> o
o
2 30 5 <> %DephtK
5 ¥ %o ESBMC
2 29 o e
a
>
m 4
S i
[
'6‘3 .
o
%o

Verification Result

Fig. 7.3 Results for loops

programs in Fig. 7.3, and 50% in Fig. 7.4 (adding Unknown and Timeout). This is
explained by the invariant generated from PIPS, which could not generate invariants
strong enough to the verification with the k-induction, either due to a transformer or
due to the invariants that are not convex; and also due to some errors in the tool imple-
mentation. ESBMC with k-induction did not find a solution in 50.7% of the programs
in Fig.7.3, i.e., 17.61% more than DepthK (adding Unknown and Timeout); and
in Fig.7.4, ESBMC did not find a solution in 47.06%, then only 3.64% less than
the DepthK, thus providing evidences that the program invariants combined with
k-induction can improve the verification results.

In Table 7.1, the verification time of DepthK to the loops subcategory is typically
faster than the other tools, except for ESBMC, as can be seen in Fig. 7.5. This happens
because DepthK has an additional time for the invariants generation. In Table 7.2,
we identified that the verification time of DepthK is only faster than CBMC, as
shown in Fig. 7.6. However, note that the DepthK verification time is proportional to
ESBMC, since the time difference is 23.5 min; we can argue that this time difference
is associated to the DepthK invariant generation.

We believe that the DepthK verification time can be significantly improved in two
directions: fix some errors in the tool implementation, because some results generated
as Unknown are related to failures in the tool execution; and adjustments in the PIPS

178 H. Rocha et al.

7)0 >
% %
< 3
= S
™ 5
s g —1%
=) %
@ %DephtK
S ESBMC
()]
S
Q 4
z g
% 7
7>
%
<Q
040,22 0
29[To P

Verification Result

Fig. 7.4 Results for embedded programs

Tools -e- CBMC -4 CPAchecker (k-Ind InvGen) - CPAchecker (k-ind no-inv) -+ DepthK -8 ESBMC

1000

100

Time (s)
]

10 20 30 40 5 60 70 80 90 100 110 120 130 140
Programs of loops category from SVCOMP 2015

Fig. 7.5 Verification time to the loops subcategory

script parameters to generate invariants, since PIPS has a broad set of commands for

code transformation, which might have a positive impact in the invariant generation
for specific class of programs.

7 Model Checking Embedded C Software Using k-Induction and Invariants 179

Tools -e- CBMC -4- CPAchecker (k-Ind InvGen) - CPAchecker (k-ind no-inv) -+ DepthK -8- ESBMC

1000

100

10

Time (s)

0.1

4 8 12 16 20 24 28 32
Benchmarks of embedded systems

Fig. 7.6 Verification time to the embedded systems programs

7.5 Related Work

The application of the k-induction method is gaining popularity in the software veri-
fication community. Recently, Bradley et al. introduce “property-based reachability”
(or IC3) procedure for the safety verification of systems [9, 20]. The authors have
shown that IC3 can scale on certain benchmarks where k-induction fails to succeed.
However, we do not compare k-induction against IC3 since it is already done by
Bradley [9]; we focus our comparison on related k-induction procedures.

Previous work on the one hand have explored proofs by mathematical induction of
hardware and software systems with some limitations, e.g., requiring changes in the
code to introduce loop invariants [14, 15, 18]. This complicates the automation of the
verification process, unless other methods are used in combination to automatically
compute the loop invariant [1, 31]. Similar to the approach proposed by Hagen and
Tinelli [19], our method is completely automatic and does not require the user to
provide loops invariants as the final assertions after each loop. On the other hand,
state-of-the-art BMC tools have been widely used, but as bug-finding tools since they
typically analyze bounded program runs [11, 25]; completeness can only be ensured
if the BMC tools know an upper bound on the depth of the state space, which is not
generally the case. This paper closes this gap, providing clear evidence that the k-
induction algorithm can be applied to a broader range of C programs without manual
intervention.

Grofle et al. describe a method to prove properties of TLM designs (Transaction
Level Modeling) in SystemC [18]. The approach consists of converting a SystemC
program into a C program, and then it performs the proof of the properties by math-
ematical induction using the CBMC tool [11]. The difference to the one described in
this paper lies on the transformations carried out in the forward condition. During the
forward condition, transformations similar to those inserted during the inductive step
in our approach, are introduced in the code to check whether there is a path between
an initial state and the current state k; while the algorithm proposed in this paper, an

180 H. Rocha et al.

assertion is inserted at the end of the loop to verify that all states are reached in k
steps.

Donaldson et al. describe a verification tool called Scratch [15] to detect data races
during Direct Memory Access (DMA) in the CELL BE processor from IBM [15]. The
approach used to verify C programs is the k-induction technique. The approach was
implemented in the Scratch tool that uses two steps, the base case and the inductive
step. The tool is able to prove the absence of data races, but it is restricted to verify
that specific class of problems for a particular type of hardware. The steps of the
algorithm are similar to the one proposed in this paper, but it requires annotations in
the code to introduce loops invariants.

Kahsai et al. describe PKIND, a parallel version of the tool KIND, used to verify
invariant properties of programs written in Lustre [22]. In order to verify a Lustre
program, PKIND starts three processes, one for base case, one for inductive step,
and one for invariant generation, note that unlike ESBMC, the k-induction algorithm
used by PKIND does not have a forward condition step. This because of PKIND
is for Lustre programs that do not terminate. Hence, there is no need for checking
whether loops have been unrolled completely. The base case starts the verification
with k = 0, and increments its value until it finds a counterexample or it receives
a message from the inductive step process that a solution was found. Similarly, the
inductive step increases the value of k until it receives a message from the base case
process or a solution is found. The invariant generation process generates a set of
candidates invariants from predefined templates and constantly feeds the inductive
step process, as done recently by Beyer et al. [6].

7.6 Conclusions

The main contributions of this work are the design, implementation, and evaluation
of the k-induction algorithm, adopting invariants using polyhedra in a verification
tool, as well as, the use of the technique for the automated verification of reacha-
bility properties in embedded systems programs. To the best of our knowledge, this
paper marks the first application of the k-induction algorithm to a broader range
of embedded C programs. To validate the k-induction algorithm, experiments were
performed involving 142 benchmarks of the SV-COMP 2015 loops subcategory, and
34 ANSI-C programs from the embedded systems benchmarks. Additionally, we
presented a comparison to the ESBMC with k-induction, CBMC with k-induction,
and CPAChecker with k-induction and invariants.

The experimental results are promising; the proposed method adopting k-induction
with invariants (implemented in DepthK tool) determined 11.27% more accurate
results than that obtained by CPAChecker, which had the second best result in the
SV-COMP 2015 loops subcategory. The experimental results also show that the k-
induction algorithm without invariants was able to verify 49.29% of the programs
in the SV-COMP benchmarks in 141.58 min, and k-induction with invariants using
polyhedra (i.e., DepthK) was able to verify 66.19% of the benchmarks in 190.38

7 Model Checking Embedded C Software Using k-Induction and Invariants 181

min. Therefore, we identified that k-induction with invariants determined 17% more
accurate results than the k-induction algorithm without invariants.

For embedded systems benchmarks, we identified some improvements in the
DepthK tool, related to defects in the tool execution, and possible adjustments to
invariant generation with PIPS. This is because the results were inferior compared to
the other tools for the embedded systems benchmarks, where DepthK only obtained
better results than CBMC tool. However, we argued that the proposed method, in
comparison to other state-of-the-art tools, showed promising results indicating its
effectiveness. In addition, both forms of the proposed method were able to prove or
falsify a wide variety of safety properties; however, the k-induction algorithm, adopt-
ing polyhedral solves more verification tasks, which demonstrate an improvement
of the induction k-algorithm effectiveness.

