HEWLETT
PACKARD

/3

HP 48G Series
Advanced User’s

Reterence Manual







HP 48G Series Advanced
User’s Reference Manual

HEWLETT
PACKARD

(

HP Part No. 00048-90136
Printed in Singapore




Notice

This manual and any examples contained herein are provided “as is” and are
subject to change without notice. Hewlett-Packard Company makes no
warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for
a particular purpose. Hewlett-Packard Co. shall not be liable for any errors
or for incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the examples herein.

© Copyright Hewlett-Packard Company 1993. All rights reserved.

Reproduction, adaptation, or translation of this manual is prohibited without

prior written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control this product are copyrighted and all rights are
reserved. Reproduction, adaptation, or translation of those programs without

prior writien permussion of Hewlett-Packard Co. 1s also prohibited.

© Trustees of Columbia University in the City of New York, 1989. Permission

i1s granted to any individual or institution to use, copy, or redistribute Kermit
software so long as 1t 1s not sold for profit, provided this notice is retained.

Hewlett-Packard Company
Corvallis Division
1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Acknowledgements

Hewlett-Packard gratefully acknowledges the members of the Education
Advisory Committee (Dr. Thomas Dick, Dr. Lynn Garner, Dr. John Kenelly,
Dr. Don LaTorre, Dr. Jerold Mathews, and Dr. Gil Proctor) for their
assistance 1n the development of this product. Special thanks are also due to

Donald R. Asmus, Scott Burke, Bhushan Gupta and his students at the Oregon
Institute of Technology, and Carla Randall and her AP Calculus students.

Edition History

Edition 1 ... July 1993
BEdition 2 . ... e January 1994
Edition 3 ... .. May 1994

Edition 4 .. ... December 1994



Contents

1. Programmmng

Understanding Programming . . . . . . . . . . . . 1-1
The Contents of a Program . . . . . . . . . . . 1-1
Calculations in a Program . . . . . . . . . . . . 1-3

Entering and Executing Programs . . . . . . . . . . 1-4

Viewing and Editing Programs . . . . . . . . . . . 1-9

Creating Programs on a Computer . . . . . . . . . 1-10

Using Local Variables . . . . . . . . . . . .. .. 111
Creating Local Variables . . . . . . . . . .. .. 111
Evaluating Local Names . . . R
Defining the Scope of Local Varlables e e o 114
Compiled Local Variables . . . . . . . . . . . . 1-15
Creating User-Defined Functions as Programs . . .  1-16

Using Tests and Conditional Structures . . . . . . . 1-17
Testing Conditions . . . . . . . . . . . . . . . 1-17

Using Comparison Functions . . . . . . . . . . 1-17
Using Logical Functions . . . . . . . . . . . . 1-19
Testing Object Types . . . . . . . . . . . . . 120
Testing Linear Structure . . . . . . . . . . . . 1-20
Using Conditional Structures and Commands ... 120
The IF ... THEN ... END Structure . . . . . .  1-20
The IFT Command T 4|
The IF ... THEN ... ELSE ... END Structure . 1-21
The IFTE Functlon Co. . C e e e e 1-22
The CASE ... END Structure C e e 1-22
Conditional Examples e e e e e, 1-23

Using Loop Structures . . . . C e e e 1-27

Using Definite Loop Structures e e e e 1-28
The START ... NEXT Structure . . . . . . . . 1-28
The START ... STEP Structure . . . . . . . . 1-30
The FOR ... NEXT Structure . . . . . . . . . 1-32
The FOR ... STEP Structure . . . . . . . . . 1-34

Contents-1



Using Indefinite Loop Structures . . .
The DO ... UNTIL ... END Structure

The WHILE REPEAT ... KND Structure
Using Loop Counters

Using Summations Instead of Loops .
Using Flags .
Types of Flags . . . oo
Setting, Clearing, and Testulg Flags .
Recalling and Storing the Flag States
Using Subroutines . .
Single-Stepping through a, Program
Trapping Errors
Causing and Analyzing Errors
Making an Error Trap . . . . . . . . . . . .
The IFERR ... THEN ... END Structure . .
The IFERR ... THEN ... ELSE ... END
Structure .
Input
Data Input Commands .
Using PROMPT ... CONT for Input

Using INPUT ... ENTER for Iuput L.
Using INFORM and CHOOSE for Iuput .

Beeping to (zet Attention . .
Stopping a Program for Keystroke Input
Using WAIT for Keystroke Input
Using KEY for Keystroke Iuput
Output . .
Data Output Comm&uds L
Labeling Output with Tags . . ..
Labeling and Displaying Output as Strmgs .
Pausing to Display Output . . . .
Using MSGBOX to Display Output .
Using Menus with Programs
Using Menus for Input . .

Using Menus to Run Programs . . .
Turning Off the HP 48 from a Program

Contents-2

Using DISP FREEZE HALT ... CONT for Iuput .

1-36
1-36
[-38
1-39
1-40
1-42
1-42
1-42
1-44
1-45
1-47
1-50
1-51
1-03
1-53

1-54
1-55
1-56

1-56

1-98
1-60
1-67
1-71
1-72
1-72
1-73
1-74
1-74
1-74
1-75
1-76
1-77
1-77
1-79
I-79
1-82



2.

J.

Programming Examples

Fibonacci Numbers
FIB1 (Fibonacci Numbers, Recursive Version)
FIB2 (Fibonacci Numbers, Loop Version)

iiiiiiiiiiii

FIBT (Comparing Program-Execution Time) . . . .

Displaying a Binary Integer
PAD (Pad with Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display) . . .

Median of Statistics Data . . . .
%TILE (Percentile of a List) . . .
MEDIAN (Median of Statistics Data)

Expanding and Collecting Completely . . . .
MULTI (Multiple Execution) .

EXCO (Expand and Collect Completely)
Minimum and Maximum Array Elements

lllllll

lllll

MNX (Minimum or Maximum Element—Version 1) .

MNX2 (Minimum or Maximum Element—Version 2)
Applying a Program to an Array
Converting Between Number Bases

Verifying Program Arguments
NAMES (Check List for Exactly Two Names)

lllll

iiiii

iiiiiiiii

VFY (Verify Program Argument) . . . . . . . . .

Converting Procedures from Algebraic to RPN
Bessel Functions
Animation of Successive Ta,ylor S Pc-lynommls

SINTP (Converting a Plot to a Graphics Object)

SETTS (Superimposing Taylor’s Polynomials)

TSA (Animating Taylor’s Polynomials)
Programmatic Use of Statistics and Plotting
Trace Mode

Inverse-Function Solver
Animating a Graphical Image

-------

lllllllllllllll

-----

iiiiiiiii

Command Reference

ABS
ACK . .
ACKALL
ACOS .

llllll

iiiiiiii

» " * - -

llllllll

iiiiiiii

llllllll

iiiii

iiiiiiiiiiii

iiiii

iiiiiii

IIII

iiiiii

iiiiii

iiiii

iiiiiiiiiiiii

lllll

*********

2-2

2-2

2-3

2-5

2-7

2-7

2-3
2-10
2-14
2-14
2-16
2-19
2-19
2-20
2-22
2-22
2-29
2-29
2-92
2-36
2-36
2-38
2-40
2-43
2-45
2-45
2-46
2-47
2-49
2-93
2-54
2-56

3-0
3-0
3-0
3-7
3-9
3-11

Contents-3



- *

ANIMATE . .

APPLY
ARC

ARCHIVE . .

ARG

ATTACH
AUTO . .
AXES
BAR
BARPLOT
BAUD . .
BEEP . .
BESTFIT
BIN .
BINS

* L]

u L

BLANK . . .

BOX . .
BUFLEN
BYTES
B—R . .
CASE . .
CEIL . .
CENTR .
CF . . .
CHOOSE
%CH
CHR . .
CKSM . .
CLEAR

Contents-4

L + & &*

iiiiiiii
1

llllll

llllll

iiiiii

] L 3 - -

| ] - - ¥

L ] » L4 L |

iiiiii

IIIII

iiiii

llllllll

11111111

iiiiii

iiiiiiii

iiiiiiii

iiiiii

iiiiii

iiiiii

llllll

iiiiiiii

iiiiii

L *

''''''

iiiiiiii

iiiiii




CLKADJ

CLLCD . . . .

iiiiiiiiiiii

CLOSEIO
CL

CLTEACH .

CLUSR
CLVAR

CNRM . .

+ + - | ]

—COL

& L ] L]

FY - L] L]

L ] L ] L

lllllllll

lllllll

lllllllllllllllll

iiiiiiiiiiiii

lllll

iiiiiiii

iiiiiiiiiiiii

lllllllllll

lllllllllllllllll

iiiiiiiiiiiiiiiiiii

--------------
.........

llllllllll

iiiiiiiiiii

llllllllllll

######

lllllllll

iiiiiiii

lllllllllllllllll

-----

iiiiiiiiiiii

iiiiiiiiiii

iiiiiiiii

llllllllllllll

llllllll

"""

iiiiiiiiii

iiiiiiiiiiiii

''''''''''''''''

lllllllllllllllllll

iiiiii
iiiiiiiiii

llllll

--------

iiiiiiiiiiiiiiiiiii

iiiiiii

-----

iiiiii

iiiiiiii

iiiiiiiiii

iiiii

iiiiiiiiiiiiii

lllll

iiiiiiiiiiiiii

lllll

lllllllllll

IIIIIIIIIIII

iiiiiii

iiiiiiiiiiiiiiiiii

3-9()
3-01
3-01
3-02
3-92
3-02
3-93
3-93
3-04
J-04
3-990
3-90
3-56
3-97
3-98
3-99
3-60
3-61
3-02
3-63
3-63
3-64
3-60
3-00
3-60
3-07
3-07
3-68
3-09
3-69
3-70
3-70
3-71
3-71
3-72
I-73
3-73
3-74
3-74
3-79
3-75

Contents-5



DECR . . . . . . . . Coe
DEFINE . . . . . . . . . . . ..
DEG . . . . . . . . ..
DELALARM . . . . . . . Co
DELAY . . . . . . . . . . . ..
DELKEYS . . . . . . . .
DEPND . . . . . . . . . Co
pgpTd . . . .. .. ...
DET .. ... 0L
DETACH . . . . . .

DIAG— . . . . . . . . .

—DIAG . . . . . . . ..

DISP . . . . .. L

DOLIST . . . . . Coe
DOSUBS . . . . . . .. Coe
por . ... .. ... ..
DRAW . . . . .

DRAX . . . . . . . . . . . ...
DROP . . . . . . .. ...
DROPN . . . . .

Contents-6

3-76
3-77
J-78
3-78
3-79
3-80
3-81
3-82
3-82
3-84
3-84
3-89
3-86
J-8&
3-89
3-90
3-91
3-92
J-94
3-94
3-99
3-90
3-96
3-96
3-97
3-97
3-98
3-98
3-99
3-99
3-100
3-101
3-101
3-102
3-102
3-103
3-104
3-104
3-105
3-105
3-106




ERRO . .
EVAL . . .
EXP . . .
EXPAN . .
EXPFIT . .
EXPM
EYEPT . .
FOA . . . .
FACT . . .
FANNING .

" [ ] -

L & L »

- w L ]

FREEZE
FS?
FS?7C
FUNCTION
GET
GETI
GOR . . .
GRAD .
GRAPH .

L] L] * L

L - L

GRIDMAP . . .
—GROB . . . .

GXOR
HALT . .
HEAD
HEX
HISTOGRAM
HISTPLOT
HMS+
HMS—

| ] -

L L] L

- ] L] L

iiiiii

llllllllll

iiiiii

llllllll

L L

''''''

L *

llllll

iiiiii

iiiiii

iiiiii

llllll

iiiiii

iiiiiiii

llllllllllll

----------

+ L

llllll

llllllll

* -

iiiiiiiiii

iiiiii

iiiiiiii

iiiiii

iiiiiiiiii

» n L L 2

llllllllll

llllll

. [ ] - L

llllllllll

lllllll

L] * L]

- L ] ]

L L L]

L] * u

iiiii

lllll

iiiii

* ¥

-------

lllllll

lllll

iiiiiii

iiiii

- L L

.......

iiiiiii

* L2 »

iiiiiii

IIIII

lllll

- ¥ L

iiiii

lllllll

3-107
3-108
3-109
3-110
3-110
a-111
3-112
a-112
3-113

- 3-114

3-114
3-115
o-116
J-117
3-117
3-118
3-119
3-121
J-121
3-122
3-123
3-124
3-125
3-120
3-127
3-129
3-130
3-131
3-131
3-132
3-133
3-134
3-135
3-136
3-136
3>-137
3-137
3-139
3-139
3-140

Contents-7



HMS—
—HMS
HOME

1 ..
IDN .

IF . . .
IFERR
IFFT
[FT .
[FTE

M .
INCR .
INDEP .
INFORM
INPUT
INV .

IP

IR .
ISOL . .
KERRM .
KEY .
KGET .
KILL .
LABEL .
LAST .

LASTARG .

LCD—
—LCD .
LIBEVAL
LIBS
LINE . .
2. LINE
LINFIT
LININ .
LIST—
SLIST
2LIST
ALIST
TTILIST
LN .
LNP1

Contents-8




LOG . . .
LOGFIT . .
LQ
LR . . . .
LSQ . . . .
LU
MANT . .
TMATCH

|MATCH

MAX . . .
MAXR . .
MAX2 . .

L] L * »

& L *

MROOT . . . .

MSGBOX .
MSOLVR .
MUSER . .
NDIST
NEG

| L L

* L] -

iiiiiiiiiiii

iiiii

iiiii

llllllllllll

iiiii

------

llllll

iiiiiiiiiiiii

lllll

lllll

lllll

- -

- L ] L L]

iiiiii

llllllll

iiiiiiiiiiii

iiiiiiiiiiiiii

llllllllllllll

----------

iiiiii

L * » ]

..........

iiiiiiiiiiii

L | +* L a

----------

iiiiiiiiii

a L] & L

lllllllll

llllllllll

iiiiiiii

llllllllllllll

iiiiiiiiii

iiiiiiiii

111111111111

iiiiiiii

iiiiiiiiii

iiiiiiiiiiii

] [ ] L L4

iiiiiiiiii

llllll

iiiiiiiiii

L L ] ]

a L + L

IIIIII

] ] ¥ *

iiiii

iiiii

iiiii

lllll

IIIII

iiiii

"""

* L} -

lllll

lllll

L ] L] L]

lllll

lllll

+ L ] |

lllll

3-174
3-176
3-176
3-177
3-178
3-179
3-179
3-180
3-131
3-183
3-183
3-184
3-185
3-180

- 3-186

o-187
3-190
3-190
3-191
3-192
3-193
3-193
3-194
3-194
3-195
3-195
3-196
3-197
3-197
3-198
3-199
3-200
3-201
3-201
3-201
3-203
3-203
3-204
3-207
3-207
3-208

Contents-9



NZ . . . .. ... . 3908
OBJ— . . . . . . . . ... 32209
OCT . . . . . . . . . . . ... L. 3-210
OFF . . . . . . . . .. - S ) § |
OLDPRT . . . . . . .. - S0 3 § |
OPENIO . . . . . . . . . . . . .. .. ... . 3912

OR . . . . . ... ... S 524
ORDER . . . . . . . . . . . .. .. T A
OVER . . . . . . . . .. C e e e e ... . 3215
PARAMETRIC . . . . . . C e e e e oo 3215
PARITY . . . . . . . s £
PARSURFACE . . . . . . s 1 ke
PATH . . . . . . . . . . . . . ... ... ... 3219
PCOEF . . . . . . . . . . . .. S AL
PCONTOUR . . . . . . . . . .. e e e o822
PCOV . . . . . . . . ... e e e e 3-222
PDIM . . . . . . .. . . .. e e e 3228
PERM . . . . . . . .. S
PEVAL . . . . . . . .. C e e e e e oo 3224
PGDIR . . . . . . . e e e e e e e e 3220
PICK . . . . . . . . . . . . . 0o 3220
PICT . . . . . . . 0. s S
PICTURE . . . . . . . . . . . . . . . . .. .. 3-227
PINIT . . . . . . . . . . .. C e e e 3228
PIXOFF . . . . . . . . . . . e e e e 3228
PIXON . . . . . . . e e e e e e 3229
PIX? . . . . . 0 . e e e e e e e e s 3-229
PKT . . . . . . . . .. .. .. Coe e e e o 3-230

PMAX . . . . . . . .. .. . R ]|
PMIN . . . . . . . . . . .. T AT
POLAR . . . . . . . . . s S0 Y
POS . . . . . .00l Coe ... 9234
PREDV . . . . . . . . . . . ... e ... 3234
PREDX . . . . . . . . . .. O S 13
PREDY . . . . . . . . . e e e e e e 3236
PRLCD . . . . . . . . . e e e e e e 3237
PROMPT . . . . . . . . . . . . . O 000 3238
PROOT . . . . . . . . . . . .. Coe ... 3238
PRST . . . . . . . . . . .. e e e 3-2389
PRSTC . . . . . . . .. C e e e e e e o3240
PRVAR . . . . . . . . . . . . ... Co. o . .. 37240

Contents-10



PR1. . . . . . . . . . .. 3-241
PSDEV . . . . . ... 3-242
PURGE . . . . . . . . . . . . . . .. ... 3-243
PUT . . . . . . . . . . . .. 3-244
PUTI . . . . . . . . . . . . . .. ... 3-246
PVAR . . . . . . . . .. 3-247
PVARS . . . . . . . . .. 3-248
PVIEW . . . . . . . . . . . . . ... 3-249
PWRFIT . . . . . . . . . . . . . ... 3-250
PX—C . . . . s 3-250
—Q . ... 3-251
—QT . 3-201
QR . . . . s, 3-253
QUAD . . . . . . . . ..o 3-253
QUOTE . . . . . . . . . . . ... 3-254
RAD . . . . . . 3-256
RAND . . . . . . . ..o 3-256
RANK . . . . . . 3-257
RANM . . . . . . .o 3-257
RATIO . . . . . . . . . . . . . .. ... 3-25H8
RCEQ . . . . . . . . . .o 3-259
RCI . . . . . . . .. 3-260
RCL . . . . . . . . .. 3-260
RCL . . . . . . . .. 3-261
RCLALARM . . . . . . . . . . . . ... 3-262
RCLF . . . . . e, 3-262
RCLKEYS . . . . . . . . . . . . . .. 3-263
RCLMENU . . . . . . . . . . ... 3-264
RCLE . . . . . . . . . ... 3-264
RCWS . . . . . . . . . 3-265
RDM . . . . e, 3-266
RDZ . . . . . 3-267
RE . . . . . 3-207
RECN . . . . . . . . . . 3-268
RECT . . . . . . . . .., 3-269
RECV . . . . . . . . 3-269
REPEAT . . . . . . . . . . . .. .. . 3-270
REPL . . . . . . . 3-270
RES . . . . .o, 3-271
RESTORE . . . . . . . . . . . . . . . . .. 3-273
REVLIST . . . . . . . . . . . . ... 3-274

Contents-11



RKF . .
RKFERR

RKFSTEP . .

RL .
RLB
RND . .
RNRM

RRK

RRKSTEP . .

RSBERR
RSD . .
RSWP
R—B

SCATRPLOT . . . . . .

SCATTER
SCHUR
SCIL .

SCLL . .

SCONJ
SDEV .
SEND . .

SEQ . .

SERVER
S

Contents-12

iiiiii

iiiiii

lllll

iiiiiiiiii

llllllll

******

llllll

iiiiii

iiiiii

iiiiii

--------

iiiiii

""""""

------

iiiiiiii

iiiiii

iiiii

------

iiiiiiii

iiiiiiiiiiiiii

iiiiii

llllll

llllllllllll

llllll

IIIIIIII

iiiiii

------

3-274
3-276
3-277
3-278
3-278
3-279
3-280
3-280
J-281
3-281
3-282
3-282
3-283
3-284
3-284
3-280
3-289
3-286
3-286
3-288
3-290
3-291
3-292
3-292
3-293
3-294
3-294
3-295
3-299
3-296
3-297
3-298
3-299
3-299
3-300
3-300
3-301
3-302
3-303
3-304
3-300




SIGN . . . . 3-306
SIMU . . . . . .. ... 3-307
SIN . . . . 3-307
SINH . . . . . . s 3-308
SINV . . . 3-309
SIZE . . . . s 3-309
SL, . . . . .. - 5 [ |
SLB . . . . .. . ... 3311
SLOPEFIELD . . . . . . . . . . . . .. ... . 3312
SNEG . . . . . . . . . . ... ... ... .. 3313
SNRM . . . . . . .. 3-314
SOLVEQN . . . . . . . . . . . .. ... ... 3314
SORT . . . . . . . .. . . 3315
SPHERE . . . . . . . . ., 3-316
SQ . . .. 3-316
SR . . . . 3-317
SRAD . . . . ., 3-317
SRB . . . .., 3-318
SRECV . . . . 3-318
SST . . . .. 3-320
SST| . . . . .o, 3-320
START . . . . . . . . . . . . ... 3-321
STD . . . . ., 3-322
STEP . . . . . . . ., 3-323
STEQ . . . . . . . 3-324
STIME . . . . . . . . . . . . . ... 3-324
STO . . . . 3-325
STOALARM . . . . . . . . . . . . ... ... 3-326
STOF . . . . . . . 3-327
STOKEYS . . . . . . . . . . . . . ... .. . . 3-328
STO . . . . 3-329
STO— . . . . ., 3-330
STOx . . . . . 3-330
STO/ . . . . . s .. 3-331
STOX . . . . . . 3-332
STREAM . . . . . . . . . . 3-333
STR— . . . . . . 3-333
—~STR . . . . . . L 3-334
STWS . . . . . . . .. 3-335
SUB . . . ., 3-336

Contents-13



L) *

& L] L]

SWAP
SYSEVAL
%T . . .
—TAG
TAIL
TAN . .
TANH . .
TAYLR .
TDELTA
TEACH .
TEXT . .
THEN . .
TICKS
TIME . .
—TIME .
TINC

TLINE

L ] L4

T L

iiiiii

- »

llllll

L] L + +*

iiiiii

iiiiii

iiiiii

iiiiii

iiiiii

llllll

llllll

TMENU . . .

TOT
TRACE .
TRANSIO
TRN . .
TRNC . .
TRUTH .
TSTR . .
TVARS
TVM

u L]

iiiiii

iiiiii

iiiiii

llllll

iiiii

iiiiii

iiiiii

llllllll

TVMBEG . .

TVMEND

TVMROOT

TYPE . .

UBASE .

UFACT .
—UNIT

UNTIL
UPDIR
UTPC
UTPF .

UTPN . .

Contents-14

IIIIII

iiiiii

llllllll

llllll

IIIIIIII

iiiii

IIIIII

& L

& L

llllll

3-337
3-338
3-338
3-339
3-339
3-341
3-341
3-342
J-343
3-343
3-344
3-345
3-345
3-340
3-346
3-347
3-347
3-348
3-349
3-300
3-301
3-391
3-392
3-303
3-393
3-390
3-390
3-397
3-397
3-358
3-308
3-358
3-399
3-360
J-361
3-362
3-362
3-363
3-363
3-364
3-369




ureT . . ..o 00 e e e e 3-369

UVAL . . . . . . . ... .. 3-366
VAR . . . . . .. 3-367
VARS . . . . ., 3-367
VERSION . . . . . . . . . . 3-368
VITYPE . . . . . . . . . ... 3-368
SV 3-369
V3 3-370
V= o 3-371
* W s, 3-372
WAIT . . . . . . . . . . 3-373
WHILE . . . . . .., 3-374
WIREFRAME . . . . . . . . . . . . . ..., 3-375
WSLOG . . . . . 3-377
X 3-379
X2 s 3-379
XCOL . . . . . 3-380
XMIT . . . . . . 3-381
XOR . . . . .o 3-382
XPON . . . . . 3-383
XRECV . . . . . . . . 3-384
XRNG . . . . .. 3-384
XROOT . . . . . ., 3-385
XSEND . . . . ., 3-386
XVOL . . . . . 3-386
XXRNG . . . . o, 3-387
2XKY ., 3-388
2Y 3-388
2Y'2 3-389
YCOL . . . . . . 3-389
YRNG . . .., 3-390
YSLICE . . . . . . . . . . .. ... 3-391
YVOL . . . . . .. 3-392
YYRNG . . . . . . .. 3-393
ZFACTOR . . . . . . . . . . ... ... .. 3393
ZVOL . . . . . . . ... o 3-394
s 3-395
S 3-397
S 3-399
[ 3-401
o 3-402

Contents-15



< . 3-403
< . 3-404
> . 3-406
> . 3-407
= . 3-408
== 3-410
£ . 3-411
L. 3-412
[ . 3-413
J . 3-415
70 3-416
m J-417
2 3-418
2 o 3419
L— .o 3420
Voo s 3420
R S 905
| (Where) . . . . . . . . . . . . . ... .. 3423
— e e e e e e e s s 3424
4. Equation Reference
Columns and Beams (1) . . . . . . . . . . . . .. 4-1
Elastic Buckling (1, 1) . . . . . . . . . . . . .. 4-3
Eccentric Columns (1,2) . . . . . . . . . . . . . 4-3
Simple Deflection (1,3) . . . . . . . . . . . .. 4-4
Simple Slope (1,4) . . . . . . . . . . . . . .. 4-5
Simple Moment (1,5) . . . . . . . . . . . . .. 4-6
Simple Shear (1,6) . . . . . . . . . . . . . .. 4-6
Cantilever Deflection (1,7) . . . . . . . . . . . . 4-7
Cantilever Slope (1, 8) . . . . . . . . . . . . .. 4-7
Cantilever Moment (1,9) . . . . . . . . . . . . 4-8
Cantilever Shear (1,10) . . . . . . . . . . . . . 4-9
Electricity (2) . . . 4-9
Coulomb’s Law (2, 1) e S
Ohm’s Law and Power (2, 2) S |
Voltage Divider (2,3) . . . . . . . . . . . . . . 412
Current Divider (2,4) . . . . . . . . . . . . . . 412
Wire Resistance (2,5) . . . . . . . . . . . . . . 4-13
Series and Parallel R (2, 6) O 5
Series and Parallel C(2,7) . . . . . . . . . . . . 414
Series and Parallel L. (2,8) . . . . . . . . . . . . 4-14

Contenis-16



Capacitive Energy (2, 9)
Inductive Energy (2, 10)
RLC Current Delay (2, 11) .
DC Capacitor Current (2, 12)
Capacitor Charge (2, 13) . .
DC Inductor Voltage (2, 14)
RC Transient (2, 15)
RL Transient (2, 16)
Resonant Frequency (2, 17)
Plate Capacitor (2, 18)

¥ »

L »

L »

Cylindrical Capacitor (2, 19) . . . .

Solenoid Inductance (2, 20)

Toroid Inductance (2, 21) .

Sinusoidal Voltage (2, 22) .
Sinusoidal Current (2, 23)
Fluids (3)
Pressure at Depth (3, 1) . .
Bernoulli Equation (3, 2) .
Flow with Losses (3, 3)
Flow in Full Pipes (3, 4)
Forces and Energy (4) . .
Linear Mechanics (4, 1)
Angular Mechanics (4,
Centripetal Force (4, 3)
Hooke’s Law (4, 4)
1D Elastic Collisions (4, 5) .
Drag Force (4, 6) .
Law of Gravitation (4, 7) .
Mass-Energy Relation (4, 8)
Gases (5)
Ideal Gas Law (5, 1)

Ideal Gas State Change (5, 2)
Isothermal Expansion (5, 3)

Polytropic Processes (5, 4) .
[sentropic Flow (5, 5) .
Real Gas Law (5, 6) . . . .
Real Gas State Change (5, 7)
Kinetic Theory (5, 8) .
Heat Transfer (6) . . . .
Heat Capacity (6, 1)
Thermal Expansion (6, 2) .

111111111

» L4

¥ &

» +

| - ] L

L L] ]

iiiii

] L ] *

29

llllll

IIIII

iiiiiiiii

iiiiiiii

.......

iiiii

11111

llllll

llllll

iiiiiiiiii

lllll

llllll

iiiiiii

| & L L)

iiiiiiiii

.........

lllllllll

iiiiiiiiiii

lllllll

L - L) L]

IIIIIIIII

lllllll

llllll

lllllllllll

iiiiiiiii

lllllll

* L

lllllllll

iiiiiiiii

iiiiiiiiiii

lllllllll

iiiiiiiiiii

iiiii

L - L] L

iiiiiii

iiiii

------

iiiii

iiiiii

--------

iiiiiii

iiiiiii

---------

4-16
4-17
4-17
4-13
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-26
4-27
4-28
4-29
4-29
4-3C
4-3C
4-31
4-31
4-31
4-32
4-33
4-33
4-34
4-34
4-35
4-36
4-36
4-37
4-37
4-38
4-39

Contents-17



Conduction (6, 3) . .

Convection (6, 4)

Conduction + Convection (6, 5)

Black Body Radiation (6, 6)
Magnetism (7) . . . .

Straight Wire (7, 1) . .

Force between Wires (7 2)

Magnetic (B) Field in Solenmd (7 3) .

Magnetic (B) Field in Toroid (7, 4)

Motion (8) . . .

Linear Motion (8 1)

Object in Free Fall (8, 2)
Projectile Motion (8, 3)

Angular Motion (8, 4) . .
Circular Motion (8, 5) . .
Terminal Velocity (8, 6)
Escape Velocity (8, 7)

Optics (9) . .

Law of Refractlon (9 1)
Critical Angle (9, 2) .
Brewster’s Law (9, 3) . .
Spherical Reflection (9, 4)
Spherical Refraction (9, 5)
Thin Lens (9, 6)

Oscillations (10) . . .
Mass-Spring System (10 1)
Simple Pendulum (10, 2) .
Conical Pendulum (10, 3) .
Torsional Pendulum (10, 4)
Simple Harmonic (10, 5) .

Plane Geometry (11)

Circle (11, 1) . .
Ellipse (11, 2) . . .
Rectangle (11, 3) . . .
Regular Polygon (11, 4)
Circular Ring (11, 5)
Triangle (11, 6) . . .

Solid Geometry (12) . .
Cone (12,1) . .
Cylinder (12, 2) . . .
Parallelepiped (12, 3)

Contents-18

4-39
4-40)
4-41
4-42
4-43
4-43
4-44
4-44
4-45
4-46
4-47
4-47
4-48
4-48
4-49
4-49
4-49
4-50)
4-51
4-51
4-52
4-52
4-93
4-54
4-54
4-55
4-56
4-56
4-57
4-57
4-58
4-59
4-59
4-60
4-61
4-61
4-62
4-63
4-64
4-64
4-69




Sphere (12,4) . . . . . . . .
Solid State Devices (13) . . . . . . . . . . . . . .
PN Step Junctions (13, 1) . . . . . . . . . . . .
NMOS Transistors (13,2) . . . . . . . . . . . .
Bipolar Transistors (13,3) . . . . . . . . . . . .
JFETs (13,4) . . . . . . . . . . ...
Stress Analysis (14) . . . . . . . . . . . . .. L
Normal Stress (14,1) . . . . . . . . . . . . .
Shear Stress (14,2) . ... . . . . . . . . . . . .
Stress on an Element (14,3) . . . . . . . . . . .
Mohr’s Circle (14,4) . . . . . . . . . L
Waves (15) . . . . . . . . ..o
Transverse Waves (15, 1) . . . . . . . . . . . . .
Longitudinal Waves (15,2) . . . . . . . .
Sound Waves (15,3) . . . . . . . . . .

References . . . . . . . . . . . o . . .o oo

A. Error and Status Messages

B. Table of Units
C. System Flags

D. Reserved Variables

Contents of the Reserved Variables . . . . . . . .
ALRMDAT . . . . . . . . ...,
csT. .. .. .. s

“der-” Names . . . . . . . .« « . . . . .
EQ . . . . . . ..o .
EXPR . . . . . . . . . ..o .
IOPAR . . . . . . . . . . ...

nl,n2, ... . . . . . . . . 0.
NIMINES . . . o o v e s s

PPAR . . . . . . . . ..o
PRTPAR . . . . . . . . . . . . . .. Lo
sl, 82, ... . . . . . e,

Contents-19



E. New Commands

F. Technical Reference

Object S1zes . . . . . .

Automatic Simplification Rules .

Symbolic Integration Patterns
Trigonometric Expansions
Source References .

. Parallel Processing with Lists

Index

Contents-20

F-2

F-5
-7
F-9



Programming

If you’ve used a calculator or computer before, you're probably
familiar with the idea of programs. Generally speaking, a program 1s
something that gets the calculator or computer to do certain tasks
for you—more than a built-in command might do. In the HP 48, a

program is an object that does the same thing.

Understanding Programming

An HP 48 program 1s an object with # 3 delimiters containing a
sequence of numbers, commands, and other objects you want to
execute automatically to perform a task.

For example, a program that takes a number from that stack, finds 1ts

factorial, and divides the result by 2 would look like this: #! 2 « %
or

The Contents of a Program

As mentioned above, a program contains a sequence of objects. As
each object 1s processed 1n a program, the action depends on the type
of object, as summarized below.

Programming 1-1



Actions for Certain Objects in Programs

Object

Action

Command

Number

Algebraic

String

List

Program

(Global name (quoted)

(zlobal name (unquoted)

Local name (quoted)

Local name (unquoted)

Frecuted.

Put on the stack.
Put on the stack.
Put on the stack.
Put on the stack.
Put on the stack.
Put on the stack.

m Program ezrecuted.
m Name evaluated.

m Directory becomes current.
m Other object put on the stack.

Put on the stack.
Contents put on the stack.

As you can see from this table, most types of objects are simply put
on the stack—but built-in commands and programs called by name
cause erxecutton. The following examples show the results of executing
programs containing different sequences of objects.

Examples of Program Actions

Program Results

. o 1
13 2
"Hella® £ A B . = s "H=llo®
1t £ AE 3
142! 13 "1+2T
L2t AHUM s 1 :

# 1 2 4+ 1 1l 2 0+
1 2 + # EVAL 15 -

1-2 Programming




Programs can also contain structures. A structure is a program
segment with a defined organization. Two basic kinds of structures are

avallable:

m Local variable structure. The + command defines local variable
names and a corresponding algebraic or program object that’s

evaluated using those variables.
a Branching structures. Structure words (like DO ... UNTIL ...
END) define conditional or loop structures to control the order of

execution within a program.

A local variable structure has one of the following Organizations inside
a program:

%+ name; ... name, 'algebraic' *
o namey ... namen E program i E

The — command removes n objects from the stack and stores them
in the named local variables. The algebraic or program object in

the structure is automatically evaluated because it’s an element, of

the structure—even though algebraic and program objects are put

on the stack in other situations. Each time a local variable name
appears in the algebraic or program object, the variable’s contents are
substituted.

So the following program takes two numbers from the stack and
returns a numeric result:

Calculations in a Program

Many calculations in programs take data from the stack. Two typical
ways to manipulate stack data are:

m Stack commands. Operate directly on the objects on the stack.

m Local variable structures. Stores the stack objects in temporary
local variables, then uses the variable names to represent the data in
the following algebraic or program object.

Numeric calculations provide convenient examples of these methods.
The following programs use two numbers from the stack to calculate

the hypotenuse of a right triangle using the formula \/ r? + y2.

Programming 1-3



The first program uses stack commands to manipulate the numbers
on the stack—the calculation uses stack syntax. The second program
uses a local variable structure to store and retrieve the numbers—the
calculation uses stack syntax. The third program also uses a local
variable structure—the calculation uses algebraic syntax. Note that
the underlying formula is most apparent in the third program. This
third method is often the easiest to write, read, and debug.

Entering and Executing Programs

A program is an object—it occupies one level on the stack, and you
can store 1t In a variable.

To enter a program:

1. Press (@) («<»). The PRl annunciator appears, indicating
Program-entry mode is active.

2. Enter the commands and other objects (with appropriate
delimiters) in order for the operations you want the program to
execute.

m Press (SPC) to separate consecutive numbers.
m Press () to move past closing delimmters.
3. Optional: Press ((#)(«=) (newline) to start a new line 1n the

command line at any time.
4. Press (ENTER) to put the program on the stack.

In Program-entry mode (FEG annunciator on), command keys
aren’t executed—they’re entered in the command line instead. Only
nonprogrammable operations such as («) and (VAR) are executed.

Line breaks are discarded when you press (ENTER).

To enter commands and other objects in a program:

m Press the keyboard or menu key for the command or object.

or
m Type the characters using the alpha keyboard.

1-4 Programming



To store or name a program:

1. Enter the program on the stack.
2. Enter the variable name (with ' delimiters) and press (STO).

You can choose descriptive names for programs. Here are some ideas
of what the name can describe:

m The calculation or action. Examples: SPH (spherical-cap volume),
SORT (sort a list).

m The iiput and output. Examples: X—FX (z to f(z)), RH—V
(radius-and-height to volume).

m The technique. Example: SPHLV (spherical-cap volume using local
variables).

To execute a program:

m Press (VAR] then the menu key for the program name.
or

m Enter the program name (with no delimiters) and press (ENTER).
or

m Put the program name in level 1 and press (EVAL).
or

m Put the program object in level 1 and press (EVAL).

To stop an executing program:

m Press (CANCEL}

Example: Enter a program that takes a radius value from the stack
and calculates the volume of a sphere of radius r using

4
V = 371'?"3

If you were going to calculate the volume manually after entering the
radius on the stack, you might press these keys:

3 () (@)@ (x) 4 (ENTER) 3 (3) (%) (\)(=NUM)

Programming 1-5



Enter the same keystrokes in a program. ((¢»)(«J)just starts a new
line.)

(Q)(«») £ 3" ¥4 3 %
@@ E 4 EPI 3O E NN 4
) @B)Num) .

_FHT [#MGL[FLAG [KEYE [MENU] FISE
Put the program on the stack.

(ENTER)

1: €« 3"y x4 3 ~ %
'*HUH .
CFHT |AMELFLAG [EEYE [MERO | HIZE |

Store the program in variable VOL. Then put a radius of 4 on the
stack and run the VOL program.

(J VOL (_Fﬂ) 1 266, 82373146
4 (VAR) MOL T T TS I T T

The program 1s

o o % 4 = xR

Example: Replace the program from the previous example with
one that’s easier to read. Enter a program that uses a local variable
structure to calculate the volume of a sphere. The program 1s

£ 4 CdoREmERTE SHUR @

(You need to include —NUM because 7 causes a symbolic result.)

Enter the program. ((#)(«=)just starts a new line.)

(A)(&>) £ + r '4-3xwE 3!
()(>) r (SPC) ;HUN

NIR3INHD®
r ()3 () (@)
() (»>NUM )

Put the program on the stack, store it in VOL, and calculate the
volume for a radius of 4.

voL JEsat[IOPRE] N | 1=vE | PV ]

1' 268, HB257 3186
_WOL [EnAH[IOPRE] N ] vk [ PY

1-6 Programming



Example: Enter a program SPH that calculates the volume of a
spherical cap of height A within a sphere of radius R using values
stored in variables H and R.

V= %?rhz(% — h)

In this and following chapters on programming, “stack diagrams” show
what arguments must be on the stack before a program is executed
and what results the program leaves on the stack. Here’s the stack

diagram for SPH .

Level 1 — Level 1

— volume

The diagram indicates that SPH takes no arguments from the stack
and returns the volume of the spherical cap to level 1. (SPH assumes

that you’ve stored the numerical value for the radius in variable R
and the numerical value for the height in variable H. These are global
variables—they exist outside the program.)

Program listings are shown with program steps in the left column and
assoclated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Programming 1-7



Prograin: Keys: Comments:

() (« ») Begins the program.
‘143 (F)1(x)3 Begins the algebraic expression to
calculate the volume.
R s M (%) () () Multiplies by mh*.
() H (D)2
o mi S DO (%) («J((O) Multiplies by 3r — h, completing
3X)R (=) the calculation and ending the
H (») (») expression.
cap Iy (1) (=NUM) Converts the expression with 7 to
a number.

Ends the program.

(ENTER] Puts the program on the stack.
(F)SPH (STO)  Stores the program in variable
SPH.

This is the program:
V] sSegERtREcRER-HY Y wHUM #
Now use SPH to calculate the volume of a spherical cap of radius

r = 10 and height A = 3.

First, store the data in the appropriate variables. Then select the
VAR menu and execute the program. The answer is returned to level
1 of the stack.

10 () R (sTO) 1: ca4. 4698084942
W | K | iPH | WOL JEsnr [10PAR

3(DH [STo)

1-8 Programming



Viewing and Editing Programs

You view and edit programs the same way you view and edit other
objects—using the command line.

To view or edit a program:

1. View the program:

m If the program 1s 1n level 1, press (¢9)(EDIT), or (V).
m If the program 1s stored in a variable, use the Memory Browser

((»)(MEMORY)) to view the variable, or press (VAR) (p%) and the
varlable’s menu key, followed by (¥).

2. Optional: Make changes.

3. Press (ENTER) to save any changes {or press (CANCEL) to discard

changes) and return to the stack.

The Memory Browser lets you change a stored program without

having to do a store operation. («q)(EDIT) lets you change a program
and then store the new version in a different variable.

While you're editing a program, you may want to switch the
command-line entry mode between Program-entry mode (for editing
most objects) and Algebraic/Program-entry mode (for editing
algebraic objects). The FR and ALG annunciators indicate the
current mode.

To switch between entry modes:

m Press ((®)(ENTRY).

Example: Edit SPH from the previous example so that it stores the
number from level 1 into variable H and the number from level 2 into
variable R.

Use EDIT to start editing SPH .

(VAR)
() EFH

& '] /3epeH 2% (3=R-H
i " =+NUM

=k,

£DEL [DEL* [ 1M a4-5TH

Programming 1-9



Move the cursor past the first program delimiter and insert the new
program steps.

() H(P)(ETO) «'H' 5T0 'R' STO "1-3.
(D) R (»)(ETO) 3 NUM

%

FSEAP|ZEIP*| £DEL [DEL* | IM3 @|4-2TH
Save the edited version of SPH in the variable. Then, to verify that
the changes were saved, view SPH in the command line.

+ 'H'" 5T0 'R' S5T0
1#3#qH"2% (3*R-H)
;HLIH

+LEIP|ZEIP

£DEL [DEL+ [ IMZ uf+-3Tk

Press {CANCEL) to stop viewing.

Creating Programs on a Computer

It is convenient to create programs and other objects on a computer
and then load them into the HP 48 using the calculator’s serial port.

If you are creating programs on a computer, you can include
“comments” in the computer version of the program.

To include a comment in a program:

g Enclose the comment text between two @ characters.

or
s Enclose the comment text between one @ character and the end of

the line.

Whenever the HP 48 processes text entered in the command line—
either from keyboard entry or transferred from a computer—it strips
away the @ characters and the text they surround. However, @
characters are not affected if they’re inside a string.

1-10 Programming



Using Local Variables

The program SPH 1n the previous example uses global variables for
data storage and recall. There are disadvantages to using global
varlables 1n programs:

m After program execution, global variables that you no longer need
to use must be purged if you want to clear the VAR menu and free
USer memeory.

m You must explicitly store data in global variables prior to program
execution, or have the program execute STO.

Local variables address the disadvantages of global variables in
programs. Local variables are temporary variables created by a
program. They exist only while the program is being executed and
cannot be used outside the program. They never appear in the VAR
menu. In addition, local variables are accessed faster than global
varlables. (By convention, this manual uses lowercase names for local
variables.) A compiled local variable is a form of local variable that
can be used outside of the program that creates 1t. See “Compiled
Local Variables” on page 1-15 for more information.

Creating Local Variables

In a program, a local variable structure creates local variables.

To enter a local variable structure in a program:
1. Enter the — command (press (p»)(>))-

2. Enter one or more variable names.
3. Enter a defining procedure (an algebraic or program object) that
uses the names.

%+ namey namey ... name, 'algebraic' *
or
% F NAmMme; names ... namey E program F

When the — command is executed in a program, n values are taken
from the stack and assigned to variables namey, names, ... name,.

For example, if the stack looks like this:

Programming 1-11



then

+ # creates local variable a = 20.

+ & kv creates local variables ¢ = 6 and b = 20.

+ & b o creates local variables ¢ = 10, & = 6, and ¢ = 20.
The defining procedure then uses the local variables to do calculations.
Local variable structures have these advantages:

m The — command stores the values from the stack in the
corresponding varitables—you don’t need to explicitly execute STO.

m Local variables automatically disappear when the defining procedure
for which they are created has completed execution. Consequently,
local variables don’t appear in the VAR menu, and they occupy user
memory only during program execution. '

m Local variables exist only within their defining procedure—different
local variable structures can use the same variable names without
conflict.

Example: The following program SPHLV calculates the volume of
a spherical cap using local variables. The defining procedure is an
algebraic expression.

Level 2 Level 1 —s Level 1

I h — volume

1-12 Programming



Program: Conmumnents:

+ r h Creates local variables r and h
for the radius of the sphere and
height of the cap.

"loasmEht2EcDEr =l FExpresses the defining procedure.
In this program, the defining
procedure for the local variable
structure 1s an algebraic

eXPression.
P LI Converts expression to a number.
(ENTER) (") SPHLV (sT0} Stores the program in variable
SPHLV .

Now use SPHLV to calculate the volume of a spherical cap of radius
r — 10 and height » = 3. Enter the data on the stack in the correct

order, then execute the program.

13 2a%. 46988494
SPHLY | | iPH | WOL |ERRIT

10 |ENTER l 3

Evaluating Local Names

L.ocal names are evaluated differently from global names. When a
global name is evaluated, the object stored in the corresponding
variable is itself evaluated. (You’ve seen how programs stored 1n
global variables are automatically evaluated when the name 1s
evaluated.)

When a local name 1s evaluated, the object stored in the
corresponding variable is returned to the stack but 1s not evaluated.
When a local variable contains a number, the effect 1s identical to
evaluation of a global name, since putting a number on the stack 1s
equivalent to evaluating it. However, if a local variable contains a
program, algebraic expression, or global variable name—and 1if you
want 1t evaluated—the program should execute EVAL after the object
1s put on the stack.

Programming 1-13



Defining the Scope of Local Variables

Local variables exist only inside the defining procedure.

Example: The following program excerpt illustrates the availability
of local variables in nested defining procedures (procedures within
procedures). Because local variables a, &, and ¢ already exist when

the defining procedure for local variables d, e, and f is executed,
they’re available for use in that procedure.

Program: Comments:

No local variables are available.
* 3 b o« Defines local variables a, b, c.

Local variables a, b, ¢ are
s b + o + avallable in this procedure.
&
]

f Defines local variables d, e, f.
=R S T L U Local variables a, b, c and d, e, f
' are avallable 1in this procedure.
3 o & - Only local variables a, b, ¢ are
% avallable.

No local variables are available.

Example: In the following program excerpt, the defining procedure
for local variables d, e, and f calls a program that you previously
created and stored in global variable P1.

1-14 ' Programming



Program: Comments:

Defines local variables d, ¢, f.
SOdFEEf o Local variables a, b, c and d, e, f
are available 1n this procedure.
The defining procedure executes

the program stored in variable
P1.

i i
—+

11
i1
i

The six local variables are not available in program PI because they
didn’t exist when you created PI. The objects stored in the local
variables are available to program P1 only if you put those objects on
the stack for PI to use or store those objects in global variables.

Conversely, program PI can create its own local variable structure
(with any names, such as a, ¢, and f, for example) without conflicting
with the local variables of the same name in the procedure that calls
P1. Tt is possible to create a special type of local variable that can be
used in other programs or subroutines. This type of local variable 1s
called a compiled local variable.

Compiled Local Variables

Global variables use up memory, and local variables can’t be used
outside of the program they were created in. Compiled local variables
bridge the gap between these two variable types. To programs,
compiled local variables look like global variables, but to the calculator
they act like local variables. This means you can create a compiled
local variable in a local variable structure, use 1t in any other program
that is called within that structure, and when the program finishes,
the variable 1s gone.

Programming 1-15



Compiled local variables have a special naming convention: they must
begin with a +. For example,

v o I

PIFTE gl By BELC  FIEDWVE »

The variable £y 1s a compiled local variable that can be used in the
two programs BELOW and ABOVE.

Creating User-Defined Functions as Programs

The defining procedure for a local variable structure can be either an
algebraic or program object.