References

1. Ancourt C, Coelho F, Irigoin F (2010) A modular static analysis approach to affine loop
invariants detection. In: Electronic notes in theoretical computer science (ENTCS). Elsevier
Science Publishers B. V, pp 3-16

2. Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. In: Hand-
book of satisfiability. IOS Press, pp 825-885

3. Beyer D (2013) Second competition on software verification—(Summary of SV-COMP 2013).
In: Conference on tools and algorithms for the construction and analysis of systems (TACAS).
Springer, pp 594-609

4. Beyer D (2015) Software verification and verifiable witnesses—(Report on SV-COMP 2015).
In: Conference on tools and algorithms for the construction and analysis of systems (TACAS),
pp 401-416

5. Beyer D, Dangl M, Wendler P (2015) Boosting k-Induction with continuously-refined invari-
ants. http://www.sosy-lab.org/~dbeyer/cpa-k-induction/

6. Beyer D, Dangl M, Wendler P (2015) Combining k-Induction with continuously-refined invari-
ants. CoRR abs/1502.00096. http://arxiv.org/abs/1502.00096

7. Beyer D, Keremoglu ME (2011) CPAchecker: a tool for configurable software verification. In:
Conference on computer-aided verification (CAV), pp 184-190

8. Biere A (2009) Bounded model checking. In: Handbook of satisfiability. IOS Press, pp 457481

9. Bradley AR (2012) IC3 and beyond: incremental, inductive verification. In: Computer aided
verification (CAV). Springer, p 4

10. Brummayer R, Biere A (2009) Boolector: an efficient SMT solver for bit-vectors and arrays. In:
Proceedings of the 15th international conference on tools and algorithms for the construction
and analysis of systems: held as part of the joint European conferences on theory and practice
of software (ETAPS). Springer, pp 174-177

11. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Tools and
algorithms for the construction and analysis of systems (TACAS). Springer, pp 168-176

12. Cordeiro L, Fischer B, Marques-SilvaJ (2012) SMT-based bounded model checking for embed-
ded ANSI-C software. IEEE Trans Softw Eng (TSE):957-974

13. De Moura L, Bjgrner N (2008) Z3: an efficient SMT solver. In: Tools and algorithms for the
construction and analysis of systems (TACAS). Springer, pp 337-340

14. Donaldson AF, Haller L, Kroening D, Riimmer P (2011) Software verification using k-
induction. In: Proceedings of the 18th international static analysis symposium (SAS). Springer,
pp 351-368

http://www.sosy-lab.org/~dbeyer/cpa-k-induction/
http://arxiv.org/abs/1502.00096

182

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

H. Rocha et al.

Donaldson AF, Kroening D, Ruemmer P (2010) Automatic analysis of scratch-pad memory
code for heterogeneous multicore processors. In: Proceedings of the 16th international confer-
ence on tools and algorithms for the construction and analysis of systems (TACAS). Springer,
pp 280-295

Eén N, Sorensson N (2003) Temporal induction by incremental SAT solving. Electronic notes
in theoretical computer science (ENTCS), pp 543-560

Gadelha M, Ismail H, Cordeiro L (2015) andling loops in bounded model checking of ¢ pro-
grams via k-induction. Int J Softw Tools Technol Transf (to appear) (2015)

Grofe D, Le HM, Drechsler R (2009) Induction-based formal verification of SystemC TLM
designs. In: 10th International workshop on microprocessor test and verification (MTV), pp
101-106

Hagen G, Tinelli C (2008) Scaling up the formal verification of Lustre programs with SMT-
based techniques. In: Proceedings of the 8th international conference on formal methods in
computer-aided design (FMCAD). IEEE, pp 109-117

Hassan Z, Bradley AR, Somenzi F (2013) Better generalization in IC3. In: Formal methods in
computer-aided design (FMCAD). IEEE, pp 157-164

Ivancic F, Shlyakhter I, Gupta A, Ganai MK (2005) Model checking C programs using F-
SOFT. In: 23rd international conference on computer design (ICCD). IEEE Computer Society,
pp 297-308

Kahsai T, Tinelli C (2011) Pkind: A parallel k-induction based model checker. In: Proceedings
10th international workshop on parallel and distributed methods in verification (PDMC), pp
55-62

Kroening D, Tautschnig M (2014) CBMC—C Bounded model checker—(Competition Con-
tribution). In: Conference on tools and algorithms for the construction and analysis of systems
(TACAS), pp 389-391

Maisonneuve V, Hermant O, Irigoin F (2014) Computing invariants with transformers: exper-
imental scalability and accuracy. In: 5th International workshop on numerical and symbolic
abstract domains (NSAD). Electronic notes in theoretical computer science (ENTCS). Elsevier,
pp 17-31

Merz F, Falke S, Sinz C (2012) LLBMC: bounded model checking of C and C++ programs
using a compiler IR. In: Proceedings of the 4th international conference on verified software:
theories, tools, experiments (VSTTE). Springer, pp 146-161

MRTC: WCET Benchmarks (2012) Milardalen Real-Time Research Center. http://www.mrtc.
mdh.se/projects/wcet/benchmarks.html

Muchnick SS (1997) Advanced compiler design and implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA

ParisTech M (2013) PIPS: Automatic parallelizer and code transformation framework. http://
pips4u.org

Rocha H, Ismail H, Cordeiro LC, Barreto RS (2015) Model checking embedded C software
using k-induction and invariants. In: Brazilian symposium on computing systems engineering
(SBESC). IEEE, pp 90-95

Scott J, Lee LH, Arends J, Moyer B (1998) Designing the Low-Power M*CORE Architecture.
In: Power driven microarchitecture workshop, pp 145-150

SharmaR, DilligI, Dillig T, Aiken A (2011) Simplifying loop invariant generation using splitter
predicates. In: Proceedings of the 23rd international conference on computer aided verification
(CAV). Springer, pp 703-719

Sheeran M, Singh S, Stédlmarck G (2000) Checking safety properties using induction and a
SAT-solver. In: Formal methods in computer-aided design (FMCAD), pp 108-125

SNU (2012) SNU real-time benchmarks. http://www.cprover.org/goto-cc/examples/snu.html

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://pips4u.org
http://pips4u.org
http://www.cprover.org/goto-cc/examples/snu.html

Chapter 8
Scalable and Optimized Hybrid Verification
of Embedded Software

Jorg Behrend, Djones Lettnin, Alexander Griinhage, Jiirgen Ruf,
Thomas Kropf and Wolfgang Rosenstiel

8.1 Introduction

Embedded software (ESW) is omnipresent in our daily life. It plays a key role in
overcoming the time-to-market pressure and providing new functionalities. There-
fore, a high number of users are dependent on its functionality [1]. ESW is often used
in safety critical applications (e.g., automotive, medical, avionic), where correctness
is of fundamental importance. Thus, verification and validation approaches are an
important part of the development process.

The most commonly used approaches to verify embedded software are based on
simulation or formal verification (FV). Testing, co-debugging and/or co-simulation
techniques result in a tremendous effort to create test vectors. Furthermore, critical
corner case scenarios might remain unnoticed. An extension of simulation is the
assertion-based verification (ABV) methodology that captures a design’s intended

J. Behrend (X)) - A. Griinhage - J. Ruf - T. Kropf - W. Rosenstiel
Department of Computer Engineering, University of Tiibingen,
Sand 13, 72076 Tiibingen, Germany

e-mail: behrend @informatik.uni-tuebingen.de

A. Griinhage
e-mail: gruenhag @informatik.uni-tuebingen.de

J. Ruf
e-mail: ruf @informatik.uni-tuebingen.de

T. Kropf
e-mail: kropf @informatik.uni-tuebingen.de

W. Rosenstiel
e-mail: rosenstiel @informatik.uni-tuebingen.de

D. Lettnin

Department of Electrical and Electronic Engineering, Federal University of Santa Catarina,
Campus Universitario s/n, Trindade, Florianépolis, SC CEP 88040-900, Brazil

e-mail: djones.lettnin @ufsc.br

© Springer Science+Business Media, LLC 2017 183
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_8

184 J. Behrend et al.

behavior in temporal properties. This methodology has been successfully used at
lower levels of hardware designs, which are not suitable for software. ESW has no
timing reference and contains more complex data structures (e.g., integers, point-
ers) requiring a new mechanism to apply an assertion-based methodology. In order
to verify temporal properties in ESW, formal verification techniques are efficient,
but only up to medium sized software systems. For more complex designs, formal
verification using model checking often suffers from the state space explosion pro-
blem. Therefore, abstraction techniques (e.g., predicate abstraction [2]) are applied
to reduce the load of the back-end model checker.

Semiformal or hybrid approaches have been proposed many times before with
only limited success. In this paper we present VERIFYR [3], an optimized and scal-
able hybrid verification approach using a semiformal algorithm and taking advantage
of automated static parameter assignment (SPA). This technique reduces the model
size by assigning a static value to at least one function parameter. Information gained
during simulation (dynamic verification) is used to assign values to the parameters in
order to reduce the formal model (static verification). One issue is the selection of the
best function parameter. This is important due to the different impact of parameters on
the resulting state space. Until now, it was a manual or randomized task to assign the
parameter values. The selection of the parameter values may influence the program
flow and therefore, the resulting model size. This work describes a new approach
in order to rank function parameters depending on their impact on the model size.
The ranking is based on estimation according to the usage of the parameters in the
function body. Finally, SPA can be automatically applied to select parameters in an
optimized way in order to reduce the model complexity in a controlled manner.

The paper is organized as follows. Section8.2 describes the related work.
Section 8.3 details the verification methodology and the technical details. Section 8.4
summarizes our case studies and presents the results. Section 8.5 concludes this paper
and describes the future work.

8.2 Related Work

Bounded model checking (BMC) is an approach to reduce the model size using
bounded execution paths. The key idea is to build a propositional formula, whose
models correspond to program traces (with bounded length) that might violate some
given property using state-of-the-art SAT and SMT solvers [4]. For instance, C
bounded model checker (CBMC) [5—7] has proven to be a successful approach for
automatic software analysis. Codeiro et al. [8] have implemented ESBMC based on
the front-end of CBMC and a new back-end based on SMT. All the above-mentioned
work fail when the bound is not automatically determinable.