A program that consists solely of a local variable structure whose
defining procedure 1s an algebraic expression is a user-defined function.

If a program begins with a local variable structure and has a
program as the defining procedure, the complete program acts like

a user-defined function in two ways: 1t takes numeric or symbolic
arguments, and takes those arguments either from the stack or

in algebraic syntax. However, it does not have a derivative. (The
defining program must, like algebraic defining procedures, return only
one result to the stack.)

There’s an advantage to using a program as the defining procedure for
a local variable structure: The program can contain commands not
allowed 1n algebraic expressions. For example, loop structures are not
allowed in algebraic expressions.

1-16 Programming



Using Tests and Conditional Structures

You can use commands and branching structures that let programs
ask questions and make decisions. Comparison functions and logical
functions test whether or not specified conditions exist. Conditional

structures and conditional commands use test results to make
decisions.

Testing Conditions

A test is an algebraic or a command sequence that returns a test result
to the stack. A test result is either {rue—indicated by a value of 1-—or
it 1s false—indicated by a value of 0.

To include a test in a program:

m To use stack syntax, enter the two arguments, then enter the test
command.

m To use algebraic syntax, enter the test expression (with
delimiters).

You often use test results in conditional structures to determine
which clause of the structure to execute. Conditional structures are
described under “Using Conditional Structures and Commands” on

page 1-20.

Example: Test whether or not X 1s less than Y. To use stack syntax,
enter ¥ v <. To use algebraic syntax, enter 'Y '. (For both cases,

if X contains 5 and Y contains 10, then the test i1s true and 1 1s
returned to the stack.)

Using Comparison Functions

Comparison functions compare two objects, using either stack syntax
or algebrailc syntax.

Programming 1-17



Comparison Functions

Key Programmable Description
Command

I
1

mame Tests equality of two objects.

Not equal.
Less than.

(Greater than.

...................................
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||

Less than or equal to.

VIAN V A K

> Greater than or equal to.
SAME Identical. Like ==, but doesn’t allow a

comparison between the numerical value
of an algebraic (or name) and a
number. Also considers the wordsize of
a binary integer.

The comparison commands return 1 (true) or 0 (false) based on the
comparison—or an expression that can evaluate to 1 or 0. The order

of the comparison is “level 2 test level 1,” where test is the comparison
function.

All comparison commands except SAME return the following:

m If neither object 1s an algebraic or a name, returns 1 if the two
objects are the same type and have the same value, or 0 otherwise.
For example, 1f 6 1s stored in X, ¥ 5 < puts 6 and 5 on the stack,
then removes them and returns 0. (Lists and programs are
considered to have the same value if the objects they contain are
identical. For strings, “less than” means “alphabetically previous.”)

m If one object is an algebraic (or name) and the other object is an

algebraic (or name) or a number, returns an expression that must be
evaluated to get a test result based on numeric values. For example,
if 6 1s stored iIn X, 'H' 5 < returns '¥<5', then —NUM returns 0.

(Note that == is used for comparisons, while = separates two sides of
an equation.)

SAME returns 1 (true) if two objects are identical. For example,
'A+2 T 4 ZHME returns 0 regardless of the value of X because the
algebraic '#+3"' 1s not identical to the real number 4. Binary integers

1-18 Programming




must have the same wordsize and the same value to be identical. For
all object types other than algebraics, names, and binary integers,

SAME works just Iike ==.

You can use any comparison function (except SAME) in an algebraic
by putting 1t between its two arguments. For example, if 6 is stored in
X, '#45 <+MHUM returns 0.

Using Logical Functions

Logical functions return a test result based on the outcomes of two
previously executed tests. Note that these four functions interpret any
nonzero argument as a true result.

Logical Functions

Keys Programmable Description
Command -
Returns 1 (true) only if both arguments
| are true.

OR Returns 1 (true) if either or both
arguments are true.

XOR. Returns 1 (true) if either argument, but
not both, is true.

NOT Returns 1 (true) if the argument is 0
(false); otherwise, returns 0 (false).

AND, OR, and XOR combine two test results. For example, if 4 is
stored in Y, % 2 < 5 AHD returns 1. First, % & < returns 1 to the
stack. AND removes 1 and 5 from the stack, interpreting both as true

results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is
stored in X and 2 is stored n Y, ¥ % < HOT returns 0.

You can use AND, OR, and XOR in algebraics as infiz functions. For

example, '3<5 #S0F 4>7 ' +HLUHM returns 1.

You can use NOT as a prefiz function in algebraics. For example,
'HOT 224" +MUM returns 0 if Z7 = 2.

Programming 1-19



Testing Object Types

The TYPE command ((PRG) . TEZT (NXT) T#FEE ) takes any
object as its argument and returns the number that 1dentifies that
object type. For example, "HELLQ" TYFE returns 2, the value for
a string object. See the table of object types 1n chapter 3, in the

TYPE command, to find HP 48 objects and their corresponding type
numbers.

Testing Linear Structure

The LININ command ((PRG) (NXT) - (»)(PREV) . IHIH)

takes an algebralc equation on level 2 and an variable on level 1 as
arguments and returns 1 if the equation i1s linear for that variable, or
0 if 1t is not. For example, '*H+Y¥=2' 'H' LIMHIH returns 1 because
the equation is structurally linear for H. See the LININ command 1n
chapter 3 for more information.

Using Conditional Structures and Commands

Conditional structures let a program make a decision based on the
results of tests.

Conditional commands let you execute a true-clause or a false-clause
(each of which are a single command or object).

These conditional structures and commands are contained in the PRG

BRCH menu (l PRG | EEEE 555555'5?55):

IF ... THEN ... END structure.

I[F ... THEN ... ELSE ... END structure.
CASE ... END structure.

IFT (if-then) command.

I[FTE (if-then-else) function.

The IF ... THEN ... END Structure
The syntax for this structure 1s
[ test-clause THEM frue-clause EHMD ... #

IF ... THEN ... END executes the sequence of commands in the
true-clause only if the test-clause evaluates to true. The test-clause

can be a command sequence (for example, A B £) or an algebraic (for

1-20 Programming



example, 'H=E"'). If the test-clause 1s an algebraic, it’s automatically
evaluated to a number—you don’t need —=NUM or EVAL.

IF begins the test-clause, which leaves a test result on the stack.
THEN removes the test result from the stack. If the value is nonzero,
the true-clause 1s executed—otherwise, program execution resumes
following EEND. See “Conditional Examples” on page 1-23.

ToenterIF ... THEN ... END in a program:

m Press (PRG) ERELH.

The IFT Command

The IFT command takes two arguments: a test-result in level 2 and a
true-clause object 1n level 1. If the test-result is true, the true-clause
object 1s executed—otherwise, the two arguments are removed from
the stack. See “Conditional Examples” on page 1-23.

To enter IFT in a program:

s Press (PRG) ERCH (NEXT}(®) IFT .

The IF ... THEN ... ELSE ... END Structure

The syntax for this structure is

% ... IF test-clause
THEM true-clause ELLSE false-clause EMLD ... =

IF ... THEN ... ELSE ... END executes either the true-clause
sequence of commands if the test-clause is true, or the false-clause
sequence of commands if the fest-clause 1s false. If the test-clause is an

algebraic, 1t’s automatically evaluated to a number—you don’t need
~ —NUM or EVAL.

IF' begins the test-clause, which leaves a test result on the stack.
THEN removes the test result from the stack. If the value is nonzero,
the true-clause is executed—otherwise, the false-clause is executed.
After the appropriate clause is executed, execution resumes following
END. See “Conditional Examples” on page 1-23.

To enter IF ... THEN ... ELSE ... END in a program:

m Press (PRG) ERLH

Programming 1-21



The IFTE Function
The algebraic syntax for this function 1s
' IFTE Ctests true-clauses false-clauser

If test evaluates true, the true-clause algebraic 1s evaluated—
otherwise, the false-clause algebraic is evaluated.

You can also use the IFTE function with stack syntax. It takes three
arguments: a test-result in level 3, a true-clause object 1n level 2, and
a false-clause object in level 1. See “Conditional Examples” on page

1-23.

To enter IFTE in a program or in an algebraic:

m Press (PRG)

The CASE ... END Structure

The syntax for this structure 1s

. LHSE
test-clause; THEHM true-clause; EHD
test-clauses THEHM true-clauses EMI

test-clause, THEM true-clause, EHM[L:
default-clause (optional)
EWMD ... ®

The CASE ... END structure lets you execute a series of fest-clause
commands, then execute the appropriate {rue-clause sequence of
commands. The first test that returns a true result causes execution of
the corresponding true-clause, ending the CASE ... END structure.
Optionally, you can include after the last test a default-clause that’s
executed if all the tests evaluate to false. If a test-clause 1s an
algebraic, it’s automatically evaluated to a number—you don’t need

—NUM or EVAL.

When CASE is executed, test-clause; 1s evaluated. If the test 1s true,
‘true-clause; is executed, and execution skips to END. If test-clause;
is false, execution proceeds to test-clause,. Execution within the
CASE structure continues until a true-clause 1s executed, or until all
the test-clauses evaluate to false. If a default clause 1s included, it’s

1-22 Programming



executed 1f all the test-clauses evaluate to false. See “Conditional
Examples” below.

To enter CASE ... END in a program:

L. Press (BRG) 'BRLH
END ... END.

2. For each additional test-clause, move the cursor after a test-clause

END and press ((») ZHZE to enter THEN ... END.

Conditional Examples

These examples illustrate conditional structures in programs.

Example: One Conditional Action. The programs below test the
value 1n level 1—if the value is positive, it’s made negative. The first
program uses a command sequence as the test-clause:

£ DUF IF @ > THEH MEG EHD

The value on the stack must be duplicated because the > command
removes two arguments from the stack (0 and the copy of the value

made by DUP).

The following version uses an algebraic as the test clause:

# o+ ox & ow IR "mA' THEM HEG EMD » 3

The following version uses the IFT command:
£ DIF 8 > « HEG » IFT %

Example: One Conditional Action. This program multiplies two
numbers if both are nonzero.

Programming 1-23



Program: Comments:

¥ 1 Creates local variables z and y
contalning the two numbers from
the stack.

IF Starts the test-clause.
ol Tests one of the numbers and

leaves a test result on the stack.
Tests the other number, leaving
another test result on the stack.
Mk Tests whether both tests were

true.
THE Ends the test-clause, starts the
true-clause.
4 ¥ Multiplies the two numbers
together only if AND returns
true.

=L Ends the true-clause.

The following program accomplishes the same task as the previous
program:

@ o4 owowy 3 IF fw AMD gt THEM @ ow ¥ BERHD & G

The test-clause ' FAMD w' returns “true” if both numbers are
NONZero.

The following version uses the [F'T command:

S | ! F—”‘.i El g J : ne s X i ]:F e

1-24 Programming



Example: Two Conditional Actions. This program takes a value z
from the stack and calculates (sin z)/z. At x = 0 the division would

error, so the program returns the limit value 1 in this case.

# 0+ w & IF 'm=@' THEM = SIM = » ELSE 1 EHD ® 3
The following version uses IFTE algebraic syntax:

£ 4w IFTECwsB, STH e, 10!

Example: Two Conditional Actions. This program multiplies two
numbers together if they’re both nonzero—otherwise, 1t returns the

string "ZEROY.

Program: Comments:
* il nd Creates the local variables.
. Starts the defining procedure.
IF Starts the test clause.
'mlzg AL nZ=e Tests nl and n2.
THEM If both numbers are nonzero,
-1 mE o multiplies the two values.
ELSE Otherwise, returns the string
"ekEREDOY SR

E ML Ends the conditional.
Ends the defining procedure.

Programming 1-25



Example: Two Conditional Actions. This program tests if two
numbers on the stack have the same value. If so, 1t drops one of the

numbers and stores the other in variable V1—otherwise, 1t stores the
number from level 1 in V1 and the number from level 2 in V2.

Program: Comments:

IF For the test clause, copies the
Gl numbers in levels 1 and 2 and
o tests if they have the same value.

THEH For the true clause, drops one of
RO the numbers and stores the other
SEE - 4y in V1.

El.SE For the false clause, stores the
i ST level 1 number 1n VI and the
LT ST level 2 number 1n V2.

EHD Ends the conditional structure.

(ENTER) Puts the program on the stack.
() TST (sT0) Stores it n T'ST.

Enter the numbers 26 and 52, then execute T'ST to compare their

values. Because the two number aren’t equal, the VAR menu now
contains two new variables V1 and V2.

w2 | M1 | TET [TORZWTORSA]ZPHLY

1-26 Programming



Example: Multiple Conditional Actions. The following program
stores the level 1 argument in a variable if the argument 1s a string,

hist, or program.

Program: Comments:

F Defines local variable y.
Starts the defining
procedure.

CHSE Starts the case structure.
y TYPE 2 SAME Case 1: If the argument 1s
THEH o 'STR' STO EHMD a string, stores it in STR.
g TYFE 5 SHHME Case 2: If the argument 1s
THEH o 'LIST' STO EMD a list, stores 1t in LIST.

g TYFE & ZAME Case 3: If the argument 1s
THEM o 'PEOG' STO EMD a prograrii, stores 1t 1n
PROG.
E D Ends the case structure.
Ends the defining
procedure.

Using Loop Structures

You can use loop structures to execute a part of a program repeatedly.
To specify in advance how many times to repeat the loop, use a
definite loop. To use a test to determine whether or not to repeat the
loop, use an indefinite loop.

Loop structures let a program execute a sequence of commands several
times. Loop structures are built with commands—called structure
words—that work only when used In proper combination with each

START ... NEXT and START ... STEP.
FOR ... NEXT and FOR ... STEP.

DO ... UNTIL ... END.

WHILE ... REPEAT ... END.

Programming 1-27



In addition, the ¥ function provides an alternative to definite loop
structures for summations.

Using Definite Loop Structures
Fach of the two definite loop structures has two variations:

m NEXT. The counter increases by 1 for each loop.

m STEP. The counter increases or decreases by a specified amount for
each loop.

The START ... NEXT Structure

The syntax for this structure is
.. start finish STARET loop-clause MERT ... #

START ... NEXT executes the loop-clause sequence of commands one
time for each number in the range start to finish. The loop-clause is
always executed at least once.

Syntax Flowchart
start 1:start
finish 2:fTish

START counter = start

Store finish

loop-clause Body of loop

g [ counter = counter+1 I
v

NEXT <

START ... NEXT Structure

1-28 Programming



START takes two numbers (start and finish) from the stack and stores
them as the starting and ending values for a loop counter. Then, the
loop-clause is executed. NEXT increments the counter by 1 and tests
to see if its value is less than or equal to finish. If so, the loop-clause
is executed again—otherwise, execution resumes following NEX'T.

To enter START ... NEXT in a program;

Example: The following program creates a list containing 10 copies
of the string “"HEL":

£ 1 18 START "AEC" MEXT i@ +LIST =

1l

Programming 1-29



The START ... STEP Structure

The syntax for this structure is
% ... start finish ZTARET loop-clause increment STEF ... =

START ... STEP executes the loop-clause sequence just like
START ... NEXT does—except that the program specifies the
increment value for the counter, rather than incrementing by 1. The
loop-clause 1s always executed at least once.

Syntax Flowchart
start 1:star
finish 2:finish
v
counter = start
START Store finish

——

loop-clause Body of loop

\ RS
increment 1:increment

\

——I
a counter = counter+ |

increment

—

STEP <

Ves

Nno

START ... STEP Structure

START takes two numbers (start and finish) from the stack and stores

them as the starting and ending values of the loop counter. Then
the loop-clause 1s executed. STEP takes the increment value from

the stack and increments the counter by that value. If the argument

1-30 Programming



of STEP is an algebraic or a name, it’s automatically evaluated to a
number.

The increment value can be positive or negative. If it’s positive, the
loop is executed again if the counter is less than or equal to finish. If
the increment value is negative, the loop is executed 1if the counter is
greater than or equal to finish. Otherwise, execution resumes following
STEP. In the previous flowchart, the increment value 1s positive.

To enter START ... STEP in a program:
m Press (PRG) EBELCH.

Example: The following program takes a number z from the stack
and calculates the square of that number several times (z/3 times):

£ DUP + = « = 1 STRAET = S -3 STEF * °

Programming 1-31



The FOR ... NEXT Structure

The syntax for this structure is
. start finish FORE counter loop-clause MERT ... ®

FOR ... NEXT executes the loop-clause program segment one time
for each number in the range start to finish, using local variable
counter as the loop counter. You can use this variable in the
loop-clause. The loop-clause is always executed at least once.

Syntax Flowchart

start 1:start

finish 2:finish
v

FOR counter = start

Store finish

loop-clause | Body of loop |

g | counter = counter+1 |

v

NEXT <

FOR ... NEXT Structure

FOR takes start and finish from the stack as the beginning and ending
values for the loop counter, then creates the local variable counter as a
loop counter. Then the loop-clause is executed—counter can appear

within the loop-clause. NEXT increments counter-name by one, and
then tests whether its value 1s less than or equal to finish. If so, the
loop-clause 1s repeated (with the new value of counter)—otherwise,

1-32 Programming



execution resumes following NEXT. When the loop 1s exited, counter
1s purged.

To enter FOR ... NEXT in a program:
m Press (PRG) ERCE "

[Eepa—— A I L T T L L
[, EEEEEE] 1 ra- m—mmmmmala
ammaa EEEEEE] ‘Ear ] - - -- LTI
P EERRERE] Y] B I T TR |
S Y - EEEEEE
A . .. O gooorx . B 1 T
L R TR EXN B D ELLLTETEY
- IR PN R EEL] TEEEEEER |

W iadaaa T i e L CE LT LI
Patdan e N e T FT LT LT

Example: The following program places the squares of the integers 1
through 5 on the stack:

£ 1 5 FOR § j S0 HEXT =

Example: The following program takes the value z from the stack
and computes the integer powers ¢ of z. For example, when z = 12
and start and finish are 3 and b respectively, the program returns 12°,
124 and 12°. It requires as inputs start and finish in levels 3 and 2,
and z in level 1. (+ = removes z from the stack, leaving start and
finish there as arguments for FOR.)

# % x % FOR m '="n' EVAL HEET 2= =

Programming 1-33



The FOR ... STEP Structure

The syntax for this structure is

% ... start finish FUORE counter loop-clause increment STEF ... =

FOR ... STEP executes the loop-clause sequence just like FOR . ..
NEXT does—except that the program specifies the increment value
for counter, rather than incrementing by 1. The loop-clause is always
executed at least once.

Syntax Flowchart
start 1:start
finish 2:fi£ish

FOR

counter = start
Store finish
loop-clause Body of loop

increment 1:increment
v

counter = counter+
increment

Is
counter < finish?

STEP

FOR ... STEP Structure

FOR takes start and finish from the stack as the beginning and ending
values for the loop counter, then creates the local variable counter as a
loop counter. Next, the loop-clause 1s executed—counter can appear
within the loop-clause. STEP takes the increment value from the

1-34 Programming



stack and mcrements counter by that value. If the argument of STEP
is an algebraic or a name, it’s automatically evaluated to a number.

The mncrement value can be positive or negative. If the increment is -
positive, the loop 1s executed again if counter is less than or equal to
finish. If the increment is negative, the loop is executed if counter

is greater than or equal to finish. Otherwise, counter is purged and
execution resumes following STEP. In the previous flowchart, the
increment value is positive.

To enter FOR ... STEP in a program:
m Press ERCH () FOR .

Example: The following program places the squares of the integers 1,
J, 0, 7, and 9 on the stack:

“ 1 9 FOR = = S0 2 STEP =

Example: The following program takes n from the stack, and returns
the series of numbers 1, 2, 4, 8, 16, ...  n. If n isn’t in the series, the
program stops at the last value less than n.

£ 1 SWAP FOR n n n STEP

The first n is the local variable declaration for the FOR loop. The
second n 1s put on the stack each iteration of the loop. The third n is
used by STEP as the step increment.

Programming 1-35



Using Indefinite Loop Structures

The DO ... UNTIL ... END Structure

The syntax for this structure 1s
.. 0 loop-clause LIMTIL test-clause EMLE ...

DO ... UNTIL ... END executes the loop-clause sequence repeatedly
until fest-clause returns a true (nonzero) result. Because the
test-clause is executed after the loop-clause, the loop-clause 1s always

executed at least once.

Syntax Flowchant

DO

\
loop-clause Body of loop

UNTIL -
+
test-clause

1:test result
v

s test

END result non-zero?

DO ... UNTIL ... END Structure

DO starts execution of the loop-clause. UNTIL marks the end of
the loop-clause. The test-clause leaves a test result on the stack.
END removes the test result from the stack. If 1ts value 1s zero,

the loop-clause is executed again—otherwise, execution resumes
following END. If the argument of END is an algebraic or a name, 1t’s

automatically evaluated to a number.

1-36 Programming



To enter DO ... UNTIL ... END in a program:

m Press (PRG) EFHLH (&) DO
Example: The following program calculates n + 2n + 3n for

a value of n. The program stops when the sum exceeds 1000, and
returns the sum and the coeflicient of n.

Program:

I ! = I E;Ttl"l"
T I

= 1685 -
E ML

Comments:

Duplicates n, stores the value into
n and s, and initializes ¢ to 1.
Starts the defining procedure.
Starts the loop-clause.

Increments the counter by 1. (See
“Using Loop Counters” on page
1-39.)

Calculates ¢ x n and adds the
product to s. |

Starts the test clause.

Repeats loop until s > 1000.
Ends the test-clause.

Puts s and ¢ on the stack.
Ends the defining procedure.

Programming 1-37



The WHILE ... REPEAT ... END Structure
The syntax for this structure 1s
# ... MHILE test-clause REFERT loop-clause EMD ... *

WHILE ... REPEAT ... END repeatedly evaluates test-clause and

executes the loop-clause sequence if the test 1s true. Because the
test-clause is executed before the loop-clause, the loop-clause 1s not
executed if the test 1s 1nitially false.

Syntax Flowchart

WHILE ~
| Test
test-clause < ;

\ 1:test result

. v
REPEAT
s test
result non-zero?
Ves
loop-clause Body of loop
|
END

WHILE ... REPEAT ... END Structure

WHILE starts execution of the test-clause, which returns a test result
to the stack. REPEAT takes the value from the stack. If the value

is nonzero, execution continues with the loop-clause—otherwise,
execution resumes following END. If the argument of REPEAT 1s an
algebraic or a name, it’s automatically evaluated to a number.

To enter WHILE ... REPEAT ... END in a program:
m Press (PRG)

1-38 Programming



Example: The following program starts with a number on the stack,
and repeatedly performs a division by 2 as long as the result is evenly
divisible. For example, starting with the number 24, the program

computes 12, then 6, then 3.

£ WHILE DUP 2 MOD & == REFEAT 2 ~ DUF EMD DROF

Example: The following program takes any number of vectors
or arrays from the stack and adds them to the statistics matrix.
(The vectors and arrays must have the same number of columns.)

WHILE ... REPEAT ... END is used instead of DO ... UNTIL ...
IEND because the test must be done before the addition. (If only
vectors or arrays with the same number of columns are on the stack,

the program errors after the last vector or array is added to the
statistics matrix.)

# WHILE DUP TYPE 3 == REFEAT Z+ EHD =

Using Loop Counters

For certain problems you may need a counter inside a loop structure
to keep track of the number of loops. (This counter isn’t related to the
counter variable in a FOR ... NEXT/STEP structure.) You can use
any global or local variable as a counter. You can use the INCR or
DECR command to increment or decrement the counter value and put
its new value on the stack.

The syntax for INCR and DECR is

. 'vartable' THCR ... %
or
. ‘wariable' DECE ...

To enter INCR or DECR in a program:

m Press (q)(MEMORY)ARITH
The INCR and DECR commands take a global or local variable name

(with ' delimiters) as their argument-—the variable must contain a
real number. The command does the following:

1. Changes the value stored in the variable by +1 or —1.
2. Returns the new value to the stack.

Programming 1-39



Examples: If ¢ contains the value 5, then 'c' THCR stores 6 1 ¢
and returns 6 to the stack.

The following program takes a maximum of five vectors from the stack
and adds them to the current statistics matrix.

Program: Comments:
& B Stores 0 1n local variable ec.
2 Starts the defining procedure.
LHILE Starts the test clause.
LUF TYFE 2 == Returns true if level 1 contains a
vector.
‘o THECE Increments and returns the value
In c.
oo Returns true if the counter ¢ < 9.
RIRIE Returns true if the two previous
test results are true.
REFERT
a+ Adds the vector to Y DAT.
= IEnds the structure.

Ends the defining procedure.

Using Summations Instead of Loops

For certain calculations that involve summations, you can use the
Y function instead of loops. You can use % with stack syntax or

with algebraic syntax. ¥ automatically repeats the addition for the
specified range of the index variable—without using a loop structure.

Example: The following programs take an integer upper limit n from
the stack, then find the summation

n
27
j=1

One program uses a FOR, ... NEXT loop—the other uses .

1-40 Programming



Program: Comments:

B 1 ROT Initializes the summation and
puts the limits in place.
FORE Loops through the calculation.
J S+
HEST
Program: Comments:
* T Uses Y. to calculate the
taLd=lame TS0 summation.

Example: 'The following program uses YLIST to calculate the
summation of all elements of a vector or matrix. The program takes

from the stack an array or a name that evaluates to an array, and
returns the summation.

Program: Comments:
DR Finds the dimensions of the array
and leaves 1t In a list on level 1.
1 Adds 1 to the list. (If the array is
+ a vector, the list on level 1 has

only one element. ITLIST will
error if the list has fewer than two

elements. )
TLIST Multiphies all of the list elements
together.
L IET Converts the array elements into
LIST a hist, and sums them.

Programming 1-41



Using Flags

You can use flags to control calculator behavior and program
execution. You can think of a flag as a switch that 1s either on
(set) or off (clear). You can test a flag’s state within a conditional
or loop structure to make a decision. Because certain flags have
unique meanings for the calculator, flag tests expand a program’s
decision-making capabilities beyond that available with comparison
and logical functions.

Types of Flags
The HP 48 has two types of flags:

m System flags. Flags —1 through —64. These flags have predefined

meanings for the calculator.

m User flags. Flags 1 through 64. User flags are not used by any
built-in operations. What they mean depends entirely on how the
program uses them.

Appendix C lists the 64 system flags and their definitions. For
example, system flag —40 controls the clock display—when this flag
is clear (the default state), the clock 1s not dlsplayed_—when this

flag 1s set, the clock is displayed. (When you press L . L.E . 1n the

When you set user flag 1 through 5, the corresponding annunciator 1s
turned on. Certain plug-in cards may use user-flags in the range 31

through 64.

Setting, Clearing, and Testing Flags
Flag commands take a flag number from the stack—an integer 1

through 64 (for user flags) or —1 through —64 (for system flags).

To set, clear, or test a flag:

1. Enter the flag number (positive or negative).
2. Execute the flag command—see the table below.

1-42 Programming



Flag Commands

Key Programmable Description
Command
PRG) TEEZT (NXT)(NXT)or (¢9)(MODES)
SF Sets the flag.
CF Clears the flag.
FS? Returns 1 (true) if the flag is set, or 0
(false) if the flag 1s clear.
FC? Returns 1 (true) if the flag is clear, or 0
(false) if the flag is set.
FS?C Tests the flag (returns true if the flag is
set), then clears the flag.
FC7C Tests the flag (returns true if the flag is
clear), then clears the flag.

Example: System Flag. The following program sets an alarm for
June 6, 1993 at 5:05 PM. It first tests the status of system flag —42
(Date Format flag) in a conditional structure and then supplies the
alarm date in the current date format, based on the test result.

Program: Comments:

IF Tests the status of flag —42, the
—2 F7 Date Format flag.

THEH If flag —42 1s clear, supplies the
g, 15199 date in month/day/year format.

ELSE If lag —42 1s set, supplies the
15, A6 199 date 1n day.month.year format.

E R Ends the conditional.

1785 "TEST COMPLETE®" Sets the alarm: 17.05 is the alarm

I +LIST STOALARM time and “TEST COMPLETE”

1s the alarm message.

Example: User Flag. The following program returns either the
fractional or integer part of the number in level 1, depending on the

state of user flag 10.

Programming 1-43



Program: Comments:

IF Starts the conditional.
13 FE7 Tests the status of user flag 10.
THEH If flag 10 1s set, returns the
TE integer part.
L SE If flag 10 1s clear, returns the
=y fractional part.
ARIE Ends the conditional.

To use this program, you enter a number, either set flag 10 (to get the
integer part) or clear flag 10 (to get the fractional part), then run the
program.

Recalling and Storing the Flag States

If you have a program that changes the state of a flag during
execution, you may want it to save and restore original flag states.

The RCLF (recall flags) and STOF (store flags) commands let you
recall and store the states of the HP 48 flags. For these commands,

a 64-bit binary integer represents the states of 64 flags—each 0 bit
corresponds to a flag that’s clear, each 1 bit corresponds to a flag
that’s set. The rightmost (least significant) bit corresponds to system
flag —1 or user flag 1.

To recall the current flag states:

RELEY).

RCLF returns a list containing two 64-bit binary integers representing
the current states of the system and user flags:

T #Hneg #Hny

To change the current flag states:

1. Enter the flag-state argument—see below.

2. Execute STOF ((\q)(MODES) ¥l Fii OF ).

1-44 Programming



STOF sets the current states of flags based on the flag-state argument:

Hng Changes the states of only the system flags.

T #n, #n, > Changes the states of the system and user flags.

Example: The program PRESERVE on page 2-8 uses RCLF and
STOF.

Using Subroutines

Because a program 1s itself an object, it can be used in another
program as a subroutine. When program B 1s used by program
A, program A calls program B, and program B 1s a subrouiine 1n

program A.

Example: The program TORSA calculates the surface area of a torus
of inner radius a and outer radius 6. TORSA 1s used as a subroutine

in a second program TORSV, which calculates the volume of a torus.

e e
SonRiioa

The surface area and volume are calculated by
= 7%(b?* — a* V= - 7%(b® — a®)(b—a

(The quantity 72(b? — a?) in the second equation is the surface area of
a torus calculated by TORSA.

Programming 1-45



Here are the stack diagram and program listing for TORSA.

Level 2 Level 1 —» Level 1
a b — surface area

Program: Cominents:

+ 7 b Creates local variables ¢ and b.

ok | BT T W S Calculates the surface area.

*HLIM Converts algebralc to a number.
(ENTER) Puts the program on the stack.
() TORSA (sT0) Stores the program in TORSA.

Here 1s a stack diagram and program listing for TORSV .

Level 2 Level 1 > Level 1

a b — volume

Program: Comments:

+ g b Creates local variables a and 5.

Starts a program as the defining
procedure.

a b TORZH Puts the numbers stored in a and
b on the stack, then calls TORSA
with those arguments.

s - = 4 S Completes the volume calculation
using the surface area.

Ends the defining procedure.

(ENTER] Puts the program on the stack.

(') TORSV (sT0) Stores the program in TORSV .

1-46 Programming



Now use TORSV to calculate the volume of a torus of inner radius
a = 6 and outer radius b = 8.

1' 138. 174461616
ToRsu[TOR:H[ V2 ] vi [PHL] H

0 IENTER|8

Single-Stepping through a Program

It’s easier to understand how a program works if you execute 1t step
~ by step, observing the effect of each step. Doing this can help you
debug your own programs or understand programs written by others.

To single-step from the start of a program:

1. Put the program or program name in level 1 (or the command
line).

suspend executlon

HHL. T appears in the status area.

3. Take any action:
m To see the next program step displayed in the status area and

then executed, press : =% 7T
m To dlsplay but not execute the next one or two program steps,
press e &

4. Repeat the previous step as desu'ed.

To turn off the HALT annunciator at any time:

m Press (PRGJ(NXT) RLH EILL .

Example: Execute program TORSV step by step. Use a = 6 and
b = 8.

Programming 1-47



Select the VAR menu and enter the data. Enter the program name
and start the debugging. HRL.T indicates program execution is
suspended.

(9)(CLEAR)
(VAR)
6[ENTER]8[ENTER]

o

PRG)(NXT) ELIH [LEUG

[_]L] DELG | 22T [Z5T4 JMEST [ HALT [ KILL
Display and execute the first program step. Notice that it takes the
two arguments from the stack and stored them in local variables a and

.

1
4
3
¢
1

L
o
i
o

El—‘mm-ﬂn

Continue single-stepping until the status area shows the current
directory. Watch the stack and status area as you single-step through
the program.

'*.‘I
1=
]
1."
.

Eal 1s 138. 174461616
ST (55T

To single-step from the middle of a program:

1. Insert a HALT command in the program where you want to begin
single-stepping.

2. Execute the program normally. The program stops when the HALT
command 1s executed, and the MML.T annunciator appears.

3. Take any action:
m To see the next program step displayed in the status area and

then executed, press  Zzl .
m To dlsp]ay but not execute the next one or two program steps,
press HE®T .

® To continue with normal execution, press (|9)(CONT).
m To abandon further execution, press EiE 1
4. Repeat the previous step as desired.

1-48 Programming



When you want the program to run normally again, remove the HALT
command from the program.

To single-step when the next step is a subroutine:

m To execute the subroutine 1n one step, press
m To execute the subroutine step- by -step, pres

= sz:??ff%?f?f?i? executes the subroutine in one step. :

works Just llke (% T —except 1f the next program step 1S a
subroutine, 1t smgle-steps to the first step in the subroutine.

Example: In the previous example, you used E&51  to execute
subroutine TORSA in one step. Now execute program TORSYV step
by step to calculate the volume of a torus of radii ¢ = 10 and b = 12.
When you reach subroutine TORSA, execute it step by step.

Select the VAR menu and enter the data. Enter the program name
and start the debugging. Execute the first four steps of the program,
then check the next step.

(¢&9)(CLEAR] (VAR) TORSAH b
10[ENTER)12

[ P RG ' | NXT '
T (4 tlmes)

BUH S DEUG

The next step is TORSA. Single-step into TORSA, then check that
vou’re at the first step of TORSA.

.
ks

15

1&

=t P

b |
L

[ ]
1+
)

Press («)(CONT) (¢q)(CONT} to complete subroutine and program

execution.

The following table summarizes the operations for single-stepping
through a program.

Programming 1-49



Single-Step Operations

Key

Programmable
Command

Description

(PRG)

HALT

KILL

CONT

Starts program execution, then
suspends 1t as if HALT were the first
program command. Takes as its
argument the program or program
name 1n level 1.

Executes the next object or command
in the suspended program.

Same as . 55T

program step 1s a subroutine,
single-steps to the first step in that
subroutine.

Displays the next one or two objects,
but does not execute them. The display
persists until the next keystroke.

Suspends program execution at the
location of the HALT command 1n the
program.

Cancels all suspended programs and
turns off the HHL. T annunciator.

Resumes execution of a halted program.

Trapping Errors

If you attempt an mvalid operation from the keyboard, the operation
1s not executed and an error message appears. For example, if you
with a vector and a real number on the stack, the HP 48
returns the message + Ertror: Bad Hrgument Tupe and returns the
arguments to the stack (if Last Arguments is enabled).

execute

In a program, the same thing happens, but program execution 1s also
aborted. If you anticipate error conditions, your program can process
them without interrupting execution.

1-50 Programming



For simple programs, you can run the program again 1if 1t stops with
an error. For other programs, you can design them to {rap errors and
continue executing. You can also create user-defined errors to trap
certain conditions in programs. The error trapping commands are

located in the PRG ERROR menu.

Causing and Analyzing Errors

Many conditions are automatically recognized by the HP 48 as error
conditions—and they’re automatically treated as errors in programs.

You can also define conditions that cause errors. You can cause a
user-defined error (with a user-defined error message)——or you can
cause a built-in error. Normally, you’ll include a conditional or loop
structure with a test for the error condition—and if it occurs, you’ll
cause the user-defined or built-in error to occur.

To cause a user-defined error to occur in a program;

1. Enter a string (with " " delimiters) containing the desired error
message.

2. Enter the DOERR command (PRG ERROR menu).

To artificially cause a built-in error to occur in a program:

1. Enter the error number (as a binary integer or real number) for the
erTor.

2. Enter the DOERR command (PRG ERROR menu).
If DOERR 1s trapped in an IFERR structure (described in the next

topic), execution continues. If it’s not trapped, execution 1s abandoned
at the DOERR command and the error message appears.

To analyze an error in a program:

m To get the error number for the last error, execute ERRN (PRG
ERROR menu).

m To get the error message for the last error, execute ERRM (PRG
ERROR menu).

m To clear the last-error information, execute ERRO (PRG ERROR

ment).

The error number for a user-defined error 1s #70000h. See the list of
built-in error numbers in appendix A, “Error and Status Messages.”

Programming 1-51



Example: The following program aborts execution if the hst n level
1 contains three objects.

AISE

IF = THME

THEH "3 DREJECT: TH LIZTY DUkER
kL

The following table summarizes error trapping commands.

Error Trapping Commands

Key Programmable Description
Command

Causes an error. For a string in level 1,
causes a user-defined error: the
calculator behaves just as if an
ordinary error has occurred. For a
binary integer or real number in level 1,
causes the corresponding built-in error.
If the error isn’t trapped in an IFERR
structure, DOERR displays the
message and abandons program
execution. (For 0 in level 1, abandons
execution without updating the error

number or message—Ilike (CANCEL}.)

ERERM ERRN Returns the error number, as a binary
integer, of the most recent error.

Returns # 1if the error number was
cleared by ERRO.

ERRM Returns the error message (a string) for
the most recent error. Returns an
empty string if the error number was

cleared by ERRO.
ERRO Clears the last error number and

message.

1-52 Programming



Making an Error Trap

You can construct an error trap with one of the following conditional
structures:

m [FERR ... THEN ... END.
a IFERR ... THEN ... ELSE ... END.

The IFERR ... THEN ... END Structure

The syntax for this structure 1s

IFERR trap-clause THEM error-clause EMD ...

The commands in the error-clause are executed only if an error 1s
generated during execution of the trap-clause. If an error occurs 1n the
trap-clause, the error is ignored, the remainder of the trap-clause is
skipped, and program execution jumps to the error-clause. If no errors
occur In the trap-clause, the error-clause 1s skipped and execution
resumes after the END command.

To enter IFERR ... THEN ... END In a program:

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.
However, the program stops with an error if a vector or array with

a different number of columns 1s encountered. In addition, if only
vectors or arrays with the same number of columns are on the stack,
the program stops with an error after the last vector or array has been
removed from the stack.

% WHILE DUF TYFE 2 == REFEAT I+ EHD »

In the following revised version, the program simply attempts to add
the level 1 object to the statistics matrix until an error occurs. Then,

1t ends by displaying the message [IHE.

Programming 1-53



Program: Comments:

IFEER Starts the trap-clause.

WMHILE The WHILE structure repeats
1 indefinitely, adding the vectors
FERFEAT and arrays to the statistics matrix
ol until an error occurs.
SARIK
THEHM Starts the error clause. If an error
"OOHE® 1 ISP occurs 1n the WHILE structure,
| FREETE displays the message [MIHE 1n the
status area.
E R Ends the error structure.

The IFERR ... THEN ... ELSE ... END Structure

The syntax for this structure 1s

IFERE frap-clause
THEM error-clause ELZE normal-clause EMLDr ... #

The commands in the error-clause are executed only if an error 1s
generated during execution of the trap-clause. If an error occurs in the

trap-clause, the error is ignored, the remainder of the trap-clause 1s
skipped, and program execution jumps to the error-clause. If no errors
occur in the trap-clause, execution jumps to the normal-clause at the

completion of the trap-clause.

To enter IFERR ... THEN ... ELSE ... END in a program:

Example: The following program prompts for two numbers, then
adds them. If only one number is supplied, the program displays an
error message and prompts again.

1-54 Programming



Program: Conmumnents:

[+ Begins the main loop.
"KEY IM a AMD b" " Prompts for two numbers.
ITHPLIT B4+
AMTIL Starts the loop test clause.
IFERF The error trap contains only the
+ + command.
THEH If an error occurs, recalls and
FREM 5 DISF displays the Too Feuw
T OWAIT Hiraument = message for 2
o seconds, then puts 0 (false) on
the stack for the main loop.
ELSE If no error occurs, puts 1 (true)
i on the stack for the main loop.
E R Ends the error trap.
EHL Ends the main loop. If the error

trap left 0 (false) on the stack,
the main loop repeats—otherwise,
the program ends.

Input

A program can stop for user input, then resume execution, or can use
choose boxes or input forms (dialog boxes) for input. You can use
several commands to get input:

PROMPT ((«q)(CONT) to resume).
DISP FREEZE HALT ((q)(CONT) to resume).

INPUT ((ENTER) to resume).
INFORM
CHOOSE

Programming 1-55



Data Input Commands

Key Command Description

l PRG ll NX ] ;5555555555555555fafifafzf;!:;iaiai?i%i;%;fefzfz?zz':izfzizi::'z:'zf:
INFORM Creates a user-defined mput form.
Hi NOVAL Place holder for the INFORM

command. Returned when a value 1s
not present 1in an input form field.

BN CHOOSE Creates a user-defined choose box.

BREE KEY Returns a test result to level 1 and, if a
key 1s pressed, the location of that key
(level 2).

BRI WAIT Suspends program execution for a
specified duration (in seconds, level 1).

IHEUT INPUT Suspends program execution for data
input.
BRI PROMPT | Halts program execution for data input.

Using PROMPT ... CONT for Input

PROMPT uses the status area for prompting, and allows the user to
use normal keyboard operations during input.

To enter PROMPT in a program:

1. Enter a string (with " " delimiters) to be displayed as a prompt in

the status area.
2. Enter the PROMPT command (PRG IN menu).

F prampt-Stng R

PROMPT takes a string argument from level 1, displays the string
(without the * " delimiters) in the status area, and halts program
execution. Calculator control is returned to the keyboard.

When execution resumes, the input 1s left on the stack as entered.

To respond to PROMPT while running a program:

1. Enter your input—you can use keyboard operations to calculate the
input.

1-56 Programming




2. Press (+9)(CONT ).

The message remains until you press (ENTER) or (CANCEL ) or until you
update the status area.

Example: If you execute this program segment
# "ABCTY PROMPT 3
the display looks like this:

RBC?

bt D) =

Example: The following program, TPROMPT , prompts you for the
dimensions of a torus, then calls program TORSA (from page 1-45) to
calculate its surface area. You don’t have to enter data on the stack
prior to program execution.

Program: Comments:
"EMTER 2. b IM ORDREREDT Puts the prompting string on the
stack.
FROMFT Displays the string in the status

area, halts program execution,
and returns calculator control to
the keyboard.

TOREHA Executes TORSA using the

just-entered stack arguments.

(ENTER) (') TPROMPT (STO) Stores the program in
TPROMPT.

Execute TPROMPT to calculate the volume of a torus with mner
radius a = 8 and outer radius 6 = 10.

Programming 1-57



Execute TPROMPT. The program prompts you for data.

@&L%_R] ENTER a, b IN DRDER:

TPED [TOREWTOREA] W8 | W1 [SPHLY
Enter the inner and outer radii. After you press (ENTER), the prompt
message 1s cleared from the status area.

8 (ENTER) 10 HALT

HOME 1}

0

TPROJTORSMITORZA] Y8 | W1 [IPHLY

i
4:
3
4
1

Continue the program.

() (CONT]) 1 : 355 355?58439
PR |TORZHITORZA] W2 ] W1 [SPHLY

Note that when program execution 1s suspended by PROMPT, you
can execute calculator operations just as you did before you started
the program. If the outer radius b of the torus in the previous
example 1s measured as 0.83 feet, you can convert that value to inches
while the program 1s suspended for data input by pressing .83 (ENTER)

12 (x), then («q}(CONT).

Using DISP FREEZE HALT ... CONT for Input

DISP FREEZE HALT lets you control the entire display during input,
and allows the user to use normal keyboard operations during input.

To enter DISP FREEZE HALT in a program:

. Enter a string or other object to be displayed as a prompt.

. Enter a number specifying the line to display it on.

. Enter the DISP command (PRG OUT menu).

. Enter a number specifying the areas of the display to “freeze.”
. Enter the FREEZE command (PRG OUT menu).

. Enter the HALT command (PRG OUT menu).

Sy O o Qo Do =

1-58 Programming



# ... prompit-object display-line DISF
freeze-area FREEZE HALT ... =

DISP displays an object in a specified line of the display. DISP

takes two arguments from the stack: an object from level 2, and a
display-line number 1 through 7 from level 1. If the object 1s a string,
it’s displayed without the " " delimiuters. The display created by
DISP persists only as long as the program continues execution—if the
program ends or 1s suspended by HALT, the calculator returns to the
normal stack environment and updates the display. However, you can
use FREEZE to retain the prompt display.

FREEZE “freezes” display areas so they aren’t updated until a key
press. Argument n in level 1 1s the sum of the codes for the areas to
be frozen: 1 for the status area, 2 for the stack/command line area, 4
for the menu area.

HALT suspends program execution at the location of the HALT
command and turns on the HALT annunciator. Calculator control 1s
returned to the keyboard for normal operations.

When execution resumes, the input remains on the stack as entered.

To respond to HALT while running a program:

1. Enter your input—you can use keyboard operations to calculate the
input. |

2. Press (q)(CONT).

Example: If you execute this program segment
# "AECmDEFaGHI" CLLCD 1 DISF 2 FREEZE HALT =
the display looks like this:

5T+ [NEAT | HRLT | EILL

(The = in the previous program is the calculator’s representation for
the # newline character after you enter a program on the stack.)

Programming 1-59



Using INPUT ... ENTER for Input

INPUT lets you use the stack area for prompting, lets you supply
default input, and prevents the user from using normal stack
operations or altering data on the stack.

To enter INPUT in a program:

1. Enter a string (with * " delimiters) to be displayed as a prompt at
the top of the stack area.
2. Enter a string or list (with delimiters) that specifies the
command-hne content and behavior—see below.
. Enter the INPUT command (PRG IN menu).
4. Enter OBJ— (PRG TYPE menu) or other command that processes

the input as a string object.

G

. "prompt-string" "command-lne” IHFUT GEJ+ ... ®
or
. "prompi-string" . command-liner THFUT DR+ .. &

INPUT, 1n 1ts simplest form, takes two strings as arguments—see the
list of additional options following. INPUT blanks the stack area,
displays the contents of the level-2 string at the top of the stack area,
and displays the contents of the level-1 string in the command line. It
then activates Program-entry mode, puts the insert cursor after the
string 1 the command line, and suspends execution.

When execution resumes, the input is returned to level 1 as a string
object, called the resull string.

To respond to INPUT while running a program:

1. Enter your input. (You can’t execute commands—they’re simply
echoed in the command line.)
2. Optional: To clear the command line and start over, press

[CANCEL |
3. Press (ENTER).

Example: If you execute this program segment

"Wariable name?" "IVHREDT IHPUT %

the display looks like this:

1-60 Programming



f HOME 3}
Variable name?

Example: The following program, VSPH, calculates the volume of a
sphere. VSPH prompts for the radius of the sphere, then cubes 1t and
multiplies by */3 w. VSPH executes INPUT to prompt for the radius.
INPUT sets Program-entry mode when program execution pauses for

data entry.

Program: Comments:

"Fey in radius" Specifies the prompt string.

" Specifies the command-line string.
In this case, the command line
will be empty.

IHFUT Displays the prompt, puts the
cursor at the start of the
command line, and suspends the
program for data input (the
radius of the sphere).

Q-3 Converts the result string into its
component object—a real
number.

o Cubes the radius.

d 2 3 oo o MU Completes the calculation.

(ENTER) (') VSPH (sTO) Stores the program in VSPH.

Programming 1-61



Execute VSPH to calculate the volume of a sphere of radius 2.5.

{ HOME }
Key in radius

+
WEPH | TRRD |TOREVITORSA[ %@ [ W1
Key 1n the radius and continue program execution.

2.5 (ENTER) ]: bo. 49498469497
WEPH | TRRO [TORSWTORSE] va [ w1

To include INPUT options:

m Use a list (with £ * delimiters) as the command-line argument for
INPUT. The list can contain one or more of the following:

7 Command-line string (with " * delimiters).

Cursor position as a real number or as a list containing two real

numbers.