8 Scalable and Optimized Hybrid Verification ... 185

The optimization of formal models has been the reason to use abstraction meth-
ods. The automatic predicate abstraction [9] introduced a way to construct abstracted
models and allowed to introduce automated constraints like loop invariants [10].
Based on abstraction, Clarke et al. developed a refinement technique to generate
even smaller models using counterexamples [11, 12]. BLAST [13] and SATABS
[14] are formal verification tools for ANSI-C programs. Both tools use predicate
abstraction mechanisms to enhance the verification process and to reduce the model
size successfully. Semiformal/hybrid verification approaches have been applied suc-
cessfully to hardware verification [15-17]. However, the application of a current
semiformal hardware model checker to verify embedded software is not viable for
large industrial programs [18]. In the area of embedded software using C language,
Lettnin et al. [19] proposed a semiformal verification approach based on simula-
tion and symbolic model checker (SymC) [20]. However, SymC was the bottleneck
for the scalability of the formal verification, since it was originally developed for
the verification of hardware designs. Cordeiro et al. [21] have published a semifor-
mal approach to verify medical software, but they have scalability problems caused
by the used model checker. The aforementioned related works have their pros and
cons. However, they still have scalability limitations in the verification of complex
embedded software with or without hardware dependencies.

Concolic testing was first introduced by Godefroid et al. [22] and Cadar et al. [23]
independently. Koushik et al. [24] extended this methodology to a hybrid software
verification technique mixing symbolic and concrete execution. They treat program
variables as symbolic variables along a concrete execution path. Symbolic execution
is used to generate new test cases to maximize the code coverage. The main focus
is finding bugs, rather than proving program correctness. The resulting tools DART,
EXE, and CUTE apply concolic testing to C programs. But concolic testing has prob-
lems when very large symbolic representations have to be generated, often resulting
in unsolvable problems. Other problems like imprecise symbolic representations or
incomplete theorem proving often result in a poor coverage. ULISSE [25] is a tool
to support system-level specification testing based on extended finite state machines
(EFSM). The KLEE [26] framework compiles the source code to LLVM [27] byte
code. The code under test has to be compatible with LLVM and user interaction
(which is essential for our verification approach) is not supported. PEX [28] was
developed at Microsoft Research to automate structural testing of .NET code but not
C code. Frama-C [29-31] is an integrated development environment for C code with
focus on static verification only and Frama-C needs special code annotations for the
used “design by contract” approach.

Behrend et al. used SPA [3] to reduce the model size during semiformal verifi-
cation. By assigning a static value to a function parameter the automatic predicate
abstraction algorithm can generate a different abstraction that may lead to a smaller
model. If a parameter is assigned, the parameter is no longer handled as full range
variable, but as statically assigned variable. However, the previous approach the
function parameter for SPA was selected manually.

186 J. Behrend et al.

8.2.1 Contributions

Our main contribution in this current work is a novel semiformal approach for the
verification of embedded software with temporal properties based on VERIFYR.
We provide a new methodology to extract both dynamic and static verifiable models
from C programs to perform both assertion-based and formal verification. On the
formal side, we are able to extend the formal engine with different state-of-the-art
software model checkers (SMC). On the simulation side, simulation models (C or
SystemC) and the testbench environment can be automatically generated including
randomization policies for input variables. Concerning our hybrid approach, on one
hand, the formal verification is able to guide the simulation process based on the
counterexamples. On the other hand, the simulation engine supports the formal ver-
ification, for instance, with the assignment of automated static parameters in order
to shrink the state space. In previous work [3], the SPA was determined by hand or
using a random selection, that is, a try-and-error method. In this work, we enable
for the first time the automated assignment of static parameters via a new ranking
algorithm with the following specific contributions:

e Automated SPA: An automatic usage of SPA is possible using this heuristic.

e Testbench: Automatic generation of testbenchs and simulation/formal models.

e Code quality and safety: The ranking can be used to detect dead parameters as
well as high complex functions based on high rated parameters.

e Minimize time/costs: The effort of brute-forcing all parameters using SPA can be
reduced by testing specific and promising parameters.

e Maximized coverage: Using this heuristic the smallest restriction and therefore
the widest coverage can be determined.

8.3 VERIFYR Verification Methodology

Figure 8.1 and Algorithm 4 delineates the semiformal verification algorithm. Our
approach is based on the analysis of the embedded software structure via a function
call graph (FCG), as shown in Fig. 8.1a. The FCG represents the calling relationships
between functions of embedded software. The verification strategy is divided in three
phases: preprocessing (Algorithm 4, lines 2-8), formal exploration phase (a.k.a.
bottom-up) (Algorithm 4, lines 10-17), and semiformal verification phase (a.k.a.
top-down) (Algorithm 4, lines 18-29). In summary, the Formal Exploration (bottom-
up) phase identifies which functions are too complex to be verified by standalone
software model checkers. After identifying these functions we start the Semiformal
(top-down) phase combining simulation, SPA and formal verification in order to
overcome the software complexity.

8 Scalable and Optimized Hybrid Verification ... 187

(a) @
D &

-

Bottom-up
Top-down

-

(b)

Function —
main

©) startstate @ Error State @ sPA @ MainRetun 7T, Simulation Runs

Fig. 8.1 VERIFYR verification approach

The VERIFYR verification methodology starts with the Formal Exploration
phase. It uses state-of-the-art software model checkers (SMC) with built-in and user-
defined properties specified in LTL to verify all functions of the FCG. It begins with
the leaves (e.g., functions F3, F4, F5, F6 in Fig. 8.1) and continues in the next upper
levels until the verification process reaches the function main (Algorithm 4, lines
11-12). If it is not possible to verify a function with the SMCs, it is marked in the
FCG (Algorithm 4, line 13) (e.g., function main, F1, and F2 in Fig. 8.1). This means
that these functions are too complex to be verified by a standalone model checker
due to time out (TO) or out of memory (MO) constraints and that it is required to
perform the semiformal/hybrid phase. Finally, a marked FCG (mFCGQG) is returned
including all functions that failed during the Formal Exploration phase, however, if
mFCG is empty then all function were formally verified and the verification process
is completed (Algorithm 4, lines 15-16).

188 J. Behrend et al.

The Semiformal phase starts the simulation run with the assertion-based approach
(ABV) (Algorithm 4, line 19), which requires one simulation model (or original C
program wrapped in SystemC model) and testbench, one or many properties in LTL
to be checked. We use a simulation approach based on SystemC. Thus, we derive a
SystemC model from the embedded software and to be applied to SystemC Temporal
Checker (SCTC) [32], which supports specification of user-defined properties in
LTL [33].

During the Semiformal phase the marked FCG (mFCG) is analyzed. All functions
that were not yet verified due to failed verification (in the Formal Exploration phase)
are marked as point of interest (POI). POIs are basically the initial states of the local
functions (F2 in Fig. 8.1b4). Therefore, the mFCG is used as a guiding mechanism
in order to determine which function should be verified at the formal verification
phase.

The Simulation engine monitors the simulation process (i.e., properties and vari-
ables) to start a new formal verification process at every POI (Algorithm 4, line 21).
ABYV is responsible for finding the POIs as well as the error states (F2 in Fig. 8.1b3).
We use the monitored information to initialize variables (interaction with formal) to
statically assign parameters (Algorithm 4, lines 23-24). It will lead to different access
points for the software model checkers and it will help shrinking the state space of
the function (Fig. 8.1b). This heuristic avoids an over-constraining of the state space
in formal verification. As a result, SMC has not only a unique starting state (as usual
by simulation), but an initial state set, which will improve the state space coverage
of the semiformal verification. Therefore, the formal verification benefits from the
simulation, as show in Fig. 8.1(F2).

Finally, a temporary version of the source code of the function under test (FUT) is
created and is checked with the formal SMCs (Algorithm 4, lines 25). If a counterex-
ample is reported, this information is used to guide the simulation (learning process).
For instance, the randomization of input variables in our testbench is constrained in
order to generate more efficient test vectors. Additionally, if desired, the user can set
randomization constraints manually. Currently, when a counterexample should be
reported to the user we save the global variable assignment of the used simulation
run (“seed”) to trace back from the counterexample given by the SMC to the entry
point of the simulation run. Then we translate the CIL generated information back
to the original C code.

When the simulation run reaches the return operation of the main function, a
new simulation run is started. The global interaction between simulation and formal
verification will continue until all the properties were evaluated or, a time bound or
maximum number of simulation runs is reached or no more marked functions are
available (Algorithm 4, line 20).

In the next sections, the SPA heuristic as well as the modeling details of embedded
software will be presented.