1 Operating options ALG, «, or %,

In its general form, the level 1 argument for INPUT 1s a list that
specifies the content and interpretation of the command line. The lst
can contain one or more of the following parameters in any order:

"command-line" cursor-position operating-options

"command-line"  Specifies the content of the command line
when the program pauses. Embedded newline
characters produce multiple lines in the display.
(If not included, the command line is blank.)

CuUrsor-position Specifies the position of the cursor in the
command line and its type. (If not included, an
insert cursor is at the end of the command line.)

m A real number n specifies the nth character in
the first row (line) of the command line. Zero
specifies the end of the command-line string. A
positive number specifies the nsert cursor—a
negative number specifies the replace cursor.

m A list Crow character’ specifies the row and
character position. Row 1 is the first row (line)
of the command line. Characters count from

1-62 Programming



the left end of each row—-character 0 specifies
the end of the row. A positive row number

specifies the insert cursor—a negative row
number specifies the replace cursor.

operating-options  Specify the input setup and processing using zero
or more of these unquoted names:

w AL activates Algebraic/Program-entry mode
(for algebraic syntax). (If not included,
Program-entry mode is active.)

s = ((a@) (»)(A)) specifies alpha lock. (If not
included, alpha is inactive.)

a '/ verifies whether the result string (without the
" " delimiters) is a valid object or sequence of
objects. If the result string 1sn’t valid, INPUT
displays the Irwalid Sunt ax message and
prompts again for data. (If not included, syntax
isn’t checked.)

To design the command-line string for INPUT:

m For simple input, use a string that produces a valid object:

Use an empty string.

1 Use a = label: tag.

Use a ®iexl® comment.

m For special mput, use a string that produces a recognizable pattern.

After the user enters input in the command line and presses (ENTER)
to resume execution, the contents of the command line are returned

to level 1 as the result string. The result string normally contains the
original command-line string, too. If you design the command-line
string carefully, you can ease the process of extracting the input data.

To process the result string from INPUT:

m For simple input, use OBJ— to convert the string into its
corresponding objects.

m For sensitive input, use the % option for INPUT to check for valid
objects, then use OBJ— to convert the string into those objects.

m For special input, process the input as a string object, possibly
extracting data as substrings.

Programming 1-63



Example: The program VSPH on page 1-61 uses an empty
command-line string.

Example: The program SSEC on page 1-66 uses a command-line
string whose characters form a pattern. The program extracts
substrings from the result string.

Example: The command-line string "FLFFER LLIMITE" displays
EUFFER LIMITE4 1n the command line. If you press 200 (ENTER),

the return string 1s "EBUFFER LIMITEZA6". When OBJ— extracts
the text from the string, it strips away the @ characters and the
enclosed characters, and it returns the number 200. (See “Creating
Programs on a Computer” on page 1-10 for more information about @
comments. )

Example: The following program, TINPUT, executes INPUT to
prompt for the inner and outer radn of a torus, then calls TORSA
(page 1-45) to calculate its surface area. TINPUT prompts for e and
b 1n a two-row command line. The level 1 argument for INPUT is a

list that contains:

m The command-line string, which forms the tags and delimiters for
two tagged objects.

m An embedded list specifying the nitial cursor position.

m The % parameter to check for invalid syntax in the result string.

1-64 Programming



Program: Comments:

"Fey in 3 b" The level 2 string, displayed at
the top of the stack area.
"fatmaibat L1 B N G The level 1 list contains a string,

a list, and the verify option. (To

key 1n the string, press (¢=»)(" ")
P02 EE @b
After you press (ENTER) to put
the finished program on the stack,

the string is shown on one line,
with = indicating the newline
character.) The embedded list
puts the insert cursor at the end
of row 1.

IHFUT Displays the stack and
command-line strings, positions
the cursor, sets Program-entry
mode, and suspends execution for

input.

OB 1 Converts the string into its
component objects—two tagged
objects.

TOREA Calls TORSA to calculate the
surtace area.

(ENTER) (") TINPUT (sT0O) Stores the program in TINPUT.

Execute TINPUT to calculate the surface area of a torus of inner
radius a = 10 and outer radius 6 = 20.

(VAR) T [ HE L

{ HOME %
kedg 1n as b

R,
TIWPU| WEPH | TPRD [TORSY[TORSA] V2

Programming 1-65



Key in the value for a, press (¥) to move the cursor to the next
prompt, then key in the value for b.

10 (W) 20

L HOME %
key 1m as b

14

TINPL| W:PH | TRRD [TORZY[TORSA[ W@

Continue program execution.

(ENTER) 1 " £3bH. 85132133
TINPU] U:PH | TPRO[TOREMTOR ] V2

Example: The following program executes INPUT to prompt for a
soclal security number, then extracts two strings: the first three digits
and last four digits. The level 1 argument for INPU'T' specifies:

m A command-line string with dashes.
m The replace cursor positioned at the start of the prompt string (—1).

This lets the user “fill in” the command line string, using (») to skip
over the dashes in the pattern.

m By default, no verification of object syntax—the dashes make the
content 1nvalid as objects.

Level 1 — Level 2 Level 1

— " last four digits" " first three digits”

1-66 Programming



Program: Comments:

"Fewy im 5.5, # Prompt string.

- - "—-1 Command-line string (3 spaces
before the first —, 2 spaces
between, and 4 spaces after the
last —).

ITHFUT Suspends the program for input.
DLIF 1 3 sUE Copies the result string, then
=Al=]= extracts the first three and last
2011 SR four digits in string form.
(ENTER) (') SSEC (sT0) Stores the program mn SSEC.

Using INFORM and CHOOSE for Input

You can use input forms (dialog boxes), and choose boxes for program
input. Programs that contain input forms or choose boxes wait until

you acknowledge them (. Ik . or (CANCEL)) before they continue
execution.

If OK 1s pressed, CHOOSE returns the selected item (or its designated
returned value) to level 2 and a 1 to level 1. INFORM returns a list of
field values to level 2 and a 1 to level 1.

Both the INFORM and CHOOSE commands return 0 if CANCEL is
pressed.

To set up an input form:

1. Enter a title string for the input form (use ()" ™)).

2. Enter a list of field specifications.
3. Enter a list of format options.
4

pressed).

H. Enter a list of default values.
6. Execute the INFORM command.

Example: Enter a title "FIRST OHE" (ENTER).
Specify a field £ "Hamei "+ (ENTER).

Enter format options (one column, tabs stop width five) « 1 5

(ENTER).

Programming 1-67



Enter reset value for the field « "THERESH" * (ENTER).
Enter default value for the field £ "WEMDYY ¥ (ENTER).

Execute INFORM ((PRG)(NXT) I TIHFOR).
The screen on the left appears. Press (NXT)FEZSET @ it

screen on the right appears.

retnaay FIRST OME X : FIEST OME
neME: TSR "THEREZR"

EpiT | [ | [iAMiL] Ok RESET| CHLEC [TYPES]  JiRWCL] Ok

You can specify a help message and the type of data that must be
entered in a field by entering field specifications as lists. For example,
£ ame:  "Enter your name” 23 3 defines the Name field,
displays Ert @i wour mars across the bottom of the input form, and
accepts only object type 2 (strings) as input.

To set up a choose box:

1. Enter a title string for the choose box.

92 Enter a list of items. If this is a list of two-element lists, the first
element is displayed in the choose box, and the second element 1s
returned to level 2 when OK 1s pressed.

3. Enter a position number for the default highlighted item. (0 makes
a view-only choose box.)

4. Execute the CHOOSE command.

Example: Enter a title "FIRST OHE™ (ENTER).

Enter a list of items £ OHE TWD THREEE 3 (ENTER).

Enter a position number for default highlighted value = (ENTER).
Execute CHOOSE ((PRG)(NXT): IH  CHEDE).

The following choose box appears:

1-68 Programming



1 HOERST OME
OME

THO
E %
1 [ [ [hKil] ok

l—'-l"-:lf.l.'l—ﬁn-l

Example: The following program uses input forms, choose boxes, and
message boxes to create a simple phone list database.

Program: Comments:
'HAMES ' WTYFE Checks 1f the name lList
IF -1 == (NAMES) exists, if not,
THEHM £  'HAMES' STO creates an empty one.
R
WHILE While cancel 1s not pressed,
"EHOMELIST OFTIONS: v creates a choose box that
: hsts the database options.
nEn |/ OMEREY 1 When OK 1s pressed, the
© WLTEWM B HUMEERY & o second i1tem 1n the list pair
v 1 CHOOSE is returned to the stack.
REFEART <+ - « Stores the returned value mn
C.
CASE - 1 == Case 1 (ADD name), while
THEH cancel 18 not pressed, do the
HILE following:

Programming 1-69



Program:
"ADD A OHHME"

L UHAME:" “ENTER HAME" .

C OMPHOME: " "EMHTER H
FHOME HUMBERE" 2 & =+

L34 F 4 IMFURM
FEFEAT
Rl
IF £ HMOWAL > HERD PUS
THEM
i

"ommpe let e ot Fields
befors pressing DR
RIS

FLSE
L IST MAMES + Z0OET
'HEMES T STO
E T
gk
E L
THEM
IF £ T+ HAMES =HME
THEHM
el MUsT RDD M
HAME FIEZT
=GBl

1-70 Programming

Comments:

Creates an mput form that
gets the name and phone
number. The two fields
accept only strings (object
type 2).

Checks if either field in the

new entry 1s blank.

If either one 1s, displays a
message.

If neither are, adds the list
to NAMES, sorts it, and
stores it back in NAMES.
Ends the IF structure, the
WHILE loop, and the
CASE statement.

Case 2 (View a Number).

Checks if NAMES 1s an
empty list.
If it 1s, displays a message.



Program: Comments:

ELSE If NAMES isn’t empty,
MHITLE creates a choose box using
"ITEKW A HUMEER™ NAMES as choice items.
HAMES 1 CHOOSE
FEFEAT | When OK is pressed, the
+STRE MEGEOH second 1tem in the NAMES

list pairs (the phone
number) is returned. Makes
1t a string and displays it.

E R Ends the WHILE loop, the
E ML IF structure, and the CASE
EH statement.
E R Ends the CASE structure,
% marks the end of the local
E M variable defining procedure,

ends the WHILE loop, and
marks the end the program.

(ENTER) (") PHONES (sTO) Stores the program in
PHONES.

You can delete names and numbers by editing the NAMES variable.
lo improve upon this program, create a delete name routine.

Beeping to Get Attention

To enter BEEP In a program:

1. Enter a number that specifies the tone frequency in hertz.
2. Enter a number that specifies the tone duration in seconds.

3. Enter the BEEP command ((PRG) (NXT) | TFf menu).

# ... frequency duraiion BEEF ...

BEEP takes two arguments from the stack: the tone frequency from
level 2 and the tone duration from level 1.

Example: The following edited version of TPROMPT sounds a
440-hertz, one-half-second tone at the prompt for data input.

Programming 1-71



Program: Comments:

"ERTER as b IH OREDEED"
d483 .5 BEER Sounds a tone just before the
prompt for data input.
FROMFT
TOR=H

Stopping a Program for Keystroke Input

A program can stop for keystroke input—1t can wait for the user to
press a key. You can do this with the WAIT and KEY commands.

Using WAIT for Keystroke Input

The WAIT command normally suspends execution for a specified

number of seconds. However, you can specify that it wait indefimtely
until a key 1s pressed.

To enter WAIT in a program:

m To stop without changing the display, enter and the WAIT
command (PRG IN menu).
s To stop and display the current menu, enter —1 and the WAI'l

command (PRG IN menu).

WAIT takes the 0 or —1 from level 1, then suspends execution until a
valid keystroke i1s executed.

For an argument of —1, WAIT displays the currently specified menu.
This lets you build and display a menu of user choices while the

program is paused. (A menu built with MENU or TMENU 1s not
normally displayed until the program ends or is halted.)

When execution resumes, the three-digit key location number of
the pressed key is left on the stack. This number indicates the row,
column, and shift level of the key.

1-72 Programming



To respond to WAIT while running a program:
m Press any valid keystroke. (A prefix key such as (|) or (@) by itself

1s not a valid keystroke.)

Using KEY for Keystroke Input

You can use KEY inside an indefinite loop to “pause” execution until
any key—or a certain key—is pressed.

To enter a KEY loop in a program:

1. Enter the loop structure.
2. In the test-clause sequence, enter the KEY command (PRG IN

menu) plus any necessary test commands.
3. In the loop-clause, enter no commands to give the appearance of a
“paused” condition.

KEY returns 0 to level 1 when the loop begins. It continues to return
0 until a key is pressed—then it returns 1 to level 1 and the two-digit
row-column number of the pressed key to level 2. For example,

(ENTER) returns 91, and (eq) returns 71.

The test-clause should normally cause the loop to repeat until a key 1s
pressed. If a key is pressed, you can use comparison tests to check the
value of the key number. (See “Using Indefinite Loop Structures” on
page 1-36 and “Using Comparison Functions” on page 1-17.)

To respond to a KEY loop while running a program:
m Press any key. (A prefix key such as (€) or 25 a valid key.)

Example: The following program segment returns 1 to level 1 if
s pressed, or 0 to level 1 if any other key is pressed:

b UMTIL EEY EMD 2% SAME ... 3

Programming 1-73



Output

You can determine how a program presents its output. You can make
the output more recognizable using the techniques described in this

section.

Data Output Commands

Key Command

Description

Displays PICT starting at the given
coordinates.

Displays the stack display.
Blanks the stack display.
Displays an object in the specified line.

“Freezes” a specified area of the display
until a key press.

Creates a user-defined message box.

Sounds a beep at a specified {requency
(in hertz, level 2) and duration (in
seconds, level 1).

Labeling Output with Tags

To label a result with a tag:

1. Put the output object on the stack.

2. Enter a tag—a string, a quoted name, or a number.
3. Enter the —TAG command (PRG TYPE menu).

. object tag +THG ... *

. TAG takes two arguments—an object and a tag—from the stack

and returns a tagged object.

Example: The following program TTAG is identical to TINFP UT,
except that it returns the result as ARER: value.

1-74 Programming




Program: Comments:

"Faygy 1 a. B

T o Viaimsba" £1 @3 N O
IHPUT OE.1+
TR SH
"HRER" Enters the tag (a string).
+THG Uses the program result and
string to create the tagged object.
(ENTER) (") TTAG (STO) Stores the program in TTAG.

Execute TTAG to calculate the area of a torus of inner radius a = 1.5
and outer radius & = 1.85. The answer 1s returned as a tagged object.

1: AREA: 11.57211116M3

1. _ TTaG [TIKPU| WEPH | TPRD [TORSV|TOR S
(ENTER])

Labeling and Displaying Output as Strings

To label and display a result as a string:

. Put the output object on the stack.

. Enter the —STR command (PRG TYPE menu).

. Enter a string to label the object (with " " delimiters).

Enter the SWAP + commands to swap and concatenate the strings.

. Enter a number specifying the line to display the string on.
. Enter the DISP command (PRG OUT menu).

# ... object *5TR label SHAF + line DISF ... =

Oﬁc‘.ﬂrl:-c.om;—t

DISP displays a string without its " " delimiters.

Example: The following program TSTRING is identical to TINPUT,

except that 1t converts the program result to a string and appends a
labeling string to it.

Programming 1-75



Prograin: Comments:

Eed LT Eo h“

Lo Miatmibd " o1 BN

TRFUIT Ok

TUREDH

*ETE Converts the result to a string.
Hprem = Enters the labeling string.

SHAF + Swaps and adds the two strings.

CLLCD 1 DIk 1 FEEEZE Displays the resultant string,
without its delimiters, 1n line 1 of
the display.

(ENTER) (") TSTRING (STO) Stores the program in TSTRING.

Execute TSTRING to calculate the area of the torus with a = 1.5 and
b = 1.85. The labeled answer appears in the status area.

(::JUM] Area = 11.5721111603

(VAR) TETETL
15 (V) 1.85

(ENTER)

4
33
Z
1

TETRI[TTAG [TIMPU| Y=FPH | TPEO

Pausing to Display Output

To pause to display a resuit:

1. Enter commands to set up the display.
2. Enter the number of seconds you want to pause.

3. Enter the WAIT command (PRG IN menu).

WAIT suspends execution for the number of seconds in level 1.
You can use WAIT with DISP to display messages during program

execution—for example, to display intermediate program results.
(WAIT interprets arguments 0 and —1 differently—see “Using WAIT

for Keystroke Input” on page 1-72.)

1-76 Programming



Using MSGBOX to Display Output

To set up a message box:

1. Enter a message string.

2. Execute the MSGBOX command.
Example: Enter a string ”HELLm HIIF L[*” |ENTER|

1 HOME I

4: [HELLO, WORLD

]: "HELLO, WORLD"
~_ [ T [ [Or_

(CANCEL ).

Using Menus with Programs

You can use menus with programs for different purposes:

# Menu-based mput. A program can set up a menu to get input
during a halt in a program—then resume executing the same
program.

m Menu-based application. A program can set up a menu and finish
executing, leaving the menu to start executing other related
programs.

To set up a built-in or library menu:

1. Enter the menu number.
2. Enter the MENU command (MODES MENU menu).

Programming 1-77



To set up a custom menu:

1. Enter a list (with £ * delimiters) or the name of a list defining the
menu actions. If a list of two element lists 1s given, the first element
appears 1n the menu, but it 1s the second element that 1s returned
to the stack when the menu key is pressed.

2. Activate the menu:

m To save the menu as the CST menu, enter the MENU command
(MODES MENU menu).

m To make the menu temporary, enter the TMENU command
(MODES MENU menu).

The menu 1sn’t displayed unti] program execution halts.

Menu numbers for built-in menus are listed 1n chapter 3, under the
MENU command. Library menus also have numbers—the library
number serves as the menu number. So you can activate applications
menus (such as the SOLVE and PLOT menus) and other menus (such
as the VAR and CST menus) in programs. The menus behave just as
they do during normal keyboard operations.

You create a custom menu to cause the behavior you need in your
program—see the topics that follow. You can save the menu as the
CST menu, so the user can get it again by pressing (CST). Or you can
make it temporary—it remains active (even after execution stops), but
only until a new menu 1s selected—and 1t doesn’t affect the contents of

variable CST'.

To specify a particular page of a menu, enter the number as m.pp,
where m 1s the menu number and pp is the page number (such as
94.02 for page 2 of the TIME menu). If page pp doesn’t exist, page 1
is displayed (94 gives page 1 of the TIME menu).

Example: Enter &% FEML to get page 1 of the MODES MISC menu.
Enter &%, 82 MEHL to get page 2 of the MODES MISC menu.

To restore the previous menu:
m Execute 0 MENU.

To recall the menu number for the current menu:
m Execute the RCLMENU command (MODES MENU menu).

1-78 Programming



Using Menus for Input

To display a menu for input in a program:

1. Set up the menu—see the previous section.
2. Enter a command sequence that halts execution (such as DISP,

PROMPT, or HALT).

The program remains halted until it’s resumed by a CON'T' command,

such as by pressing (¢#3)(CONT). If you create a custom menu for mnput,
you can Include a CONT command to automatically resume the

program when you press the menu key.

Example: The following program activates page 1 of the MODES
ANGL menu and prompts you to set the angle mode. After you press
the menu key, you have to press {(¢q)(CONT ) to resume execution.

£ £5 MEMU "Select Angle Mods" PROMPT 3

Example: The PIFE program on page 2-49 assigns the CONT
command to one key 1n a temporary menu.

Example: The MNX program on page 2-22 sets up a temporary
menu that includes a program containing CONT to resume execution
automatically.

Using Menus to Run Programs

You can use a custom menu to run other programs. That menu
can serve as the main interface for an application (a collection of
programs).

TO create a menu-based application:

1. Create a custom menu list for the application that specifies
programs as menu objects.

2. Optional: Create a main program that sets up the application
menu—either as the CST menu or as a temporary menu.

Example: The following program, WGT, calculates the mass of an
object in either English or SI units given the weight. WGT displays
a temporary custom menu, from which you run the appropriate
program. Kach program prompts you to enter the weight in the
desired unit system, then calculates the mass. The menu remains

Programming 1-79



active until you select a new menu, so you can do as many calculations
as you want.

Enter the following hst and store 1t in LST:

LOUEMGLY # "EMTER WL im FOLUHDS® PROMPT 22.2 7 2 3
TR R ”EI-I'I ke bt i MEMTOM=Y FEOMPT 9. 51 <

(") LST (sT0)

Program: Comments:

# L=T THEHU = Displays the custom menu stored
in LST.

(ENTER) (') WGT (STO) Stores the program in WGT.

Use WGT to calculate the mass of an object of weight 12.5 N. The
program sets up the menu, then completes execution.

(VAR) M | I N N R |

Select the SI unit system, which starts the program in the menu hst.

e ENTER Wt 1m NEWTOHNS
q:
38
%:
EWoL] # [ |
Key 1n the weight, then resume the program.
12.5 («q)(CONT) 1= 1. 27420996981
“----

Example: The following program, EIZ, constructs a custom menu
to emulate the HP Solve application for a capacitive electrical circuit.

The program uses the equation £/ = IZ, where E 1s the voltage, [ 1s
the current, and Z is the impedance.

Because the voltage, current, and impedance are complex numbers,
you can’t use the HP Solve application to find solutions. The custom
menu in EIZ assigns a direct solution to the left-shifted menu key for
each variable, and assigns store and recall functions to the unshifted
and right-shifted keys—the actions are analogous to the HP Solve

1-80 Programming



application. The custom menu 1s automatically stored in C5T,
replacing the previous custom menu—you can press (CST) to restore

the menu.

Program:

DEL -15 SF -1 =R
2 FIH

11 E 9! ,:: ) IEI E; T G n
# 1 & % DUR 'E' STO
"Eao" SMAP + CLLCD
i ISP 1 FREEZE =
Z B oo owon

S L A N
@ kB 2 o DUFE YT =TI
"I3 " SWAP + CLLCD
I DISP | FREEZE

£ T ® o

Ayl el |
I:l.il III .-'-

- a0 =T ®
£ B L « DUF "2 =T
e U BWAF O+ CLLCD
L Dlwk 1 FEEEZE #

" ﬂ- o -I
.l.J. t::" .l:h‘

ME L

(ENTER) (") EIZ (3T0)

Comments:

Sets Degrees mode. Sets flags
—15 and —16 to display complex
numbers in polar form. Sets the
display mode to 2 Fix.

Starts the custom menu list.

Builds menu key 1 for E.
Unshifted action: stores the
object in F. Left-shift action:
calculates I X Z, stores 1t 1n £,
and displays it with a label.
Right-shift action: recalls the
object 1n F.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in FI7.

For a 10-volt power supply at phase angle 0°, you measure a current of
0.37-amp at phase angle 68°. Find the impedance of the circuit using

vl

e [ 1 =1 1 [ H

Programming 1-81



Key 1n the voltage value.

@) V(&) 0 (16264

Store the voltage value. Then key in and store the current value.
Solve for the 1impedance.

£ C27.B3, 465,88

Turning Off the HP 48 from a Program

To turn off the calculator in a program:

s Execute the OFF command (PRG RUN menu).

The OFF command turns oftf the HP 48. If a program executes OFF,
the program resumes when the calculator 1s next turned on.

1-82 Programming



Programming Examples

The programs in this chapter demonstrate basic programming
concepts. These programs are intended to 1improve your programming
skills, and to provide supplementary functions for your calculator.

At the end of each program, the program’s checksum and size in bytes
are listed to help make sure you typed the program in correctly. (The
checksum is a binary integer that uniquely identifies the program
based on its contents). To make sure you’ve keyed the program in
correctly, store 1t 1n 1ts name, put the name in level 1, then execute
the BYTES command ((«g)(MEMORY) E¥ TE%Z). This returns the
program’s checksum to level 2, and 1ts size in bytes to level 1. (If

you execute BY TES with the program object in level 1, you’ll get a
different byte count.)

The programs in this chapter are also included in the online
information of the Program Development Link software for developing
HP 48 programs on computers. This software lets you load these
programs from the online information into your HP 48 through its
serial port.

The examples 1n this chapter assume the HP 48 is in 1ts 1nitial,
default condition—they assume you haven’t changed any of the
HP 48 operating modes. (To reset the calculator to this condition, see

“Memory Reset” 1n chapter 5 of the HP 4§ User’s Guide.)
Each program listing in this chapter gives the following information:

m A brief description of the program.

m A syntax diagram (where needed) showing the program’s required
inputs and resulting outputs.

Discussion of special programming techniques in the program.
Any other programs needed.

The program hsting.

The program’s checksum and byte size.

Programming Examples 2-1



Fibonacci Numbers

This section includes three programs that calculate Fibonacci
numbers:

m FIB1 is a user-defined function that is defined recursively (that is,
its defining procedure contains its own name). FIBI 1s short.

m FIB2 is a user-defined function with a definite loop. It’s longer and
more complicated than FIBI, but faster.

m FIBT calls both FIB1 and FIB2 and calculates the execution time
of each subprogram.

FIB! and FIB2 demonstrate an approach to calculating the nth
Fibonaccl number F,, where:

FU:OJ Flzla Fn: n—l""Fn—E

FIB1 (Fibonacci Numbers, Recursive Version)

Level 1 — Level 1

i1 — Fn

Techniques used in FIB1

m IFTE (if-then-else function). The defining procedure for FIB1
contains the conditional function IFTE, which can take 1ts

argument either from the stack or in algebraic syntax.
m Recursion. The defining procedure for FIBI is written in terms of

FIB1, just as Fy is defined in terms of F,_; and F_,.

2-2 Programming Examples



FIB1 program listing

Program: Comments:
* Defines local variable n.
'IFTE =1 The defining procedure, an
la algebraic expression. If n <1,

CIRl Cm=1 3 +F IELcp—Sa Frn=n,else Fn=F, _{+F,_,.

(ENTER) (') FIB1 (sTO]) Stores the program in F/B1.

Checksum: # 41467d (press (") F 1.
Bytes: 113.5

Example: Calculate Fg. Calculate Fip using algebraic syntax.

First calculate Fg.

(VAR ' 1 - E
6 . EIkl MJW [PPAFR[IOPAE] ]

- 0
mm-ﬁ

FIB2 (Fibonacci Numbers, Loop Version)

Level 1 — Level 1

i1 —r Fn

Techniques used in FIB2

= IF ... THEN ... ELSE ... END. FIB2 uses the program-structure
form of the conditional. (F7BI uses IFTE.)

Programming Examples 2-3



m START ... NEXT (definite loop). To calculate F,, FIB2 starts

with Fg and F; and repeats a loop to calculate successive values of
F;.

FiB2 program listing

Program: Comments:
F I Creates a local variable structure.
IF n 1 = If n <1,
THEM n then F,, = n;
ELSE * otherwise ...
41 Puts Fg and F; on the stack.
2 I From 2 to n does the following
START loop:
LaLIF Copies the latest F (initially Fy).
ROT Gets the previous F (initially Fy).
+ Calculates the next F (initially
Fs).
HEST Repeats the loop.
=hAFE DREOF Drops I, ;.
E R Knds the ELSE clause.

Ends the defining procedure.

(ENTER) (") FIB2 (STO) Stores the program in FIB2.

Checksum: # 51820d (press () 'FI1EZ
Bytes: R0

Example: Calculate Fg and Fp.

Calculate Fg.

2-4 Programming Examples



Calculate Fqj.

L 3
mmﬁ

FIBT (Comparing Program-Execution Time)

FIB1 calculates intermediate values F; more than once, while FIB2
calculates each intermediate F; only once. Consequently, FIB2 is
faster. The difference in speed increases with the size of n because the
time required for FIBI grows exponentially with n, while the time
required for FIB2 grows only linearly with n.

FIBT executes the TICKS command to record the execution time of
FIB1 and FIB2 for a given value of n.

Level 1 — Level 3 Level 2 Level 1

n - F, FIB1 TIME: z  FIB2 TIME: z

Techniques used in FIBT
m Structured programnming. F/B7T calls both FIB! and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

m Labelng output. FIBT tags each execution time with a descriptive
message.

Required Programs

m FIBI (page 2-2) calculates F', using recursion.
m FIB2 (page 2-3) calculates F,, using looping.

Programming Examples 2-5



FIBT program listing

Program: Comments:
DLIF TICES SHWAF FIBL Copies n, then executes FIBI,
CLEE TICKES S recording the start and stop time.
sl ~ i O R M Calculates the elapsed time,

converts 1t to a real number, and
converts that number to seconds.
Leaves the answer returned by

FIBI1 1n level 2.

"FIRl TIME" +THI Tags the execution time.

FOT TICKS SWAP FIBG Executes FIB2, recording the
TICKS start and stop time.

mbAF DEOF SHAF Drops the answer returned by
- R B19E s FIB2 (FIBI returned the same

answer). Calculates the elapsed
time for FIB2 and converts to

seconds.
"EIBRZ TIME"™ =+THI: Tags the execution time.
(ENTER) (* ) FIBT (sTO) Stores the program in FIBT'.

Checksum: F# 22248d
Bytes: 135

Example: Calculate Fy3 and compare the execution time for the two
methods.

Select the VAR menu and do the calculation.

VAR { HOME ¥
SRR
1 3 .'-I-.'-I-I-.;;-I-Z-I-'.-T-T-T-:-.'-:—E-T-'.'-'.'-:-Z-Z-Z-Z-[-Z-Z-Z-Z-Z-Z- 3 . 233
2: FIBlL TIME: ZZ.3896..
1: FIBZ TIME:
.BB8Z77539H6e
FIET | FIER | FIEL | MJM | PRAFE [IOPAF

Fi3 is 233. FIB2 takes fewer seconds to execute than FIBI (far fewer
if n is large). (The times required for the calculations depend on the

2-6 Programming Examples



contents of memory and other factors, so you may not get the exact
times shown above.)

Displaying a Binary Integer
This section contains three programs:

B PAD 1s a utility program that converts an object to a string for
right-justified display.

m PRESERVE 1s a utility program for use in programs that change
the calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN
bases. It calls PAD to show the displayed numbers right-justified,
and 1t calls PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string, and if the string contains fewer
than 22 characters, adds spaces to the beginning of the string till the
string reaches 22 characters.

When a short string i1s displayed with DISP, it appears left-justified:
1ts first character appears at the left end of the display. By adding
spaces to the beginning of a short string, PAD moves the string to
the right. When the string (including leading spaces) reaches 22
characters, 1t appears right-justified: its last character appears at the
right end of the display. PAD has no effect on longer strings.

Level 1 — Level 1

object —> "  object"

Techniques used in PAD

e WHILE ... REPEAT ... END (indefinite loop). The WHILE
clause contains a test that executes the REPEAT clause and tests

again (if true) or skips the REPEAT clause and exits (if false).

Programming Examples 2-7



m String operations. PAD demonstrates how to convert an object

to string form, count the number of characters, and combine two
strings.

PAD program listing
Program: Comments:

+5TE Makes sure the object 1s in string
form. (Strings are unaffected by
this command.)

HHILE Repeats 1f the string contains
DUF SIZE 22 9 tewer than 22 characters.
FEFEAT Loop-clause adds a leading space.
T SHAF 4+
E R Ends loop.
(ENTER) (") PAD (sTO) Stores the program in PAD.

Checksum: # 38912d
Bytes: 61.9

PAD 1s demonstrated i1n the program BDISP.

PRESERVE (Save and Restore Previous Status)

PRESERVE stores the current calculator (flag) status, executes a
program from the stack, and restores the previous status.

Level 1 — Level 1
& program > — result of program
'program name' — result of program

2-8 Programming Examples



Techniques used in PRESERVE

m Preserving calculator flag status. PRESERVE uses RCLF (recall
flags) to record the current status of the calculator m a binary

integer, and STOF (store flags) to restore the status from that
binary 1nteger.

m Local-variable structure. PRESERVE creates a local variable
structure to briefly remove the binary integer from the stack. Its
defining procedure simply evaluates the program argument, then
puts the binary integer back on the stack and executes STOF.

m Error trapping. PRESERVE uses IFERR to trap faulty program
execution on the stack and to restore flags. DOERR shows the error

1if one occurs.

PRESERVE program listing

Program: Conmunents:

ECLF Recalls the list of two 64-bit
binary mtegers representing the
status of the 64 system flags and
64 user flags.

+ Stores the hist 1n local variable f.
Begins the defining procedure.
IFERF Starts the error trap.
E'WAL Executes the program placed on
the stack as the level 1 argument.
THEH If the program caused an error,
¥ STOF ERRFM DOERRE restores flags, shows the error,
and aborts execution.
E L Ends the error routine.
FOSTOF Puts the list back on the stack,
then restores the status of all
flags.

Ends the defining procedure.

(ENTER) (") PRESERVE (STO) Stores the program in
PRESERVE.

Programming Exampies 2-9



Checksum: # 7284d
Bytes: 71

PRESERVE 1s demonstrated in the program BDISP.

BDISP (Binary Display)

BDISP displays a real or binary number in HEX, DEC, OCT, and
BIN bases.

Level 1 — Level 1
F# N — #n
n —F n

Technigues used in BDISP

IFERR ... THEN ... END (error trap). To accommodate
real-number arguments, BDISP includes the command R—B
(real-to-binary). However, this command causes an error if the
argument 1s already a binary integer. To maintain execution if

an error occurs, the R—B command 1s placed 1nside an IFERR
clause. No action is required when an error occurs (since a binary

number is an acceptable argument), so the THEN clause contains no
commands.

Enabling LASTARG. In case an error occurs, the LASTARG

recovery feature must be enabled to return the argument (the
binary number) to the stack. BDISP clears flag —55 to enable this.

FOR ... NEXT loop (definite loop with counter). BDISP executes

a loop from 1 to 4, each time displaying n (the number) in a
different base on a different line. The loop counter (named j in this
program) is a local variable created by the FOR ... NEXT program

structure (rather than by a + command), and automatically
incremented by NEXT.

Unnamed programs as arguments. A program defined only by 1ts
# and # delimiters (not stored in a variable) is not automatically
evaluated, but 1s placed on the stack and can be used as an

2-10 Programming Examples




argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments:

5 BDISP contalns a main program argument and a call to
PRESERVE. This program argument goes on the stack and 1s
executed by PRESERVE.

o BDISP also contains four program arguments that “customize”

the action of the loop. Each of these contains a command to

change the binary base, and each iteration of the loop evaluates

one of these arguments.

When BDISP creates a local variable for n, the defining procedure
1s an unnamed program. However, since this program 1s a defining
procedure for a local variable structure, it s automatically executed.

Required Programs

m PAD (page 2-7) expands a string to 22 characters so that DISP
shows 1t right-justified.

m PRESERVE (page 2-8) stores the current status, executes the main
nested program, and restores the status.

BDISP program listing

Program: Comments:

2 Begins the main nested program.
ErLIF Makes a copy of n.

-55 CF Clears flag —55 to enable
LASTARG.
IFEEH Begins error trap.

Rk Converts n to a binary integer.
THEH If an error occurs, do nothing (no
EH commands in the THEN clause).
* T Creates a local variable n and
begins the defining program.

CLLCD Clears the display.

# BIM ® Nested program for BIN.

# DCT # Nested program for OCT.

# DEC = Nested program for DEC.

% HE® & Nested program for HEX.

Programming Examples 2-11



Program: Comments:

1 4 Sets the counter limits.
FOR Starts the loop with counter j.
ENHL. Executes one of the nested base
~programs (initially for HEX).
n +TH Makes a string showing »n in the
current base.
FAL: Pads the string to 22 characters.
1 ISR Displays the string in the 7th line.
HEST ' ~ Increments 7 and repeats the
-loop.
. Ends the defining program.
= FEEEZE Freezes the status and stack
areas.
Ends the main nested program.
FEESERYE Stores the current flag status,

executes the main nested
program, and restores the status.

(ENTER) (") BDISP (570) Stores the program in BDISP.

Checksum: # 18055d
Bytes: 191

Example: Switch to DEC base, display #100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the
current base 1s DEC and enter # 100.

1: # 1E|El-:|
CHE: | DEC [ 0T [ EIN [ K3E [ B+

@@ 100 (ENTER)

2-12 Programming Examples



Execute BDISP.

¥ 64k

# 1686d

# 1440

# 1188168hH

EDIZP| FIES JPREZE| PAD | FIET | FIES

Although the main nested programdleft the calculator in BIN base,
PRESERVE restored DEC base. To check that BDISP also works for
real numbers, try 144.

EDIZP] FiE3 [PREZE[ PHD | FIET | FIES

Press (CANCEL]} to return to the stack display.

Programming Examples 2-13



Median of Statistics Data

This section contains two programs:

m %ZTILE returns the value of a specified percentile of a list.

n MEDIAN uses %TILE to calculate the median of the current
statistics data.

(%ZTILE and MEDIAN are included in the TEACH function’s
EXAMPLES directory. See the entry for TEACH in chapter 3.)

%TILE (Percentile of a List)

%TILE sorts a list, then returns the value of a spe(:lﬁed percentile of
the hst. For example typing + [list > 56 and pressing 5T I1L E returns
the median (50th percentile) of the list.

Level 2 Level 1 —> Level 1

{ list} n — nt" percentile of sorted list

Techniques used in %TILE

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that mmteger; for a noninteger, FLOOR and CEIL return successive
integers that bracket the noninteger.

m SORT. The SORT command sorts the list elements into ascending
order.

2-14 Programming Examples



%TILE program listing
Program:
SWAFP ZOET

CiF SIZE
I + FHOT 1dg » %

-2 F:I
si=
e FLOOE GET
A
¢ CEIL GET
(ENTER) (") %TILE (STO)

Checksum: # 42718d
Bytes: 99

Comments:

Brings the list to level 1 and sorts
it.

Copies the list, then finds its size.
Calculates the position of the
specified percentile.

Stores the center position in local
variable p.

Begins the defining procedure.

Makes a copy of the list.

Gets the number at or below the

center position.
Moves the hist to level 1.

Gets the number at or above the
center position.

Calculates the average of the two
numbers.

Ends the defining procedure.

Stores the program in % TILE.

Example: Calculate the median of the list { 8 315 2 }.

(:,Ju 33 1 52 [ENTER]

Programming Examples 2-15



MEDIAN (Median of Statistics Data)

MEDIAN returns a vector containing the medians of the columns of
the statistics data. Note that for a sorted list with an odd number of
elements, the median 1s the value of the center element; for a list with
an even number of elements, the median 1s the average value of the
elements just above and below the center.

Level 1 — Level 1

Techniques used in MEDIAN

m Arrays, hists, and stack elements. MEDIAN extracts a column of
data from 3 DAT in vector form. To convert the vector to a list,

MEDIAN puts the vector elements on the stack and combines them
into a list. From this list the median 1s calculated using %ZTILE.

The median for the mth column is calculated first, and the median
for the first column 1s calculated last. As each median 1s calculated,
ROLLD 1s used to move it to the top of the stack.

After all medians are calculated and positioned on the stack, they're
combined mto a vector.

m FOR ... NEXT (definite loop with counter). MEDIAN uses a loop

to calculate the median of each column. Because the medians are
calculated in reverse order (last column first), the counter 1s used to
reverse the order of the medians.

Required Program

m BTILE (page ) sorts a list and returns the value of a specified
percentile.

2-16 Programming Examples



MEDIAN program listing

Program:

RCLE

LUF S1ZE

e DREOF

-+

= Tt I

'EDHTY TEHM

1 1m
FOR 3

OB DREOF

mo*LIsT
26 STILE

J ROLLE

MEXT

Comments:

Puts a copy of the current
statistics matrix 2 DAT on the
stack.

Puts the list { n m } on the
stack, where n i1s the number of
rows 1n L DAT and m 1s the
number of columns.

Puts n and m on the stack, and
drops the list size.

Creates local variables for s, n,
and m.

Begins the defining procedure.

Recalls and transposes J DAT.
Now n 1s the number of columns
in 2 DAT and m 1s the number of

rows. (To key in the Z character,
press ((#)(X), then delete the
parentheses.)

Specifies the first and last rows.

For each row, does the following:
Extracts the last row in Y DAT.
Inmitially this i1s the mth row,
which corresponds to the mth
column in the original V' DAT.
(To key in the X— mmmand

Puts the row elements on the
stack. Drops the index list { n }.
Makes an n-element list.

Sorts the list and calculates its
median.

Moves the median to the proper
stack level.

Increments 3 and repeats the
loop.

Programming Examples 2-17



Program: Comments:

o FHERY Combines all the medians into an
m-element vector.

= BTOE Restores 2 DAT to its previous
value.

Ends the defining procedure.

(ENTER) (") MEDIAN (STO) Stores the program in MEDIAN .

Checksum: # 57504d
Bytes: 140

Example: Calculate the median of the following data.

18 12]
[ 4 7
3 2
11 1|
[31 48
20 17.

There are two columns of data, so MEDIAN will return a two-element
vector.

Enter the matrix.

() (MATRIX]

18 (ENTER) 12 (ENTER) (V)

4 (ENTER) 7 (ENTER}

3 (ENTER) 2 (ENTER]

11 (ENTER) 1 (ENTER)

31 (ENTER) 48 (ENTER)

20 (ENTER) 17 (ENTER)

(ENTER)

Store the matrix in Y DAT, and calculate the median.
[STAT] -

(ﬂi]i_ ,,_ .................... o ..:'.'- '-'-51};-;55;;__-_-_3_;3;: EEIIE &% Eﬁﬂgg

(VAR]} t"li'“ ______ ! _______ ! ______ T _______ H

2-18 Programming Examples



Expanding and Collecting Completely

This section contains two programs:

m MULTI repeats a program until the program has no effect on 1ts
argument.

m £XCO calls MULTI to completely expand and collect an algebraic.

MULTI (Multiple Execution)

(;1ven an object and a program that acts on the object, MULTYT
applies the program to the object repeatedly until the program no
longer changes the object.

Level 2 Level 1 — Level 1

object

l

object & program >

result

Techniques used in MULTI

m DO ... UNTIL ... END (indefinite loop). The DO clause contains
the steps to be repeated. The UNTIL clause contains the test that
repeats both clauses again (if false) or exits (if true).

m Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed
repeatedly 1s stored 1n a local variable.

It’s convenient to store an object in a local variable when you don’t
know beforehand how many copies you’ll need. An object stored in
a local variable 1s simply put on the stack when the local variable is
evaluated. MULTI uses the local variable name to put the program
argument on the stack and then executes EVAL to execute the
program.

Programming Examples 2-19




MULTI program listing

Program: Comments:

= Creates a local variable p that
contains the program from level 1.
Begins the defining procedure.

(1] Begins the DO loop clause.
CLIF Makes a copy of the object, now
n level 1.
e EWAL Applies the program to the
object, returning its new version.
CLIF Makes a copy of the new object.
=T Moves the old version to level 1.
HTIL Begins the DO test clause.
SHME Tests whether the old version and
the new version are the same.

EHL Ends the DO structure.
Ends the defining procedure.

(ENTER) (') MULTI (STO) Stores the program in MULTI.

Checksum: # 34314d
Bytes: H6

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

EXCO repeatedly executes EXPAN on an algebraic until the algebraic
doesn’t change, then repeatedly executes COLCT until the algebraic
doesn’t change. In some cases the result will be a number.

Expressions with many products of sums or with powers can take
many iterations of EXPAN to expand completely, resulting in a long
execution time for FXCO.

2-20 Programming Examples



Level 1 — Level 1

‘algebraic’

l

‘algebraic’

'algebraic’ — z

Techniques used in EXCO

m Subroutines. EXCO calls the program MULTI twice. It is more
efficient to create program MULTI and simply call its name twice
than write each step in MULTI two times.

Required Programs

m MULTI (page 2-19) repeatedly executes the programs that EXCO
provides as arguments.

EXCO program listing

Program: Comments:

# BEAFHM 3 Puts a program on the stack as
the level 1 argument for MULTI .
The program executes the

EXPAN command.

FILILT I Executes EXPAN until the
algebraic object doesn’t change.
# COLCT = Puts another program on the

stack for MULTI. The program

executes the COLCT command.
MULTI Executes COLCT until the

algebraic object doesn’t change.

(ENTER) (') EXCO (STO) Stores the program in EXCO.

Checksum: # 48008d
Bytes: 65.9

Programming Examples 2-21




Example: Expand and collect completely the expression:

3z(4y + 2) + (8z — bz)*

Enter the expression.

Q3XE ¢ | 3ex(4=7+2)+(82K-5
%% 3 % X 5 (%)Z&J VECTE[MATE[ LIZT [ WYP [ REAL [EAZE
> 022

'ENTER |

Select the VAR menu and start the program.

15 "B4*n"E+12%n*Y -7 *%n
¥LHEIEL"E
ExC0 [HULTITZ0AT [MEUA[:TILE [EMZR

Minimum and Maximum Array Elements

This section contains two programs that find the minimum or
maximum element of an array:

m MNX uses a DO ... UNTIL ... END (indefinite) loop.
a MNX2 uses a FOR ... NEXT (definite) loop.

MNX (Minimum or Maximum Element—Version 1)

MNX finds the minimum or maximum element of an array on the
stack.

Level 1 s Level 2 L.evel 1

[[ array ]] - [ array 1] Zoin OF Zm ax

2-22 Programming Examples



Techniques used in MNX

m DO ... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag
test that determines whether to repeat the sort instructions.

m User and system flags for logic control:

User flag 10 defines the sort: When flag 10 1s set, MNX finds the
maximum element; when flag 10 is clear, it finds the minimum
element. You determine the state of flag 10 at the beginning of
the program.

System flag —64, the Index Wrap Indicator flag, determines when
to end the sort. While flag —64 is clear, the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag —64 is automatically set, and the sort loop ends.

m Nested conditional. An IF ... THEN ... END conditional is nested
in the DO ... UNTIL ... END conditional, and determines the

following:

[

Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.
The sense of the comparison of elements (either < or >) based on

the status of flag 10.

m Custom menu. MNX builds a custom menu that lets you choose
whether to sort for the minimum or maximum element. Key 1,

labeled #f% | sets flag 10. Key 2, labeled “ [I#i *, clears flag 10.

m Logical function. MNX executes XOR, (ezclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

Programming Examples 2-23



MNX program listing

Program:

L
£ 1@ SF COMT # °
FERSUEEC I
1@ CF O COMT % 5

THEHU

"Sort for MRS o MIFSY
FROMFPT

1 GETI

Pl
=0T EOT GETI

4 ROLL DUPZ

LR

IMTIL
-Gd FE7

E ML
SHARF DEOF 8 MERL

(ENTER) () MNX (sTO)

2-24 Programming Examples

Comments:

Defines the option menu. | MH=
sets flag 10 and continues
execution. HMIH clears flag 10
and continues execution.

Displays the temporary menu and
a prompt rmessage.

Gets the first element of the array.
Begins the DO loop.

Puts the index and the array n
levels 1 and 2, then gets the new
array element.

Moves the current mimimum or

maximum array element from
level 4 to level 1, then copies

both.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element 1s either less
than the current maximum or
greater than the current
minimum, swaps the new element

into level 1.
Drops the other element off the
stack.

Begins the DO test-clause.
Tests if flag —64 1s set—f the
index reached the end of the
array.

Ends the DO loop.

Swaps the index to level 1 and
drops it. Restores the last menu.

Stores the program in MNX .



Checksum: # 57179d
Bytes: 210.5

Example: Find the maximum element of the following matrix:

12 56
45 1
9 14

Enter the matrix.

() (MATRIX) 1= [[ 12 56 1

12 (ENTER) 56 (ENTER) (V) [ 49 1 ]

45 (ENTER]} 1 (ENTER) : _F.? lj 1]

9 (ENTER) 14 (ENTER) '

(ENTER)

Select the VAR menu and execute MNX.

(VAR) ke Sort for MAX or MIN?

1
1: [[ 12 56 ]
[ 45 1 ]

[ 9 14 1]
R [MINT [ [ [

Find the maximum element.

dadaddEEEIARELLEL I EEEI LRI
YTITEL 1T ....-.........l...l-........
daaraaa e e e a e
Atiitdna -'a Y I I e
tranans - T KRR
Y I e YT 0 AR
T T IO I e
PR Lo O oo o e O
R L L I e
PR R L o T i e

%E L[ 12 56 1 [ 43 l.

MR ERCD [MULTH Z06T [MEDIA] < TILE

MNX2 (Minimum or Maximum Element—Version 2)

(s1ven an array on the stack, MNX2 finds the minimum or maximum
element 1n the array. MNX2 uses a different approach than MNX: it
executes OBJ— to break the array into individual elements on the
stack for testing, rather than executing GETI to index through the
array.