8 Scalable and Optimized Hybrid Verification ... 189

Algorithm 4 VERIFYR algorithm

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

VERIFYR (Cprog, PropSet)

doPreProcessing ()
C3AC = 3ACGen (Cprog)
CTestbench = testbenchGen (Cprog)
C3AC = propToAssertionSMC (C3AC, PropSet)
CTestbench = propToAssertionSim(CTestbench,
PropSet)
FCG = FCGgen (C3AC)
end doPreProcessing
startOrchestrator ()
doFormalExploration() //BOTTOM-UP
for each CFunction in C3AC
VStatus = startSMC (CFunction)

if VStatus == FAIL then
mFCG += markFunction (CFunction)
if mFCG == NULL then

return VCOMPLETE
end doFormalExploration
doSemiformal () //TOP-DOWN
startSimulation (CTestbench, Cprog)
while NoTimeBound or NoMaxSimRuns or !Empty (
mFCG)
POIFunction = watchSimFunctions (mFCG)
if POIFunction in mFCG then
assessParameterScore (POIFunction)
CFunction = doSPA (POIFunction)
VStatus = startSMC (CFunction)
if VStatus == COUNTEREXE then
guideSimulation ()
unmarkFunction (mFCG)
end doHybridFormalSimulation
doComputeCoverage ()
doShowCounterexample ()
end startOrchestrator

33 end VERIFYR

8.3.1 SPA Heuristic

The SPA heuristic assumes that there is a function list containing all functions with all
their parameters in a structured way. The algorithm iterates through the statements of
each function body in the function list, inspecting each statement. If a statement con-
tains one of the function parameters, this statement is inspected in more details. The
analysis covers 11 aspects of the statement called properties. More details on these
properties are in Sect.8.3.1.2. Based on these properties the statement is assessed
and a score is computed. The scores are summed up and stored for each parame-
ter. The statement is examined for introducing a parameter value-dependent variable

190 J. Behrend et al.

(PVDV). This is done after the property check since the first statement of this PVDV
is not rated. They are queued in the parameter list marked with their depending para-
meter. The achieved score of a PVDV is added to the score of the parameter the
PVDV depends on.

8.3.1.1 Parameter Value-Dependent Variables

Variables that are initialized using a parameter are directly affected by SPA. This
observation led to the concept of PVDV. Applying SPA on a function parameter
reduces the model size because the model is not required to cover the full range of
possible values. This effect is passed down to PVDV as they are directly depending
on the parameter value. They passed the effect on to their value-dependent variables.

In order to cover this effect this technique monitors the value dependencies by
analyzing assignments. If a PVDV is found, the variable is queued in the list of
parameters. Any impact on the model size (such as PVDV) is added to the impact of
the function parameter on which value the PVDV was initialized. Keeping track of
these PVDVs is an essential part of this technique. This is because it is a common
practice to make copies of parameters if those are used at multiple locations. And
the parameters that are used in multiple locations have a huge impact.

8.3.1.2 Context Properties

Every statement that contains a parameter is evaluated against a set of internal prop-
erties. These properties describe the context in which the parameter is used within the
statement. Therefore, the properties cover all context aspects of a statement that are
used to state an assessment. All properties are determined by inspecting the code and
are the base for the later assessment. Following eleven properties reflect the aspects
of a statement regarding the usage as a variable:

Reading: True if the parameter is on the right hand side of an assignment.
Writing: True if the parameter is on the left hand side of an assignment.
Compare: True if there is a comparison.

Loop: True if statement contains the keyword “for” or “while.”

Function: True if the parameter is in brackets, as it would be when used as function
parameter.

Conditional: True if the statement contains the keyword “if,” “switch,” or “case.”
Return: True if the statement starts with the keyword “return.”

Command: True if the statement ends with a semicolon.

Multiple use: True if the statement contains one parameter multiple times.
Indirect use: True if the monitored parameter is not a direct parameter but a PVDV.
First use: True only at the first appearance of a parameter.

8 Scalable and Optimized Hybrid Verification ... 191
8.3.1.3 Assessing Function

The assess function estimates the model size based on the usage of a parameter in a
statement. The estimation is based on the properties and is implemented as a Boolean
clause. The number of cases with significant impact on the model size is limited. In
this heuristic the four following special cases are used:

e Dead parameter: If a parameter is written on the first appearance the parameter
is considered dead. SPA may already be applied.

e Return: Actual function parameters (not PVDV) that are returned have lesser
impact.

e Switch statement: Conditional parameters control the program flow and therefore,
impact heavily on the model size.

e Loop boundary: Loops are commonly unwound within the formal model, so the
loop boundary has a major impact on the model size.

Each case is rewarded with a score. The number of points per case is reflecting
the impact on the model size. As every statement has a basic impact every statement
receives one point. If variations of a parameter value do not impact the model size, the
parameter is called a dead parameter. These dead parameters are mainly parameters
that already have SPA applied. This case is rewarded with a negative score to lower
the ranking to a minimum. In addition dead parameters are not assessed anymore.
Return parameters are mainly data containers that have lesser impact on the model
size than not returned parameters. This is an observation made while testing the
heuristic on the available benchmark. An implementation should use a low negative
score to cover this effect. Parameters that are used in conditional statements have
great impact on the model size as they control the program flow. The score should be
set to a high value to ensure that parameters that are not used in conditional or loop
statements cannot reach a higher rank. Loop boundary parameters are parameters that
control the boundary of a loop. As loops are commonly unwound in the formal model
the impact of those parameters on the model size are huge. Experiments using the
available benchmark showed that the impact on the model size of three conditional
statements can surpass the impact of one loop boundary parameter. In order to cover
this fact the score should be set to twice the score of a conditional statement.

8.3.2 Preprocessing Phase

Basically the preprocessing phase considers the generation of testbench and simula-
tion models, preprocessing the C program to the software model checker, defining the
temporal properties to both formal and simulation models, and finally the generation
of the control flow graph, as shown in (Algorithm 4, lines 2-8).

192

J. Behrend et al.

C program
]
+ : _/—\ ¥
3-AC
(b) generator (a) ! . CToXML (c)
®
g v
g XML
= analysis
G
e
2 v
: 3 Stubs
' | Property = generator
PSLATL |: T
777777777777 Testbench
generator
(d)
A 4 PropTo- / \A .
Asserti ; :
C (3-AC) & ssertion Cr+ |\ [Randomization |
Assertion SR | s |
Testbench | :
.| CFG b S
" generator
g++
(f) (h) v compiler (9)
4 Orchestrator v
»| mFcc | H
True SMC - mFCG c ‘ True
] @b
< =
A <} SPA - © C/SystemC
SAT/SMT e r——— z model
Y P Counterexample &
False e Coverage <} H False
Parallelization

1)

Semiformal Semiformal
coverage conterexample

Fig. 8.2 VERIFYR overview

8.3.2.1 3-AC and FCG Generation

In order to extract the formal model we use the CIL [34] tool in the front-end to convert
the C program (compatible with MISRA [35]) into three-address code (3-AC) (Fig.
8.2b). 3-AC is normally used by compilers in order to support code transformations
and itis easier to handle compared to the degrees of freedom of a user implementation.

A function call graph (FCG) is generated based on [36]. We use this FCG as input
to guide our Formal Exploration phase (bottom-up) verification.

8.3.2.2 Testbench Generation

For automatic testbench generation (Fig. 8.2¢), we use our own XML-based approach.
The objective of our testbench generator is to extract all input variables out of any

8 Scalable and Optimized Hybrid Verification ... 193

C source code and provide them in a portable overview easy to modify by hand or
by using supported automatic manipulation methods. In order to reach these goals
we generate a XML representation of the C code. Afterwards we analyze the cor-
responding XML, such as, macros, function monitoring, identification of local and
input variables, value ranches of variables and loop analysis. After this step we
generate the testbench using either C++ executable or SystemC model.

During the simulation we measure the coverage of the loop behavior and value
ranges of all variables. The results of static XML analysis and the dynamic testbench
execution are sent to the VERIFYR to enhance the automatic SPA with value ranges
for variables and bounds for loop unrolling. All gathered information is presented to
the user. The user can access the testbench XML description to update or manipulate
the behavior.

8.3.2.3 SystemC Model

The derived simulation model is automatically generated using no abstractions.
The derived model consists of one SystemC class (ESW_SC) mapped to a corre-
sponding C program. The main function in C is converted into a SystemC process
(SC_THREAD). Since software itself does not have any clock information, we pro-
pose a new timing reference using a program counter event (esw_pc_event) [37].
Additionally the wait () ; statement is necessary to suspend the SystemC process.
The program counter event will be notified after every statement and will be respon-
sible to trigger the SCTC.

The automatically generated testbench includes all input variables and it is pos-
sible to choose between different randomization strategies like constrained random-
ization and different random distributions, supported by the SystemC Verification
Library (SCV) [38].

8.3.2.4 Temporal Properties Definition

The C language does not support any means to check temporal properties in soft-
ware modules during the simulation. Therefore, we use the existing SCTC, which
is a hardware oriented temporal checker based on SystemC. SCTC supports specifi-
cation of properties either in PSL (Property Specification Language), LTL or FLTL
(Finite Linear time Temporal Logic) [32], an extension to LTL with time bounds
on temporal operators. SCTC has a synthesis engine which converts the plain text
property specification into a format that can be executed during system monitoring.
We translate the property to Accept-Reject automata (AR) (Fig. 8.2d) in the form of
an Intermediate Language (IL) and later to a monitor in SystemC. The AR can detect
validation (i.e., True) or violation (i.e., False) of properties (Fig. 8.2g) on finite
system traces, or they stay in a pending state if no decision can be made yet.

194 J. Behrend et al.

For the software model checkers, we include the user-defined properties into the
C code translating the LTL-style properties into assert/assume statements based on
[39] (Fig. 8.2d).