Level 1 — Level 2 Level 1

[[ array ]] — [[ array ]] Zmax OF L4,

Programming Examples 2-25



Techniques used in MNX2

FOR ... NEXT (definite loop). The initial counter value is 1. The
final counter value 1s nm — 1, where nm 1s the number of elements
in the array. The loop-clause contains the sort instructions.

User flag for logic control. User flag 10 defines the sort: When flag
10 1s set, MNX2 finds the maximum element; when flag 10 1s clear,
1t finds the minimum element. You determine the status of flag 10

at the beginning of the program.

Nested conditional. An IF ... THEN ... END conditional 1s nested
in the FOR ... NEXT loop, and determines the following:

Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

-1 The sense of the comparison of elements (either < or >) based on
the status of flag 10.

Logical function. MNX2 executes XOR (ezclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

Custom menu. MNX2 builds a custom menu that lets you choose
whether to sort for the minimum or maximum element. Key 1,

labeled. Fifis , sets flag 10. Key 2, labeled M 1K , clears flag 10.

2-26 Programming Examples



MNX2 program listing

Program: Comments:

R & I Defines the temporary option

£ 18 SF COMT = % menu. A= sets flag 10 and
L continues execution. H1H
£ 10 CF COMT = =3 clears flag 10 and continues
execution.

THEHRLI Displays the temporary menu

"mort for MAS o MIRNYT and a prompting message.
FROMFT

LR Ok Copies the array. Returns the

individual array elements to
levels 2 through nm+1, and
returns the list containing n
and m to level 1.

| Sets the maitial counter value.

SHAF OB Converts the list to individual
elements on the stack.

DROF 1 - Drops the list size, then

calculates the final counter
value (nm — 1).

FORE Starts the FOR ... NEXT
loop. |
DLiF 2 Saves the array elements to be

tested (1nitially the last two
elements). Uses the last array
element as the current
minimum Oor maximum.

IF Tests the combined state of
1| FSTY OHOR the relative value of the two
elements and the status of flag
10.
THEH It the new element is either
SHAF less than the current
ERITY maximuim or greater than the

current minimum, swaps the
new element into level] 1.

Programming Examples 2-27



Program: Comments:

[EOF Drops the other element off
the stack.
MEST Ends the FOR ... NEX'T
loop.
A MEML Restores the last menu.
(ENTER) (') MNX2 (STO) - Stores the program in MNX2.

Checksum: # 12277d
Bytes: 200.5

Example: Use MNX2 to find the minimum element of the matrix
from the previous example:

12 56
45 1
9 14

Enter the matrix (or retrieve it from the previous example).

() (MATRIX)
12 (ENTER) 56 (ENTER) (V)

45 (ENTER) 1 (ENTER}
9 (ENTER) 14 (ENTER)

(ENTER l
Select the VAR menu and execute MNX?Z2.

(VAR) ME&s

Find the minimum element.

2: [[1256 1 [ 45 L,
TANiZ] NG | 400 MULTI| ZUAT JPECTH

2-28 Programming Examples



Applying a Program to an Array

APLY makes use of list processing to transform each element of an
array according to a desired procedure. The input array must be
numeric, but the output “array” may be symbolic. Since arrays
cannot actually contain symbolic objects, a convention for symbolic
“nseudo-arrays” is used. Each row of elements is grouped into a single
list and the set of rows is grouped into a list. For example, a 2 x 2

pseudo-array looks like this:

i 4 element;; elementso *
L elements; elemenisg &

The procedure applied to each element must be a program that takes
exactly one argument (i.e. the element) and returns exactly one result
(i.e. the transformed element}.

Level 2 Level 1 — Level 1

[ array]l] <« program>»  —  [[ array]] or {{ array }}

Techniques used in APLY

m Manipulating Meta-Objects. Meta-objects are composite objects like
arrays and lists that have been disassembled on the stack. APLY

illustrates several approaches to manipulating the elements and
dimensions of such objects.

m Application of List Processing. APLY makes use of DOSUBS
(although DOLIST might also have been used) to perform the

actual transformation of array elements.

m Using an IFERR ... THEN ... ELSE ... END Structure. The

entire symbolic pseudo-array case is handled within a error
structure—triggered when the —ARRY command generates an error
when symbolic elements are present.

m Using Flags. User flag 1 is used to track the case when the input
array 1s a vector.

Programming Examples 2-29




APLY program listing

Program:

=UWEHE QR OB DEOF

I+ RULL

EL=E GEOFZ a3 DB+

=L el gaBEde DREORE =

SWFF OYER 2 +
ROl <L IST

1 o DOSUBS

2-30 Programming Examples

Comments:

Store the array and program in
local variables.

Begin the main local variable
structure.

Make sure the flag 1 1s clear to
begin the procedure.

Retrieve the dimensions of the
array.

Determine 1if the array is a
vector.

It array 1s a vector,set flag 1 and
add a second dimension by
treating the vector as an n x 1
matrix.

Disassemble the original vector,
leaving the element count, n, 1n
level 1.

Roll the elements up the stack
and bring the “matrix” -
dimensions of the vector to level
1.

If array 1s a matrix, clean up
the stack and decompose the
matrix mto its elements, leaving
1ts dimension list on level 1.
Duplicate the dimension list

and compute the total number
of elements.

Roll up the element count and
combine all elements 1nto a list.
Note that the elements 1n the
list are 1n row-major order.
Recalls the program and uses 1t
as an argument for DOSUBS
(DOLIST works in this case as

well). Result is a list of
transtormed elements.



Program:
OEd+ 1 + REOLL

IFEEE

[F 1 F&Y
THER OB+ DEOF +L1%T

E D HREEY

THEH
I:l E: .__| ot
[F 1 FC7C
THEH DROP
EHD = R

# 1,
ik 1

Mo +LIST

'mELn-1a+1 0 EYHL

Comments:

Disassembles the result list and
brings the array dimensions to
level 1.

Begins the error-trapping
structure. Its purpose is to find
and handle the cases when the
result list contains symbolic

elements.
Was original array a vector?’

If the original array was a
vector, then drop the second
dimension (1) from the
dimension list.

Convert the elements into a
array with the given dimensions.
If there are symbolic elements
present, an error will be
generated and the error-clause
which follows will be executed.
Begin the error clause.

Put the array dimensions on
levels 2 and 1. If the array i1s a
vector, level 1 contains a 1.

Is original array a matrix? Clear
flag 1 after performing the test.
Drop the number of matrix
elements.

Store the array dimensions In
local variables.

Begin local variable structure
and mitiate FOR. NEX'T loop
for each row.

Collect a group of elements 1nto
a row (a list).

Computes the number of
elements to roll so that the next

" row can be collected.

Repeat loop for the next row.

Gather rows into a list, forming
a list of lists (symbolic
pseudo-array).

Programming Examples 2-31



Program: Comments:
£ Close the local variable
EMD 1 CF structure and end the
IFERR. THEN. END structure.
Clear flag 1 before exiting the
program.

(ENTER) (") APLY (STO) Stores the program in APLY .

Checksum: # 49768d
Bytes: 319

Example: Apply the function, f(x) = Ax3 — 7 to each element z of
the vector [ 3-24-81].

QD 3EPA) 24P 8 AT |1 { { 'ef=A-7' ¥ { '-

(ENTER) i%*ﬁ)-?: LRI 'E4*HT

B3 DA ® T QO ENTER) 28 oTQles)s
s + v 'A=f 3o

(VAR) HEL Y MEHE | PRAE [HEER]FIEOM ] RPLY [ *FPN.

Converting Between Number Bases

nBASE converts a positive decimal number (z) into a tagged string

representation of the equivalent value in a different number base ().
Both £ and 6 must be real numbers. nBASE automatically rounds

both arguments to the nearest integer.

Level 2 Level 1 — Level 1

X b — X baseb. " string”

2-32 Programming Examples



Techniques used in nBASE

s String Concatenation and Character Manipulation. nBASE makes
use of several string and character manipulation techniques to build

up the result string.

a Tagged Output. nBASE labels (“tags”) the output string with 1ts
original arguments so that the output is a complete record of the

comimand.

s Indefinite Loops. nBASE accomplishes most of its work
using indefinite loops—both DO..UNTIL..END and

WHILE..REPEAT. END loops.

nBASE program listing

Program: Comments:
1 CF & RHD SHAF 8 EHD Clear flag 1 and round both
arguments to integers.
* b Store the base and number 1n

local variables.
Begin the outer local variable
structure.

n LOG b LOG - Computes the ratio of the
common logarithms of number
and base.

16 RHE Rounds result to remove
imprecision 1n last decimal
place.

IF n B8 Find the mteger part of log
ratio, recall the original number,
and initialize the counter
variable k for use 1n the

DO..UNTIL loop.

+ 1 om k Store the values in local
varlables.

Programming Examples 2-33



Program:

Fall

'm' EYAL b i
kOEWAL -

LRz MO

D Tt =T

1 S L I =
THEM 2% + [CHE

EHD +

Y1 ST+

2-34 Programming Examples

Comments:

Begin 1nner local variable
structure, enter an empty string
and begin the
DO..UNTIL.. END loop.
Compute the decimal value of
the (¢ — k)th position in the
string.

Makes a copy of the arguments
and computes the decimal value
still remalning that must be
accounted for by other
positions.

Is the remainder zero and
m > b7

If the test is true, then set flag
1.

Store the remainder 1n m.

Compute the number of times
the current position-value goes
into the remaining decimal
value. This 1s the “digit” that
belongs in the current position.
Is the “digit” > 107

Then convert the digit into a
alphabetic digit (such as A, B,
C, ... ).

Append the digit to the current
result string and increment the
counter variable k.



Program:
UMTIL 'm' EVAHL B8 ==

E L
IF 1 k=70
THEH & +

LMHILE 1 'k' EWHL
— E| -

el

REFEHT & +
1 'kE' STU+

15

ML
EMHD

(D) nBASE

Checksum: # 36427d
Bytes: 416.9

Comments:

Repeat the DO..UNTIL loop
until m = 0 (i.e. all decimal
value has been accounted for).
Is flag 1 set? Clear the flag after
the test.

Then add a placeholder zero to
the result string.

Begin WHILE..REPEAT loop
to determine if additional
placeholder zeros are needed.
Loop repeats as long as 7 # k.
Add an additional placeholding
zero and increment k before

repeating the test-clause.
End the

WHILE..REPEAT..END loop,
the IF.. THEN..END structure,
and the inner local variable
structure.

End the outermost

IF. THEN.ELSE. END
structure and create the label
string and tag the result string
using the original arguments.

Stores the program in nBASE.

Example: Convert 10005 to base 23.

1000 (ENTER) 23 HEREE

1: 1HB8 baseZ3: "1kB"
N | PPAF [HEDIAJFIEON] APLY [*EPN

Programming Examples 2-35



Verifying Program Arguments

The two utility programs in this section verify that the argument to a
program 1s the correct object type.

m NAMES verifies that a list argument contains exactly two names.

m VFY verifies that the argument is either a name or a list containing
exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object
content.

NAMES (Check List for Exactly Two Names)

If the argument for a program 1s a list (as determined by VFY),
NAMES verifies that the list contains exactly two names. If the list
does not contain exactly two names, an error message appears in the
status area and program execution is aborted.

Level 1 — Level 1
{ valid list } —
{ invalid list } — (error message in status area)

Techniques used in NAMES

m Nested conditionals. The outer conditional verifies that there are
two objects in the list. If so, the inner conditional verifies that both
objects are names.

m Logical functions. NAMES uses the AND command in the inner
conditional to determine 1t both objects are names, and the NOT
command to display the error message if they are not both names.

2-36 Programming Examples



NAMES program listing
Program:
IF

BI=ES

SWAF TYFE & SHME
ML

HUT
THEM
"List nesds two nanmes’
DOERE
EHE

EL=E

RISRISY

"ITllegsl list =1ze
MIERE

E D

(ENTER) (") NAMES (STO)

Comments:

Starts the outer conditional
structure.

Returns the n objects in the list
to levels 2 through (n + 1), and
returns the list size n to level 1.
Copies the list size and tests 1f
it’s 2.

If the size 1s 2, moves the
objects to levels 1 and 2, and
starts the inner conditional
structure.

Tests if the first object 1s a
name: returns 1 if so, otherwise
0.

Moves the second object to level
1, then tests if it 1s a name
(returns 1 or 0).

Combines test results: Returns
1 if both tests were true,
otherwise returns 0.

Reverses the final test result.

If the objects are not both
names, displays an error
message and aborts execution.

Ends the inner conditional
structure.

If the list size is not 2, drops the

list size, displays an error
message, and aborts execution.

Ends the outer conditional.

Stores the program in NAMES.

Programming Examples 2-37



Checksum: # 40666d
Bytes: 141.5

NAMES 1s demonstrated in the program VFY .

VFY (Verify Program Argument)

VEY verilies that an argument on the stack is either a name or a list
that contains exactly two names.

Level 1 Level 1

!

‘name’
{ valid list }

{ invalid list } (and error message in status area)

'name’
{ valid list }
{ invalid list }

U

invalid object invalid object (and error message in status area)

Techniques used in VFY

Utility programs. VFY by itself has little use. However, it can be
used with minor modifications by other programs to verify that
specific object types are valid arguments.

CASE ... END (case structure). VFY uses a case structure to
determine 1f the argument i1s a list or a name.

Structured programming. If the argument is a list, VFY calls
NAMES to verify that the list contains exactly two names.

Local variable structure. VF'Y stores its argument in a local
variable so that 1t can be passed to NAMES if necessary.

Logical function. VFY uses NOT to display an error message.

Required Programs

NAMES (page 2-36) verifies that a list argument contains exactly
two names.

2-38 Programming Examples




VFY program listing

Program: Comments:

LLIF Copies the original argument
to leave on the stack.

[ THI Removes any tags from the
argument for subsequent
testing.

- Tal=1y Stores the argument 1n local

variable argm.
Begins the defining procedure.

ASE Begins the case structure.
argm TYRPE 5 SAME Tests if the argument is a list.
THEH If so, puts the argument back
at-am MAMES on the stack and calls NAMES
=Rl to verify that the hst 1s valid,
then leaves the CASE
structure.
aram TYFE & SHAME HOT Tests if the argument 1s not a
THEH name. If so, displays an error
tblet Ao o 1ist ! message and aborts execution.
LOERE
E R
E Ends the CASE structure.
Ends the defining procedure.
(ENTER) (') VFY (STO) Enters the program, then

stores 1t 1n VY.

Checksum: # 36796d
Bytes: 139.5

Example: Execute VFY to test the validity of the name argument
BEN . (The argument is valid and is simply returned to the stack.)

(M) BEN [ENTER] ] 'EEI"-I’
_MFY [MAME JtiHHE [ MW | EHCD JHULTIE

Programming Examples 2-39



Example: Execute VFY to test the validity of the list argument
{ BEN JEFF SARAH }. Use the name from the previous example.

then enter the names JEFF and SARAH and convert the three names
to a list.

(7) JEFF (ENTER)
(") SARAH (ENTER)
3 (P RG) LIET =] 2T

Execute VFY . Since the list contains too many names, the error
message 1s displayed and execution is aborted.

1+ + BEN JEFF SHARAH
_UF [HAHETHNERTHNG [ E2CD [HULTI

llegal list =ize

I
4
3
"
1

i BEN JEFF SHRAH
_UF[NAHEMNGE[ TN | ERC0 [HULT)

Converting Procedures from Algebraic to RPN

This section contains a program, — RPN, that converts an algebraic

expresslon 1nto a serles (list) of objects in equivalent RPN order. Note
that —RPN 1s a program provided with the TEACH comma,nd You

call ﬁ“d it in the EXAMPLES directory by pressing ERAM FEREE
Level 1 — Level 1
'symb’ — { objects }

Techniques used in —RPN

m Recursion. The —RPN program calls itself as a subroutine. This
powerful technique works just like calling another subroutine as long
as the stack contains the proper arguments before the program calls
itself. In this case the level 1 argument 1s tested first to be sure that
1t 1s an algebraic expression before RPN 1s called again.

2-40 Programming Examples



s Object Type-Checking. —RPN uses conditional branchimmg that
depends on the object type of the level 1 object.

a Nested Program Structures. —RPN nests IF ... THEN ... END
structures inside FOR ... NEXT loops inside a IF ... THEN ...

ELSE ... END structure.

s List Concatenation. The result list of objects in RPN order 1s
built by using the ability of the + command to sequentially
append additional elements to a list. This is a handy technique for
gathering results from a looping procedure.

—RPN program listing
Program:

N amE
1F DOYEH
THEH + n f

1 m
LR 1

IF DUF TYFE 2 SHAME
THEM +EFH

EHD m REOLLD

HEsT

IF DUF TYFE o =

THEM 1 -=»LI%T

EHD

Comments:

Take the expression apart.

If the argument count 1s
nonzero, then store the count
and the function.

Begins local variable defining
procedure.

Begins FOR ... NEXT loop,
which converts any algebraic
arguments to lists.

Tests whether argument 1s an
algebraic.

If argument 1s an algebraic,
convert 1t to a list first.

Roll down the stack to prepare
for the next argument.
Repeat the loop for the next

argument.
Tests to see if level 1 object 1s a

l1st.
If not a list, then convert 1t to
one

Fnds the IF ... THEN ...
END structure.

Programming Examples 2-41



Program: Comments:

IFm 1l = Tests to see if there 1s more
than one argument.
THEM & n Combine all of the arguments
STHET A+ into a list.
HEST
EMD § + Append the function to the end

of the list.
End the local variable defining

procedure.

ELEE 1 =LIET =WAR DROP For functions with no
arguments, converts to a simple
list.

E R End the IF ... THEN . ..

ELSE ... END structure.

Checksum: # 28598d
Bytes: 189.5

Example: Convert the following algebraic expression to a series of
objects iIn RPN syntax: 'FA#COSCBE+CCADaa—km2r,

JAME)BHU®ROICEH |1: £ABCD « I + COS

¥ 5 3" -}
DﬂQHEJ &) X (0) 3 (ENTER) [MERZ | PPAF [MEDIA[FIEDN] APLY | +RPH

2-42 Programming Examples




Bessel Functions

This section contains a program, BER, that calculates the real part
Ber, (x) of the Bessel function J;, (2e37/*). When n = 0,

(=2t (2/2)°

Ber(z) = 1

212 412
Level 1 — Level 1
Z — Ber(z)

Techniques used in BER

m Local variable structure. At its outer level, BER consists solely of a
local variable structure and so has two properties of a user-defined

function: it can take numeric or symbolic arguments from the stack,
or it can take arguments in algebraic syntax. However, because

BER uses a DO ... UNTIL ... END loop, its defining procedure
is a program. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike user-defined functions, BER 1s not
differentiable.

m DO ... UNTIL ... END loop (indefinite loop with counter). BER

calculates successive terms in the series using a counter variable.
When the new term does not differ from the previous term to within

the 12-digit precision of the calculator, the loop ends.

m Nested local variable structures. The outer structure is consistent
with the requirements of a user-defined function. The inner
structure allows storing and recalling of key parameters.

Programming Examples 2-43



BER program listing

Program:
IRt & | B L |
> s J =L
31
ARID
-4 BT ROl R SES O
S LEE=T bR IRt IR WL B
EW AL
SV 3t ST+
DUF "=y ST
IIHTIL
D
AR
(ENTER) (") BER (STO)

Checksum: # 36388d
Bytes: 200.5

Example: Calculate Ber(3).

2-44 Programming Examples

Comments:

Creates local variable z.
Begins outer defining procedure.

Enters z /2, the first counter
value, and the first term of the

serles, then creates local
varlables.

Begins inner defining procedure.
Begins the loop.

Recalls the old sum and
calculates the new sum.

Increments the counter.
Stores the new sum.

Ends the loop clause.

Tests the old and new sums.
Ends the loop.

Recalls the sum.

Ends inner defining procedure.
Ends outer defining procedure.

Stores the program in BER.

1: ~ —. 22138824936
CBEF | i [NAME [FNG2 ] i [ECD

1+ .ralr31l8014
CEER | UFY [NAME [MINt2] MK [ENcD



Animation of Successive Taylor’s Polynomials

This section contains three programs that manipulate graphics objects
to display a sequence of Taylor’s polynomials for the sine function.

m SINTP draws a sine curve, and saves the plot in a variable.

m SETTS superimposes plots of successive Taylor’s polynomials on
the sine curve plot from SINTP, and saves the resulting graphics
objects in a list.

B TSA uses the ANIMATE command to display in succession each
graphics object from the list built in SETTS.

SINTP (Converting a Plot to a Graphics Object)

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable. Make sure your

calculator 1s in Radians mode.

Techniques used in SINTP

a Programmatic use of PLOT commands. SINTP uses PLOT
commands to build and display a graphics object.

Programming Examples 2-45



SINTP program listing

Program: Comments:
'SIMOEYY STER Stores the expression for sin z 1n
FEQ).
FUMCTION "—Zen ' =M Sets the plot type and z- and
LR MED YEHG y-axis display ranges.
—-& 2 YEHG
ERASE DEAL Erases PICT, then plots the
| eXPpression.
FICT ROL '"SIHTY STO Recalls the resultant graphics

object and stores it in SINT.

(ENTER) (") SINTP (STO) Stores the program i SINTP.

Checksum: # 1971d
Bytes: 91.5

SINTP 1s demonstrated in the program 7TSA.

SETTS (Superimposing Taylor’s Polynomials)

SETTS superimposes successive Taylor’s polynomials on a sine curve
and stores each graphics object 1 a list.

Techniques used in SETTS

m Structured programming. SETTS calls SINTP to build a sine curve
and convert it to a graphics object.

m FOR ... STEP (definite loop). SETTS calculates successive

Taylor’s polynomials for the sine function i a definite loop. The
loop counter serves as the value of the order of each polynomial.

m Programmatic use of PLOT commands. SETTS draws a plot of
each Taylor’s polynomial.

m Manipulation of graphics objects. SETTS converts each Taylor’s
polynomial plot into a graphics object. Then 1t executes + to
combine each graphics object with the sine curve stored in SINT,
creating nine new graphics objects, each the superposition of a

2-46 Programming Examples



Taylor’s polynomial on a sine curve. SETTS then puts the nine new
graphics objects, and the sine curve graphics object itself, in a hst.

SETTS program listing
Program:
SIHTF

1 17 FOE

'SIMCEAY TEY o m THYLHE

STER EREASE DEHH
FICT ECL SIHT +

(ENTER) (') SETTS (STO)

Checksum: # 28102d
Bytes: 133.5

Comments:

Plots a sine curve and stores the
graphics object in SINT.

Sets the range for the FOR loop
using local variable n.

Plots the Taylor’s polynomial of
order n.

Returns the plot to the stack as a

graphics object and executes + to
superimpose the sine plot from
SINT.

Increments the loop counter n by
2 and repeats the loop.

Puts the sine curve graphics
object on the stack, then builds a
list containing it and the nine
graphics objects created 1n the

loop. Stores the list 1n T'SL.

Stores the program in SETTS.

SETTS 1s demonstrated in the program TSA.

TSA (Animating Taylor’s Polynomials)

TSA displays in succession each graphics object created in SETTS.

Techniques used in TSA

m Passing a global variable. Because SETTS takes several minutes to
execute, T'SA does not call SETTS. Instead, you must first execute
SETTS to create the global variable T'SL containing the list of

Programming Examples 2-47



graphics objects. TSA simply executes that global variable to put
the list on the stack.

a FOR ... NEXT (definite loop). T'SA executes a definite loop to
display 1n succession each graphics object from the list.

TSA program listing

Program: Comments:

TSl OB+ Puts the list 7°SL on the stack
and converts it to 10 graphics
objects and the hist count.

L4 BB #E 3+ .5 8 o+ Set up the parameters for
ANIMATE.

AMIMATE Displays the graphics in
successlon.

11 DRECOFH Removes the graphics objects and

hist count from the stack.

(ENTER) (") TSA (ST0) Stores the program in TSA.

Checksum: # 59350d
Bytes: 96.5

Example: Execute SETTS and TSA to build and display in
succession a series of Taylor’s polynomial approximations of the sine
function.