8.3.3 Orchestrator

The orchestrator has as main function the coordination of the interaction between the
assertion-based (i.e., simulation) and formal verification engines (Fig. 8.2h). Con-
cerning that each SMC has their pros and cons, the formal verification is performed
by the available state-of-the-art SAT/SMT based model checkers (e.g., CBMC,
ESBMC). The simulation is performed by the SystemC kernel.

Additionally, the orchestrator collects the verification status of the software model
checkers in order to “mark” the FCG. The mFCG is passed to the simulation engine
to start the simulation process to determine values to the function parameters. Also,
SPA is performed in order to identify the most important function parameter. The
marked C function is updated with the static parameters and the SMC is executed
in order to verify the properties. If a counterexample occurs, it will be used to guide
the test vector randomization. Additionally, the orchestrator is responsible to collect
the coverage data in order to determine the verification quality.

Finally, the orchestrator can distribute the computation of every function to a dif-
ferent verification instance of the supported SMCs (Fig. 8.3). The default distribution
heuristic is a “try-all” approach, which means that all functions are checked with all
supported SMCs. Furthermore, the user can orchestrate the distribution (e.g., in a
cluster) of the functions manually and choose between the different SMCs by using
a graphical user interface (GUI).

Fig. 8.3 Verification process
distribution

/

N
Node 01 / Node 02
Node 04 Node 05

Node 07¢ Node n

8 Scalable and Optimized Hybrid Verification ... 195

8.3.4 Coverage

Our hybrid verification approach combines simulation-based and formal verification
approaches. However, techniques to measure the achieved verification improvement
have been proposed either to simulation-based or to formal verification approaches.
Coverage determination for semiformal (hybrid) verification approaches is still in
its infancy. For this work (Fig. 8.2j) we used a specification-based coverage metric
to quantify the achieved verification improvement of hybrid software verification.
Our semiformal coverage metric is based on “property coverage,” which determines
the total number of properties from a set of properties that were evaluated by both
simulation-based or formal verification engines. Additionally, the simulation part
is monitored using Gcov [40] in order to measure further implementation-based
coverage inputs (e.g., line coverage, branch coverage). It is also important to point
out, that due to the use of the simulation in our hybrid verification approach we
still might not cover 100% of the state space, as in formal verification, as shown in
Fig.8.1b5).

8.3.5 Technical Details

The main objective of this new approach is to provide a scalable and extendable
hybrid verification service. We have implemented our new approach as a verification
platform called VERIFYR, which can verify embedded software in a distributed and
hybrid way. To make use of the advantage of several compute nodes we have to split
the whole verification process into multiple verification jobs. Furthermore, VERI-
FYR is platform independent and extendable by using a standard communication
protocol to exchange information. The VERIFYR framework provides a service to
verify a given source code written in C language. It consists of a collection of formal
verification tools (such as CBMC and ESBMC), simulation tools (e.g., SCTC), and
a communication gateway in order to invoke verification commands and to exchange
status information of the hybrid verification process. These commands are passed to
the orchestrator using the simple object access protocol (SOAP) over HTTP respec-
tively HTTPS as shown in Fig. 8.4. The whole set of the SOAP calls are stored in
the web service description language (WSDL) file for the verification service. The
client application passes the SOAP document including the name of the command
and its parameters such as function name, verification information and authorization
credentials. As shown in Fig. 8.5 the verification clients have to send their verification
requests to a super node (orchestrator). The super node distributes the requests to
different verification servers. At the moment VERIFYR supports multicore compute
nodes and clusters. It is possible to setup any number of verification nodes to reach
the desired scalability.

196

J. Behrend et al.

VERIFYR Client VERIFYR Supernode
Browser
——
Apache Apache
Webserver Webserver
on Unix/Linux/Windows on Linux
further compute
J/ ‘ nodes
SOAP API HTTP SOAP > SOAP API HTTPSOAP >
\[|
PHP module VERIFYR PHP module VERIFYR
Client Software Server Software
_Tw

MySQL

VRN

DB Filesystem

UNIX

ELS Tools

Fig. 8.4 VERIFYR client and server overview

VERIFYR client #1

Verifies F1 in Project A

VERIFYR Supernode

oo N
SQL-DB

Verifies F2 in Project A

http://verifyr/soap/r vice

vy

M~ A

Verifies F4 in Project B

Y

Project A

~

VERIFYR client #2

ProjectA | | Project B Project C

Verifies F3 in Project B

 soLbB >
SQL-DB

Yy vy

Verifies F5 in Project B

N~ A

Project B

~N

VERIFYR client #3
(JAVA)

Verifies F6 in Project C

VN
s

Verifies F7 in Project C

Project C

~N

A
VERIFYR Server Node #1

http:/Iverifyri/soap/messages/service

A
VERIFYR Server Node #2

http://verifyr D
Project C

vice

Fig. 8.5 Verification process of different clients on different servers

8 Scalable and Optimized Hybrid Verification ... 197

8.4 Results and Discussion

8.4.1 Testing Environment

We performed two sets of experiments based on two different case studies (cf.,
Sects. 8.4.2 and 8.4.4) conducted on a cluster with one Intel® Core™ 2 Quad CPU
Q9650 @ 3.00GHz and two Intel® Core™ 2 Duo CPU E8400 @ 3.00 GHz all with
8 GB RAM and Linux OS. The first set of experiments represents the results of the
SPA heuristic based on Motorolas Benchmark Suite [41] and the verification results
of our new hybrid verification methodology (VERIFYR) using this new heuristic.
The second set of experiments represents the results of the SPA heuristic based on
EEPROM emulation software from NEC Electronics and the verification results of
the hybrid verification methodology (VERIFYR) using this new heuristic.

The scores were set according to the rules given in Sect. 8.3.1.3. The empirically
gained scores are —200 points for dead parameter, —20 points for return parameters,
1025 points for conditional parameters and 2050 points for loop parameters. Then
two adjustments had to be made. The first adjustment was the score of conditional
parameters. Those can easily be set too low. Setting the score too low leads to a wrong
ranking compared to parameters that are often used, but not as conditional or loop
parameters. The actual number 1025 is an empirical choice based on the case studies.
The second adjustment is the score for loop parameters. This score is reflecting used
the coding style. Using many and long conditional code blocks the score for a loop
decreases, while using wide loops or conditional constructions with else case the
score increases. For the Motorola Powerstone Benchmark Suite the score twice the
score of conditional parameters showed to be fitting. Adjusting the scores slightly
will have only a small effect, but it may swap parameters that are close.

8.4.2 Motorola Powerstone Benchmark Suite

For our first case study we used Motorola’s Powerstone Benchmark Suite [41]
and tried to verify the built-in properties (e.g., division-by-zero) from CBMC and
ESBMC. To exemplify these results the search_dict function from the Motorola
Powerstone Benchmark module V.42 was used. The function has two parameters
string and data. With these two parameters in the parameter list the algorithm
proceeds through the function body. Table 8.1 shows the result for each statement.
That would be 2 points for data and string and 7 points for kid. The score of
each parameter is summed up including the appearance points. The resulting rank-
ing is 1007 points for data, 3077 points for string and 2057 points for kid.
However, as kid is inherited by string the score is combined to a final result of
1007 points for data and 5134 points for string.

As the score represents the impact of each parameter, it can be expected that the
string parameter has a much bigger impact than the data parameter. To test the

198 J. Behrend et al.

Table 8.1 Statement scoring

Line: statement Parameter Points Reason

12: if (Istring) String 1025 Switch statement

13: return (data+3); Data —-20 Return statement

14: for (kid = String 2050 Loop statement, also

dict[string].kids; ... introduces new
parameter “kid”

14: kid; ... Kid 0 Not a statement, not a

loop statement as the
loop defines “kid”

14: kid = Kid 0 Not a statement still

dict[kid].sibling) part of the “for”
instruction

15: if (kid !=1last && | Kid 1025 Switch statement

15: dict[kid].data == Kid 1025 Switch statement

data) actually it is the same
switch statement

15: dict[kid].data == Data 1025 Switch statement two

data) parameter, scored
twice

16: return (kid); Kid 0 One point for use not a

return statement
because “kid” is
inherited

impact of the ranking, the function has been verified using CBMC with an unwinding
option of 20 and again for each parameter. Using SPA on the parameter data does
not change that result. The verification run resulted in about 5s and with a memory
usage of up to 175 MB. Using SPA on the parameter string results in a runtime of
4 s and a maximum memory usage of 65 MB. So the memory usage has been more
than halved and the runtime reduced when SPA is used on the parameter the heuristic
suggests. This experiment shows that SPA on the parameter improves the memory
usage and the runtime. In order to show the power of SPA in more detail the function
memcpy of the V.42 module is a good example. This function has three parameters
with a scoring printed in Table 8.2. Using CBMC without unwinding this function
needs more than 3 GB of memory, which leads to an out-of-memory exception in the
used test environment.

Using the ranking provided by this heuristic the first parameter is a dead parameter,
so applying SPA on it should lead to no further information. Applying SPA to the
first parameter leads indeed to an out-of-time exception after one hour of runtime.
The second parameter has a low impact on the model size. Applying SPA on the
second parameter leads to another out-of-memory exception. The final parameter
with the highest score has the highest impact on the model size. After applying SPA

8 Scalable and Optimized Hybrid Verification ... 199

Table 8.2 SPA results for V.42

Function Parameter | Score CPU? Mem" Vmem® Comment

memcpy 458,318 276,558 2935,808 MO€
void *d —218 3599,565 107,089 35,652 MO°
void *s 2 120,324 101,972 2931,712 MO*
long t 1029 6,464 0,197 59,488 514

strncmp 212,686 185,147 2928,64 MO*
char *sl 2052 233,442 201,603 2939,904 MO*
char *s2 2052 244,351 210,341 2921,472 MO*
long n 8207 1,503 0,013 35,668 107049

4geconds of runtime
"megab irtual
gabyte (virtual) memory used
“memory out
dnumber of clauses, all results are retrieved using CBMC with no unwind bound

on that parameter CBMC, returns “verification failed.” The second experiment is
the st rncmp function of the V.42 module. This function has three parameters with
the scoring shown in Table8.2. Unlike the memcpy function the scoring of two
parameters are close by. This suggests similar results when using SPA on either of
them. Table 8.2 shows that this assumption is correct in this case. The third parameter
with the highest score indeed has the highest impact on the model size and leads to
a final result.

8.4.3 Verification Results Using VERIFYR

We combined the new SPA heuristic with the VERIFYR platform. We focused our
interests on Modem Encoding/Decoding (v42.¢). In total, the whole code comprises
approximately 2,700 lines of C code and 12 functions. We tried to verify the built-in
properties (e.g., division-by-zero, array out of bounds) from CBMC and ESBMC. It
was not possible to verify the whole program using one of the above-mentioned SMCs
with a unwinding parameter (bound) bigger than 4. For every function we used a
different instance of CBMC or ESBMC in parallel. The results are shown in Table 8.3.
Based on this Formal Exploration analysis, we switched to our top-down verification
phase triggered by the simulation tool. At every entry point (POI), SCTC exchanges
the actual variable assignment with the orchestrator, which uses this information to
create temporary versions of the source code of the function under test with static
assigned variables. Table 8.3 shows the comparison between CBMC (SAT), ESBMC,
and our VERIFYR platform. The used symbols are P (passed), F (failed), MO (out
of memory), TO (time out, 90min), and PH (passed using hybrid methodology).
PH means that it was possible to verify this function with our hybrid methodology
using simulation to support formal verification with static parameter assignment.
This table shows that VERIFYR presented the same valid results as CBMC (SAT)

200 J. Behrend et al.

Table 8.3 Verification results v42.c

Function CBMC (SAT) ESBMC VERIFYR
Result ‘ Time (s) Result ‘ Time (s) Result ‘ Time (s)
Leaves
putcode P 2 P 2 P 2
getdata P 2 P 2 P 2
add_dict MO 135 MO 155 PH 535
init_dict MO 152 P 40 P 40
search_dict MO 161 MO 234 PH 535
putdata P 1 P 1 P 1
getcode P 1 P 1 P 1
puts MO 163 MO 134 PH 535
Parents level 1
checksize_dict TO TO PH 535
encode MO 354 MO 289 PH 2
decode P 1 P 1 P 1
ALL
main ‘MO 351 MO 1274 'PH 535

P (passed), F (failed), MO (out of memory),
TO (time out, 90 min) and PH (passed using hybrid methodology)

and ESBMC, and no MO or TO has occurred. Furthermore, the Table 8.3 presents
the verification time in seconds in order to reach P, MO, or PH results. The time for
PH consist of the time for the simulation runs plus formal verification using static
parameter assignment. We have used 1000 simulation runs. In total, 20 properties
were evaluated by both simulation and formal verification. All tested properties were
safe, that is, a property coverage of 100%.

Overall, we have simulated the whole modem encoding/decoding software using
our automatically generated testbench and beyond that we are able to verify 6 out
of 12 observed functions using formal verification and the 6 remaining with hybrid
verification. However, VERIFYR outperforms the single state-of-the-art tools in
complex cases where they are not capable to reach a final verification result.

8.4.4 EEPROM Emulation Software from NEC Electronics

Our second case study is an automotive EEPROM Emulation software from NEC
Electronics [42], which emulates the read and write requests to a nonvolatile mem-
ory. This embedded software contains both hardware-independent and hardware-
dependent layers. Therefore, this system is a suitable automotive industrial
application to evaluate the developed methodologies with respect to both abstraction
layers. The code used is property of NEC Electronics (Europe) GmbH, embedded and

8 Scalable and Optimized Hybrid Verification ... 201

marked confidential. Therefore, the details of the implementation are not discussed.
The EEPROM emulation software uses a layered approach divided into two parts:
the Data Flash Access layer (DFALib) and the EEPROM Emulation layer (EEELIib).
The Data Flash Access layer is a hardware-dependent software layer that provides an
easy-to-use interface for the FLASH hardware. The EEPROM Emulation layer is a
hardware-independent software layer and provides a set of higher level operations for
the application level. These operations include: Format, Prepare,Read,Write,
Refresh, Startupl and Startup?2. In total, the whole EEPROM emulation
code comprises approximately 8,500 lines of C code and 81 functions. We extracted
from the NEC specification manual two property sets (LTL standard). Each property
in the EEELIib set describes the basic functionality on each EEELibs operation (i.e.,
read, write, etc.). A sample of our LTL properties is as follows:

F (Read — X F(EEE_OK]|...)) (A)

The property represents the calling operations in the EEELib library (e.g., Read) and
several return values (e.g., EEE_OK) that may be received. For CBMC we translated
the LTL properties to assert/assume style properties based on [39]. For the SPA
heuristic the same scoring as in the Motorola Powerstone Benchmark Suite was
used. The verification was done on the same computer as the previous testing and the
verification runs were unbounded. We present three functions to provide evidence
that the concept of this heuristic is valid and the scoring is balanced. In Table 8.4 the
measured results are shown.

The function DFA_Wr is successfully verified using SPA on the 1ength para-
meter. This result is suggested by the heuristic. In the function DFA_WrSec the
parameter val has the highest score. And the function also finishes using SPA on
that parameter. Unlike in the two other functions the function DFALib_SetWr is
valid from the beginning. CBMC verifies the function in half a second using 1341
clauses. Still using SPA shows that if the score of the parameters increase then the
number of clauses generated and proven by CBMC decreases. This shows that the
score is representing the complexity of parameters concerning the resulting state
space. Unbounded model checking can be restricted in order to gain a partial result.
The case studies above show that the increased complexity of software can be handled
using SPA.

We have selected for both EEELib and DFALIib (hardware-dependent) two leaf
functions and two corresponding parent functions in relation to the corresponding
FCG. We have renamed the selected functions for convenience. Table 8.5 shows that
VERIFYR presented the same valid results as CBMC (SAT) and ESBMC, and no
MO or TO has occurred. In total, 40 properties were evaluated by both simulation and
formal verification, which corresponds five properties for each of the eight functions.
All tested properties were safe, that is, a property coverage of 100%.

202

Table 8.4 SPA results for NEC

J. Behrend et al.

Function Parameter | Score CPU? Mem.? Vmem. Comment
DFA_Wr 127,576 107,435 2917,376 | MO°
void 15 127,964 106,242 2929,664 | MO°
*addSrc
void 15 138,541 116,533 2934,784 | MO°
*addDest
u32 length | 3093 0,534 0 0 |vsd
DFA_WrSec 129,523 109,166 2939,904 |MO
u08 —199 129,826 106,599 2934,784 | MO°
volatile
*sec
u08 829 133,273 111,806 2936,832 | MO°
volatile
*dest
u08 mask | 1852 123,984 105,334 2922496 | MO°
u08 val 4115 0,521 0,002 21,141 |51¢
DFA_SetWr 0,552 0,003 21,148 |1341¢
u32 19 0,541 0 0 |1031¢
*pWrite-
data
u32 cnt 1853 0,5 0 0 |29¢
4geconds of runtime
bmegabyte (virtual) memory used
‘memory out
dyerification successful
®number of clauses, all results are retrieved using CBMC with no unwind bound
Table 8.5 Verification Results NEC
Function CBMC (SAT) ESBMC VERIFYR
Result ‘Time (s) Result ‘Time (s) Result ‘Time (s)
EEELib
Eee_Leaf(O1 P 1 P 1 P 1
Eee_Leaf02 P 1 P 1 P 1
Eee_ParentO1 MO 231 MO 174 PH 1840
Eee_Parent(02 MO 110 MO 119 PH 1840
DFALIib
DFA_LeafO1 P 1 P 1 P 1
DFA_Leaf02 MO 109 MO 90 PH 1840
DFA_ParentO1 MO 112 MO 92 PH 1840
DFA_Parent02 MO 125 MO 100 PH 1840

P (passed), F (failed), MO (out of memory),

TO (time out, 90min) and PH (passed using hybrid methodology)

8 Scalable and Optimized Hybrid Verification ... 203

Overall, when we look at the results, we have simulated the whole NEC software
using our generated testbench and beyond that we were able to verify 3 out of 8
observed functions using formal verification and the remaining using hybrid verifi-
cation. VERIFYR outperforms the state-of-the-art tools in this complex application
where they are not able to reach a final verification result for all functions.

8.5 Conclusion and Future Work

We have presented our scalable and extendable hybrid verification approach for
embedded software. We have described our new semiformal verification methodol-
ogy and have pointed out the advantages. Furthermore we have shown our new SPA
heuristic, which shows promising results on the Motorola Powerstone Benchmarks
Suite and on the EEPROM emulation software from NEC Electronics. SPA is an
automated process that optimizes the interaction between bounded model checking
and simulation for semiformal verification approaches. It is possible to use differ-
ent strategies for the whole or parts of the verification process. We start with the
formal phase and end up with hybrid verification based on simulation and formal
verification. During the formal exploration phase the SMC tries to verify all possible
functions under test based on a FCG until a time bound or memory limit has been
reached. The FCG is marked to indicate the Points-of-Interest. Then, we start with
simulation and whenever one of the POIs is reached, the orchestrator generates a
temporary version of the function under test with initialized/pre-defined variables in
order to shrink the state space of the formal verification. Our results show that the
whole approach is best suited for complex embedded C software with and without
hardware dependencies. It scales better than standalone software model checkers and
reaches deep state spaces. Furthermore, our approach can be easily integrated in a
complex software development process. Currently, we are working on assessing the
scores automatically and on quality metrics for hybrid verification.

Acknowledgements The authors would like to thank Edgar Auerswald, Patrick Koecher and Sebas-
tian Welsch for supporting the development of the VERIFYR platform.

References

1. Jerraya AA, Yoo S, Verkest D, Wehn N (2003) Embedded software for SoC. Kluwer Academic
Publishers, Norwell, MA, USA

2. Beyer D, Henzinger TA, Jhala R, Majumdar R (2007) The software model checker BLAST:
applications to software engineering. Int J Softw Tools Technol Trans

3. Behrend J, Lettnin D, Heckler P, Ruf J, Kropf T, Rosenstiel W (2011) Scalable hybrid ver-
ification for embedded software. In: DATE ’11: proceedings of the conference on design,
automation and test in Europe, pp 1-6

4. Barrett C, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. Frontiers
in artificial intelligence and applications, Chap 26, vol 185. IOS Press, pp 825-885

204

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Behrend et al.

. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Tools and

algorithms for the construction and analysis of systems. Springer, pp 168—-176

. Kroening D (2009) Bounded model checking for ANSI-C. http://www.cprover.org/cbmc/
. Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y (2003) Bounded model checking. In:

Zelkowitz M (ed) Highly dependable software. Advances in computers, vol 58. Academic
Press

. Cordeiro L, Fischer B, Marques-Silva J (2009) SMT-based bounded model checking for embed-

ded ANSI-C software. In: ASE’09: proceedings of the 2009 IEEE/ACM international con-
ference on automated software engineering. IEEE Computer Society, Washington, DC, pp
137-148

. Ball T, Majumdar R, Millstein T, Rajamani SK (2001) Automatic predicate abstraction of C

programs. SIGPLAN Not 36:203-213

. Flanagan C, Qadeer S (2002) Predicate abstraction for software verification. SIGPLAN Not

37:191-202

. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refine-

ment for symbolic model checking.] ACM 50:752-794

. Clarke E, Grumberg O, Long D (1994) Model checking and abstraction. ACM Trans Prog Lang

syst 16(5):1512-1542

. Henzinger TA, Jhala R, Majumdar R (2005) The BLAST software verification system. Model

Checking Softw 3639:25-26

. Clarke E, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction

for ANSI-C. In: TACAS, vol 3440. Springer, pp 570-574

. Gorai S, Biswas S, Bhatia L, Tiwari P, Mitra RS (2006) Directed-simulation assisted formal

verification of serial protocol and bridge. In: DAC ’06: proceedings of the 43rd annual design
automation conference. ACM, New York, pp 731-736

Nanshi K, Somenzi F (2006) Guiding simulation with increasingly refined abstract traces. In:
DAC ’06: proceedings of the 43rd annual design automation conference. ACM, New York, pp
737-742

Di Guglielmo G, Fummi F, Pravadelli G, Soffia S, Roveri M (2010) Semi-formal functional
verification by EFSM traversing via NuSMV. In: 2010 IEEE international High level design
validation and test workshop (HLDVT), pp 58-65

Edwards SA, Ma T, Damiano R (2001) Using a hardware model checker to verify software.
In: proceedings of the 4th international conference on ASIC (ASICON)

Lettnin D, Nalla PK, Behrend J, Ruf J, Gerlach J, Kropf T, Rosenstiel W, Schonknecht V,
Reitemeyer S (2009) Semiformal verification of temporal properties in automotive hardware
dependent software. In: DATE’09: proceedings of the conference on design, automation and
test in Europe, pp 1214-1217

Ruf J, Peranandam PM, Kropf T, Rosenstiel W (2003) Bounded property checking with sym-
bolic simulation. In: FDL

Cordeiro L, Fischer B, Chen H, Marques-Silva J (2009) Semiformal verification of embedded
software in medical devices considering stringent hardware constraints. In: Second international
conference on embedded software and systems, pp 396403

Godefroid P, Klarlund N, Sen K (2005) Dart: directed automated random testing. SIGPLAN
Not 40(6):213-223. http://doi.acm.org/10.1145/1064978.1065036

Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2006) Exe: automatically generating
inputs of death. In: Proceedings of the 13th ACM conference on computer and communica-
tions security. CCS’06. ACM, New York, pp 322-335. http://doi.acm.org/10.1145/1180405.
1180445

Sen K, Marinov D, Agha G (2005) CUTE: a concolic unit testing engine for C. SIGSOFT
Softw Eng Notes 30(5):263-272. http://doi.acm.org/10.1145/1095430.1081750

Di Guglielmo G, Fujita M, Fummi F, Pravadelli G, Soffia S (2011) EFSM-based model-driven
approach to concolic testing of system-level design. In: 2011 9th IEEE/ACM international
conference on formal methods and models for codesign (MEMOCODE), pp 201-209

http://www.cprover.org/cbmc/
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1095430.1081750

8 Scalable and Optimized Hybrid Verification ... 205

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.

42.

Cadar C, Dunbar D, Engler D (2008) KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX conference
on operating systems design and implementation. OSDI’08. USENIX Association, Berkeley,
pp 209-224

Lattner C, Adve V (2005) The llvm compiler framework and infrastructure tutorial. In: Eigen-
mann R, Li Z, Midkiff S (eds) Languages and compilers for high performance computing.
Lecture notes in computer science, vol 3602. Springer, Berlin, pp 15-16

Tillmann N, De Halleux J (2008) Pex: white box test generation for .net. In: Proceedings of the
2nd international conference on tests and proofs. TAP’08. Springer, Heidelberg, pp 134-153.
http://dl.acm.org/citation.cfm?id=1792786.1792798

Cuoq P, Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2012) Frama-C: a
software analysis perspective. In: Proceedings of the 10th international conference on software
engineering and formal methods. SEFM’12. Springer, Heidelberg, pp 233-247

Correnson L, Signoles J (2012) Combining analyses for C program verification. In: Stoelinga
M, Pinger R (eds) Formal methods for industrial critical systems. Lecture notes in computer
science, vol 7437. Springer, Berlin, pp 108-130

Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2015) Frama-C: a software
analysis perspective. Formal Aspects Comput:1-37

Weiss RJ, Ruf J, Kropf T, Rosenstiel W (2005) Efficient and customizable integration of
temporal properties into SystemC. In: Forum on specification & design languages (FDL), pp
271-282

Clarke E, Grumberg O, Hamaguchi K (1994) Another look at LTL model checking. In: Dill
DL (ed) Conference on computer aided verification (CAV). Lecture notes in computer science,
vol 818. Springer, Stanford, pp 415-427

Necula GC, McPeak S, Rahul SP, Weimer W (2002) CIL: intermediate language and tools for
analysis and transformation of C programs. In: Computational complexity, pp 213-228
MISRA (2000) MISRA—the motor industry software reliability association. http://www.misra.
org.uk/

SheaR (2009) Call graph visualization for C and TinyOS programs. In: Department of computer
science school of engineering UCLA. http://www.ambleramble.org/callgraph/index.html
Lettnin D, Nalla PK, Ruf J, Kropf T, Rosenstiel W, Kirsten T, Schonknecht V, Reitemeyer S
(2008) Verification of temporal properties in automotive embedded software. In: DATE’08:
proceedings of the conference on design, automation and test in Europe. ACM, New York, pp
164-169

Open SystemC Initiative (2003) SystemC verification standard library 1.0p users manual
Clarke E, Kroening D, Yorav K (2003) Behavioral consistency of C and verilog programs
using bounded model checking. In: DAC’03: proceedings of the 40th annual design automation
conference. ACM, New York, pp 368-371

GNU (2010) Geov coverage. http://gcc.gnu.org/onlinedocs/gcc/Geov.html

Malik A, Moyer B, Cermak D (2000) The M’CORE (TM) M340 unified cache architecture.
In: Proceedings of the 2000 international conference on computer design, pp 577-580

NEC NEC Electronics (Europe) GmbH. http://www.eu.necel.com/

http://dl.acm.org/citation.cfm?id=1792786.1792798
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.ambleramble.org/callgraph/index.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.eu.necel.com/

Index

A

All time, 54, 55, 57

Analysis of bugs, 67

API, 75,76

Assertion-based verification, 12
Atomic agents, 57, 60

B
Black box verification, 11
Breakpoints, 47, 48, 50, 51, 58, 62, 64

C

CBMC, 160, 175, 179-181
Communication, 133, 136, 137, 140
Coverage, 185, 186, 188, 193, 195, 201
C software, 172

Cyber-physical systems, 1, 133, 137

D

Debugging, 1-8, 10, 14
Delta debugging, 85
Design complexity, 3
Driver-device, 135, 153
Dynamic verification, 11

E
EDA, 19, 44

Embedded software, 1, 2, 8, 11-14, 38-40,

44
Embedded systems (ES), 1
Emulation, 5, 6, 20, 22, 34, 36
ESBMC, 160, 166, 175-177, 180

© Springer Science+Business Media, LLC 2017

F

Firmware, 19, 22, 24-26, 28, 29, 35, 38

Formal and semiformal verification, 4,
14

FPGA, 6, 8

Future time, 53, 55, 56

G

13,

GDB, 75, 77,78, 80, 83, 84, 98, 100, 104

H

HFSM, 137, 138, 140-144, 147, 148, 150,

151, 157

Hybrid verification, 14, 184, 185, 195, 197,

200, 203

I

Induction, 160-164, 167,169, 172,173,175,

176, 179-181
Intellectual property, 4
Interactive debugging, 8

Invariant, 160, 161, 163, 165, 166, 169, 173,

175-181
Invariant generation, 165, 180, 181
IP interface, 20-22, 24-26, 28, 29, 34

L
LTL, 187, 188, 193, 194, 201

M
Manual debugging, 69, 70, 80
MDD, 107, 108, 113, 128

D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2

207

208

Model-based debugging, 108-111, 119, 128,
129

Model checking, 13, 159

Monitoring, 68, 69, 81, 83-86, 88, 93-98,
100, 101, 103, 104

0

On-chip monitoring, 109, 111, 114, 116-
119, 123, 124

Orchestrator, 194, 195, 199

P

Past time, 53, 54
Performance, 20, 28, 33, 34
Playback debugging, 40

POL 188, 199, 203
Post-process debugging, 8
Program transformations, 164

R

Real time, 108-116, 119, 129-131

Replay, 70-73,75-77, 80-82, 86-90, 92, 93,
95-98, 100, 101, 103, 104

Reproduction, 68-72, 104

RTESS, 109, 111, 129

Runtime monitoring, 107-110, 112, 114,
116, 118, 119, 122, 125, 126, 130,
131

Index

S

Semiformal, 184188, 195, 203

Simulation, 4-6, 8, 10, 11, 14, 19, 22, 24,
28-30, 35, 36, 44

SPA, 184-186, 189-191, 194, 198, 201, 203

Static analysis, 12

Static verification, 12

SystemC, 19, 24

T

TDevC, 134, 135, 139, 140, 144-155, 157
Temporal assertions, 48, 51, 54, 55, 61-64
Testbench, 186, 188, 191-193, 203
Testing, 11

Theorem proving, 13

8]
UML, 108-111, 113, 115, 117, 129-131

A\

Verification, 1-6, 10-14

VERIFYR, 184, 186, 187, 195, 197, 199—
201, 203

w
‘White box verification, 11

	Foreword
	Contents
	Contributors
	1 An Overview About Debugging and Verification Techniques for Embedded Software
	1.1 The Importance of Debugging and Verification Processes
	1.2 Debugging and Verification Platforms
	1.2.1 OS Simulation
	1.2.2 Virtual Platform
	1.2.3 RTL Simulation
	1.2.4 Acceleration/Emulation
	1.2.5 FPGA Prototyping
	1.2.6 Prototyping Board
	1.2.7 Choosing the Right Platform for Software Development and Debugging

	1.3 Debugging Methodologies
	1.3.1 Interactive Debugging
	1.3.2 Post-Process Debugging
	1.3.3 Choosing the Right Debugging Methodology

	1.4 Verification Methodologies
	1.4.1 Verification Planning
	1.4.2 Verification Environment Development

	1.5 Summary
	References

	2 Embedded Software Debug in Simulation and Emulation Environments for Interface IP
	2.1 Firmware Debug Methods Overview
	2.2 Firmware Debuggability
	2.3 Test-Driven Firmware Development for Interface IP
	2.3.1 Starting Development
	2.3.2 First Functional Tests
	2.3.3 Debugging a System
	2.3.4 System Performance
	2.3.5 Interface IP Performance in a Full Featured OS Case
	2.3.6 Low Level Firmware Debug in a State-of-the-Art Embedded System

	2.4 Firmware Bring-up as a Hardware Verification Tool
	2.4.1 NAND Flash
	2.4.2 xHCI

	2.5 Playback Debugging with Cadence® Indago� Embedded Software Debugger
	2.5.1 Example
	2.5.2 Coverage Measurement
	2.5.3 Drawbacks

	2.6 Conclusions
	References

	3 The Use of Dynamic Temporal Assertions for Debugging
	3.1 Introduction
	3.1.1 DTA Assertions Versus Ordinary Assertions
	3.1.2 DTA Assertions Versus Conditional Breakpoints

	3.2 Debugging with DTA Assertions
	3.3 Design
	3.3.1 Past-Time DTA Assertions
	3.3.2 Future-Time DTA Assertions
	3.3.3 All-Time DTA Assertions

	3.4 Assertion's Evaluation
	3.4.1 Temporal Cycles and Limits
	3.4.2 Evaluation Log
	3.4.3 DTA Assertions and Atomic Agents

	3.5 Implementation
	3.6 Evaluation
	3.6.1 Performance

	3.7 Challenges and Future Work
	3.8 Conclusion
	References

	4 Automated Reproduction and Analysis of Bugs in Embedded Software
	4.1 Introduction
	4.2 Overview
	4.3 Debugger-Based Bug Reproduction
	4.3.1 State of the Art
	4.3.2 Theory and Algorithms
	4.3.3 Implementation
	4.3.4 Experiments

	4.4 Dynamic Verification During Replay
	4.4.1 State of the Art
	4.4.2 Theory and Workflow
	4.4.3 Implementation of Assertions During Replay
	4.4.4 Experiments

	4.5 Root-Cause Analyses
	4.5.1 State of the Art
	4.5.2 Theory and Concepts
	4.5.3 Implementation
	4.5.4 Experiments

	4.6 Summary
	References

	5 Model-Based Debugging of Embedded Software Systems
	5.1 Introduction
	5.1.1 Problem Statement
	5.1.2 Contribution

	5.2 Related Work
	5.3 Model-Based Debugging Framework
	5.3.1 Overview

	5.4 Runtime Monitoring
	5.4.1 Classification of Runtime Monitoring
	5.4.2 Time-and Memory-Aware Runtime Monitoring Approaches

	5.5 Experimental Evaluation
	5.5.1 Software Monitoring
	5.5.2 On-Chip (Software) Monitoring

	5.6 Performance Metrics
	5.6.1 Software Monitoring
	5.6.2 On-Chip (Software) Monitoring

	5.7 Discussion and Evaluation
	5.7.1 Salient Features in the Proposed Approach

	5.8 Conclusion
	References

	6 A Mechanism for Monitoring Driver-Device Communication
	6.1 Introduction
	6.2 Related Works
	6.3 Proposed Approach
	6.4 Definition of the HFSM-D State Machine
	6.5 The TDevC Language
	6.5.1 TDevC Device Model
	6.5.2 TDevC Platform Model

	6.6 Architecture of the Monitoring Module
	6.7 Experiments and Results
	6.8 Conclusions
	6.8.1 Future Works

	References

	7 Model Checking Embedded C Software Using k-Induction and Invariants
	7.1 Introduction
	7.2 Motivating Example
	7.3 Induction-Based Verification of C Programs Using Invariants
	7.3.1 The Proposed k-Induction Algorithm
	7.3.2 Running Example

	7.4 Experimental Evaluation
	7.4.1 Experimental Setup
	7.4.2 Experimental Results

	7.5 Related Work
	7.6 Conclusions
	References

	8 Scalable and Optimized Hybrid Verification of Embedded Software
	8.1 Introduction
	8.2 Related Work
	8.2.1 Contributions

	8.3 VERIFYR Verification Methodology
	8.3.1 SPA Heuristic
	8.3.2 Preprocessing Phase
	8.3.3 Orchestrator
	8.3.4 Coverage
	8.3.5 Technical Details

	8.4 Results and Discussion
	8.4.1 Testing Environment
	8.4.2 Motorola Powerstone Benchmark Suite
	8.4.3 Verification Results Using VERIFYR
	8.4.4 EEPROM Emulation Software from NEC Electronics

	8.5 Conclusion and Future Work
	References

	Index