Set Radians mode and execute SETTS to build the hst of graphics
objects. (SETTS takes several minutes to execute.) Then execute

TSA to display each plot 1in succession. The display shows T.SA 1n

progress.

| TEL | Tin JFETTE] ZIMT | Ef |SINTP

2-48 Programming Examples



Press (CANCEL) to stop the animation. Press (¢q)(RAD) to restore

Degrees mode.

Programmatic Use of Statistics and Plotting

This section describes a program PIE you can use to draw pie charts.
PIE prompts for single variable data, stores that data in the statistics
matrix Y DAT, then draws a labeled pie chart that shows each data

point as a percentage of the total.

Techniques used in PIE

Programmatic use of PLOT commands. PIE executes XRNG and
YRNG to define z- and y-axis display ranges in user units, and
executes ARC and LINE to draw the circle and individual slices.

Programmatic use of matrices and statistics commands.

Manipulating graphics objects. PIE recalls PICT to the stack and
executes GOR to merge the label for each slice with the plot.

FOR ... NEXT (definite loop). Each slice is calculated, drawn, and
labeled 1n a definite loop.

CASE ... END structure. To avoid overwriting the circle, each
label is offset from the midpoint of the arc of the slice. The offset
for each label depends on the position of the slice in the circle. The
CASE ... END structure assigns an offset to the label based on the

position of the shce.

Preserving calculator flag status. Before specifying Radians mode,
PIFE saves the current flag status in a local variable, then restores
that status at the end of the program.

Nested local variable structures. At different parts of the process,
intermediate results are saved in local variables for convenient recall
as needed.

Temporary menu for data input.

Programming Examples 2-49



PIE program listing

Program:

RCLF + flags

mHL

"ELICE" E+

LERRT CLE

- ii--

"DREENT COMT 33

THERL

"keg wualuss dnto
. DR 2 s DI

e art S prer ok am . "
T

EREH=E 1 121 =EMG

1 e WEMG LD

"Hlease wait, . s
Drawimg Fie Chart®
I I

Y T Pl ¥ B T S S
aixeh

ST KL, L
il Tl -

i 1B %

O i A

Do sMUM #

2-50 Programming Examples

Comments:

Recalls the current flag status
and stores it 1n variable flags.

Sets Radians mode.

Defines the input menu: Key 1
executes 2.+ to store each data

point in 2 DAT, key 3 clears
2 DAT, and key 6 continues
program execution after data
entry.

Displays the temporary menu.

Prompts for inputs.
# represents the newline

character (((?»)(«)) after you

enter the program on the stack.

Erases the current PICT and
sets plot parameters.

Displays “drawing” message.

Draws the circle.

Displays the empty circle.

Recalls the statistics data

matrix, computes totals, and
calculates the proportions.
Converts the proportions to
percentages.

Stores the percentage matrix in
prents.

Multiplies the proportion
matrix by 27, and enters the
initial angle (0).



Program:
* EroR angle

prop SlobE OB
DEOF SEAF
FOE ©

CEEmy S0 oo n GET
ST+

'argle

amale D0 anals SIH
R+ 28 ¥ OVER +
_IHE

FICT ECL

angle prop n GET

= - DR DHF

=SWAF STH EG

I:: Eﬁ EI 4 .:: ,-:f _:i =~

2 T}
5 I
(F1 1 L8
L S ¥ I

|
—

7 i Pl

T

=
S
s
Ei
)

=
o
A
13

Comments:
Stores the angle matrix in prop

and angle 1n angle.

Sets up 1 to m as loop counter
range.

Begins loop-clause.

Puts the center of the circle on
the stack, then gets the nth
value from the proportion
matrix and adds 1t to angle.
Computes the endpoint and
draws the line for the nth slice.

Recalls PICT to the stack.

For labeling the slice, computes
the midpoint of the arc of the
slice.

Starts the CASE structure to
test angle and determine the

offset value for the label.

From 0 to 1.5 radians, doesn’t
oftset the label.

From 1.5 to 4.4 radians, oflsets
the label 15 user units left.

From 4.4 to 5 radians, offsets
the label 3 units right and 2
units up.

Ends the CASE structure.

Programming Examples 2-51



Program:
rrCntE m GET
1 RHD
*oTR TET o+

1 +GROE

SR DUP FICT ST

+L G
HEHT
{3 FYIEM

= @ MEHU

(ENTER) (') PIE (STO)

Checksum: # 1177d
Bytes: 765

Comments:

(Gets the nth value from the
percentage matrix, rounds it to
one decimal place, and converts
it to a string with “%”
appended.

Converts the string to a
graphics object.

Adds the label to the plot and
stores the new plot.

Displays the updated plot.

Ends the loop structure.
Displays the finished plot.

Restores the original flag status.
Restores the previous menu.

(You must first press (CANCEL)
to clear the plot.)

Stores the program in PIE.

Example: The inventory at Fruit of the Vroom, a drive-in fruit
stand, includes 983 oranges, 416 apples, and 85 bananas. Draw a pie
chart to show each fruit’s percentage of total inventory.

2-52 Programming Examples

HEH values into SLICE.,
EE W restarts program.

3
?
FLICE]  JELEAR] |  |DRAK




Clear the current statistics data. (The prompt is removed from the
display.) Key in the new data and draw the pie chart.

Press (CANCEL) to return to the stack display.

Trace Mode

This section contains two programs, a ENTER and SENTER, which
together provide “trace mode” for the HP 48 using an external printer.
To turn on “trace mode,” set flag —63 and activate User mode. To
turn off “trace mode,” clear flag —63 or turn off User mode.

Techniques used in «cENTER and SENTER

m Vectored ENTER. Setting flag —63 and activating User mode turns
on vectored ENTER. When vectored ENTER 1s turned on and
variable a ENTER exists, the command-line text 1s put on the stack

as a string and a ENTER i1s evaluated. Then, if variable GENTER

exists, the command that triggered the command-line processing is
put on the stack as a string and SENTER 1s evaluated.

«ENTER program listing

Program: Comments:
FE Prints the command line text,
A =ME then converts the string to an

object and evaluates 1t.

(ENTER) (') «ENTER (STO) Stores the program in « ENTER.
(Press (a) ((#) A to type . You

must use this name.)

Programming Exampies 2-53



Checksum: # 51789d
Bytes: 25.9

BGENTER program listing

Program: Comments:
FE1 DEGE Prints the command that caused
FRSTE the processing, then drops it and

prints the stack in compact form.

(ENTER) (') SENTER (ST0) Stores the program in GENTER.
(Press (a) (¢#)B to type 8. You

must use this name.)

Checksum: # 37631d
Bytes: 28

Inverse-Function Solver

This section describes the program ROOTR, which finds the value of

r at which f(z) = y. You supply the variable name for the program
that calculates f(x), the value of y, and a guess for z (in case there
are multiple solutions).

Level 3 Level 2 Level 1 — Level 1

'function name' y Xguess — X

Techniques used in ROOTR

s Programmatic use of root-finder. ROOTR executes ROOT to find
the desired z-value.

m Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

2-54 Programming Examples



ROOTR program listing

Prograin:
o Fhane wWualue Houess
sguess A TEMFD =T
# #HTEMF tnams
g lige - &
' TEMF
i L 65

P ILT

'RTERPY FLUEG

(ENTER) (' ) ROOTR (ST0)

Checksum: # 13007d
Bytes: 163

Comments:

Creates local variables.

Begins the defining procedure.

Creates variable XTEMP (to be

solved for).
Enters program that evaluates

flz) —y.

Enters name of unknown variable.
Enters guess for XTEMP.

Solves program for XTEMP.
Ends the defining procedure.
Purges the temporary variable.

Stores the program in ROOTR.

Example: Assume you often work with the expression
3.7¢° + 4.5z + 3.92 + 5 and have created the program X—FX to

calculate the value:

-3
i

-:::: .'EI' -:-:i -:IE' .:':h _h'n

:+4“H%ﬁf

Rl N P TE v B

You can use ROOTR to calculate the inverse function.

Example: Find the value of z for which X —FX equals 599.5. Use a

guess 1n the vicinity of 1.

Start by keying in X — FX:

@) @@ x B (D 3.7
D) x ()3 (1) 45 (x)x ()2
+) 3.9 (x) x (+) 5 (ENTER)

i HOME }

P oy '3.?*$h3+4.5*
wOE+ g, GEw+h! #
KOOTR|EEMT [ EMT]Z0AT| PIE | TZL

Programming Examples 2-55



Store the program in X — F X, then enter the program name, the
y-value 599.5, and the guess 1, and execute ROOTR:

(D X—FX @)
) w]

+FH [ROOTR|EENT |ENT| ZOAT

Animating a Graphical Image

Program WALK shows a small person walking across the display.
It animates this custom graphical image by incrementing the image
position in a loop structure.

Techniques used in WALK

m Custom graphical image. (Note that the programmer compiles
the full information content of the graphical image before writing
the program by building the image interactively in the Graphics
environment and then returning it to the command line.)

m FOR ... STEP (definite loop). WALK uses this loop to animate
the graphical image. The ending value for the loop 1s MAXR.
Since the counter value cannot exceed MAXR, the loop executes
indefinitely.

2-56 Programming Examples



WALK program listing

Program:

CREOE 2 15 E=Swid

14861 5RR1CEHA L 4RE8E 266
SAAAC T 1 BHASEYd HESERE
Glokgsenld l vnsE8E

<+ iyl

ERAZE L O# Qd # Bd &
o TR

Lo# oud # Z25d s

HILCT UVEE walk GROE

2 FiH&R FUORE 1

1 1=1 MUl RE+E

# 2od 2 =LIST

FICT OVER wallk GHOE
FICT FEOT walk LELE

2 =STER

(ENTER) (") WALK (ST0)

Checksum: # 18146d
Bytes: 240.5

Comments:

Puts the graphical image of the
walker 1n the command line.
(Note that the hexadecimal
portion of the graphics object i1s a
continuous integer EZEE . |
2288, The linebreaks do not
represent spaces.)

Creates local variable walk
containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the
stack and turns on the first
image. This readies the stack and
PICT for the loop.

Starts the loop to generate
horizontal coordinates
indefinitely.

Computes the horizontal
coordinate for the next 1mage.
Specifies a fixed vertical
coordinate. Puts the two
coordinates In a list.

Displays the new image, leaving
its coordinates on the stack.
Turns off the old image, removing

1ts coordinates from the stack.
Increments the horizontal
coordinate by 5.

Stores the program in WALK .

Programming Examples 2-57



Example: Send the small person out for a walk.

Press (CANCEL ) when you think the walker’s tired.

2-568 Programming Examples



Command Reference

This chapter contains an alphabetical listing of the programmable
commands and functions available on the HP 48. The listings include

the following information:

a brief definition of what the command or function does
a stack diagram showing the arguments it requires (if any)

the keys to press to gain access to 1t
any flags that may affect how 1t works
additional information about how 1t works and how to use it

an example of 1ts use
related commands or functions

The next few pages explain how to read the stack diagrams in the
command reference, how commands are alphabetized, and the
meaning of the command classifications at the upper right corner of

each stack diagram.

How to Read Stack Diagrams

Fach entry in the command reference includes a stack diagram. This
1s a table showing the arguments that the command, function, or
analytic function takes from the stack and the results that 1t returns
to the stack. The “—” character in the table separates the arguments
from the results. The stack diagram for a command may contain more

than one “argument — result” line, reflecting all possible combinations
of arguments and results for that command.

Command Reference 3-1



Consider this example:

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having
the given cosine.

{ }
Level 1 — Level 1
z — arc cos z
'symb' — 'ACOS(symb)'

This diagram indicates that the analytic function ACOS (Arc Cosine)
takes a single argument from level 1 and returns one result (to level

1). ACOS can take either a real or complex number or an algebraic
object as 1ts argument. In the first case, it returns the numeric
arccosine; 1n the second, it returns the symbolic arccosine expression of
the argument.

Some commands affect a calculator state—a mode, a reserved variable,
a flag, or a display— without taking any arguments from the stack or
returning any results to the stack. No stack diagrams are shown for
these commands.

Parallel Processing with Lists

Commands that can use the parallel list processing feature are
denoted by the “{}” symbol located above the stack diagram. This
feature 1s discussed in greater detail in Appendix G.

As a rule-of-thumb, a command can use parallel list processing if all
the following are true:

m The command checks for valid argument types. Commands that
apply to all object types, such as DUP, SWAP, ROT, and so forth,

do not use parallel list processing.
m The command takes exactly one, two, three, four, or five arguments,
none of which may itself be a hist. Commands, such as —LIST,

3-2 Command Reference



that have an indefinite number of arguments do not use parallel hst

processing.
s The command isn’t a programming branch command (IF, FOR,

CASE, NEXT, and so forth).

The HP 48 also has a few commands (PURGE and DELKEYS

are examples) that have list processing capability built into their
definitions, and so do not also use the parallel list processing feature.

How Commands Are Alphabetized

Commands appear 1n alphabetical order. Command names that
contain special (non-alphabetic) characters are organized as follows:

m For commands that contain both special and alphabetic characters:
A special character at the start of a command name 18 zgnored.
Therefore, the command *xH follows the command GXOR and

precedes the command HALT.
A special character within or at the end of a command name is

considered to follow “Z” at the end of the alphabet. Therefore,
the command R—B follows the command RSD and precedes the
command R—C.
m Commands that contaln only special characters appear at the end of
the dictionary.

Classification of Operations

The command dictionary contains HP 48 commands, functions, and
analytic functions. Commands are calculator operations that can

be executed from a program. Functions are commands that can be
included in algebraic objects. Analytic functions are functions for
which the HP 48 provides an inverse and a derivative. There are also
four non-programmmable operations (DBUG, NEXT, SST, and SST|)

that are included with the programmable commands as a convenience
because they are used interactively while programming.

The definitions of the abbreviations used for argument and result
objects are contained in the following table, “Terms Used 1n Stack
Diagrams.” Often, descriptive subscripts are added to convey more
information.

Command Reference 3-3



Terms Used in Stack Diagrams

Term Description
| aTyg Argument.
[ array ] Real or complex vector or matrix.
[ C-array ] Complex vector or matrix.
date Date in fornm MM.DDYYYY or DD MMYYYY.
{ dvm } List of one or two array dimensions (real numbers).
' global’ Global name.
grob Graphics object. 1
HMS A real-number time or angle in hours-minutes-seconds
format.
{ hst } List of objects.
local Local name.
[[ matriz 1] Real or complex matrix.
n Or m - Positive integer real number (rounded if noninteger).

Mport:NaMepbackup | Backup identifier.

:Nport:Rlibrary Labrary identifier.

#n Binary integer.

{ #n #m } Pixel coordinates. (Uses binary integers.)

'name’ Global or local name.

0by Any object.

PICT | Current graphics object.

£ program > Program.

[ R-array ] Real vector or matrix.

“string" Character string.

'symd Expression, equation, or name treated as an algebraic.

T/F Test result used as an ergument: zero (false) or non-zero
(true)real number.

0/1 Test result returned by a command: zero (false) or one
(true).

time Time in form HH.MMSSs.

[ vector ] Real or complex vector.

L Or ¥y Real number.

r_unit Unit object, or a real number treated as a dimensionless
object.

(x,y) Complex number in rectangular form, or user-umt
coordinate.

2 Real or complex number.

3-4 Command Reference



ABS

ABS

Absolute Value Function: Returns the absolute value of 1ts

argument.

L)

Level 1

|
-
D
<
122
—

X

!

(x,¥)
x_unit

[ array ]

'symb'

Lol
s
g

'ABS(symb)'

Keyboard Access:

(MTH) (NXT) EMEL  HBS

(MTH) YECTIE HES
Affected by Flags: Numerical Results (—3)

Remarks: ABS has a derivative (SIGN) but not an inverse.

In the case of an array, ABS returns the Frobenius (Euclidean) norm
of the array, defined as the square root of the sum of the squares of

the absolute values of all n elements. That 1s,

\Z 2|2

=1

Related Commands: NEG, SIGN

Command Reference 3-5



ACK

Acknowledge Alarm Command: Acknowledges the oldest past-due
alarm.

Keyboard Access: («)(TIME) iHi Epi

Affected by Flags: Repeat Alarms Not Rescheduled (—43),
Acknowledged Alarms Saved (—44)

Remarks: ACK clears the alert annunciator if there are both no

other past-due alarms and no other active alert sources (such as a low
battery condition).

ACK has no effect on control alarms. Control alarms that come due
are automatically acknowledged and saved in the system alarm list.

Related Commands: ACKALL

ACKALL

Acknowledge All Alarms Command: Acknowledges all past-due
alarms.

Keyboard Access: («)(TIME) Hl EH HiER

Affected by Flags: Repeat Alarms Not Rescheduled (—43),
Acknowledged Alarms Saved (—44)

Remarks: ACKALL clears the alert annunciator if there are no other
active alert sources (such as a low battery condition).

ACKALL has no effect on control alarms. Control alarms that come

due are automatically acknowledged and saved in the system alarm
list.

Related Commands: ACK

3-6 Command Reference



ACOS

ACOS

Arc Cosine Analytic Function: Returns the value of the angle having
the given cosine.

{}
Level 1 — Level 1
Z — arc cos z
'symb' — 'ACOS(symb)’

Keyboard Access: (+)(ACOS)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: TFor a real argument z in the domain —1 < z < 1, the
result ranges from 0 to 180 degrees (0 to = radians; 0 to 200 grads).

A real argument outside of this domain is converted to a complex
argument z = z + 01, and the result 1s complex.

The inverse of COS is a relation, not a function, since COS sends
more than one argument to the same result. The inverse relation for
COS 1is expressed by ISOL as the general solution

i ik tminln il ] ll-t

‘e lxRCOR S g ETELL ]

The function ACOS is the inverse of a part of COS, a part defined by
restricting the domain of COS such that 1) each argument 1s sent to
a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of COS are called the principal values of the
inverse relation. ACOS in its entirety 1s called the principal branch of
the inverse relation, and the points sent by ACOS to the boundary of

the restricted domain of COS form the branch cuts of ACOS.

The principal branch used by the HP 48 for ACOS was chosen because
it is analytic in the regions where the arguments of the real-valued
inverse function are defined. The branch cut for the complex-valued
arc cosine function occurs where the corresponding real-valued
function is undefined. The principal branch also preserves most of the
important symmetries.

Command Reference 3-7



ACOS

The graphs below show the domain and range of ACOS. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side

of a cut. The graph of the range shows where each side of each cut is
mapped under the function.

These graphs show the inverse relation '=1*ACOS(Z »+2%wemi’* for
the case s1=1 and n/=0. For other values of s! and n!, the vertical
band 1n the lower graph is translated to the right or to the left. Taken

together, the bands cover the whole complex plane, which is the
domain of COS.

View these graphs with domain and range reversed to see how the
domain of COS is restricted to make an inverse function possible.
Consider the vertical band in the lower graph as the restricted domain

2= itzy yr. COS sends this domain onto the whole complex plane in
the range W = Y4, v* = COSCx, y» in the upper graph.

Related Commands: ASIN, ATAN, COS, ISOL

Domain; Z = (X,y)

T ”
T — LAt Ll

00T

e -

Range: W = (u,v) = ACOS(x,y)

)—
______{_________
—
41ttt}

HETfirrrrrri

|

Branch Cuts for ACOS(Z)

3-8 Command Reference



ACOSH

ACOSH

Inverse Hyperbolic Cosine Analytic Function: Returns the inverse
hyperbolic cosine of the argument.

{}
Level 1 — Level 1
Z — acosh z
'symb’ — 'ACOSH(symb)’

Keyboard Access: (WTH) HYE" ALOSH
Affected by Flags: Principal Solution ( 1) Numerical Results (—3)

Remarks: For real arguments |z| < 1, ACOSH returns the complex
result obtained for the argument (z, 0).

The inverse of ACOSH is a relation, not a function, since COSH sends
more than one argument to the same result. The inverse relation for

COSH 1s expressed by ISOL as the general solution

'l EHUOTH S v+ Z2¥mEL#nl

The function ACOSH is the inverse of a part of COSH, a part defined
by restricting the domain of COSH such that 1) each argument 1s sent
to a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of COSH are called the principal values ot
the inverse relation. ACOSH i1n its entirety 1s called the principal
branch of the inverse relation, and the points sent by ACOSH to the
boundary of the restricted domain of COSH form the branch cuts of

ACOSH.

The principal branch used by the HP 48 for ACOSH was chosen
because 1t 1s analytic in the regions where the arguments of the

real-valued 1nverse function are defined. The branch cut for the
complex-valued hyperbolic arc cosine function occurs where the
corresponding real-valued function is undefined. The principal branch
also preserves most of the important symmetries.

The graphs below show the domain and range of ACOSH. The graph
of the domain shows where the branch cut occurs: the heavy solid line

Command Reference 3-9



ACOSH

marks one side of the cut, while the feathered lines mark the other
side of the cut. The graph of the range shows where each side of the
cut 1s mapped under the function.

These graphs show the inverse relation 's1#ACOSHEF v +Zsysi®nl
for the case s/=1 and nI=0. For other values of s/ and nI, the
horizontal half-band in the lower graph is rotated to the left and
translated up and down. Taken together, the bands cover the whole
complex plane, which is the domain of COSH.

View these graphs with domain and range reversed to see how the
domain of COSH is restricted to make an inverse function possible.
Consider the horizontal half-band in the lower graph as the restricted

domain & = {zs y». COSH sends this domain onto the whole complex
plane in the range W = {uy v = COSH{z, y» in the upper graph.

Related Commands: ASINH, ATANH, COSH, ISOL

- !
MUy rr00000111

I

Branch Cut for ACOSH(2)

3-10 Command Reference



ADD

ADD

Add List Command: Adds corresponding elements of two lists or
adds a number to each of the elements of a list.

{}
Level 2 Level 1 — Level 1
{ list; } { list, } — { list. ..+ }
1 fist } Obfy o0 —ist — { listiesuie }
ObJn o0 —iist i list } — { listigsyit }

Keyboard AcCcess: [M TH ] ', i e

Affected by Flags: None

Remarks: ADD executes the + command once for each of the
elements in the list. If two lists are the arguments, they must have
the same number of elements as ADD will execute the + command
once for each corresponding pair of elements. If one argument is a
non-list object, ADD will attempt to execute the + command using
the non-list object and each element of the list argument, returning
the result to the corresponding position in the result. (See the +
command entry to see the object combinations that are defined.) If
an undefined addition 1s encountered, a Ead Aroument Tupe error
results.

Related Commands: ALIST, IILIST, XLIST

Command Reference 3-11



ALOG

Common Antilogarithm Analytic Function: Returns the common
antilogarithm; that is, 10 raised to the given power.

{}
Level 1 — Level 1
Z — 107
'symb' — 'ALOG(symb)’

Keyboard Access: (+)(107)
Affected by Flags: Numerical Results (—3)
Remarks: For complex arguments:
100%Y) = €% cos cy + 1 ¥ sin cy
where ¢ = In 10.

Related Commands: EXP, LN, LOG

AMORT

Amortize Command: Amortizes a loan or investment based upon the
current amortization settings.

{}
Level 1 — Level 3 Level 2 Level 1
n — principal interest balance

Keyboard Access: («)(SOLVE) TuH  HBEUE
Affected by Flags: Financial Payment Mode (—14)

3-12 Command Reference




AND

Remarks: Values must be stored in the TVM variables (I% YR, PV,
PMT, and PYR). The number of payments n is taken from level 1

and flag —14.
Related Commands: TVM, TVMBEG, TVMEND, TVMROO'T

AND

And Function: Returns the logical AND of two arguments.

1}
Level 2 Level 1 — Level 1
H#n, 5 — FEng
"string " "string, " — "stringy”
T/F 'symb’ — 'T/F AND symb'
'symb’ T/F — 'symb AND T/F'
'symb, 'symb-, ' — 'symb, AND symb,'

Keyboard Access:

PRG) TEET (NXT) HAHE

Affected by Flags: Numerical Results (—3), Binary Integer Wordsize
(—5 through —10)

Remarks: When the arguments are binary integers or strings, AND
does a bit-by-bit (base 2) logical comparison.

m An argument that is a binary integer is treated as a sequence of bits
as long as the current wordsize. Each bit in the result 1s determined
by comparing the corresponding bits (b:t; and bit3) in the two
arguments as shown 1n the following table:

Command Reference 3-13



AND

bitq bita | bity AND biio
0 0 0
0 1 0
1 0 0
1 1 1

m An argument that 1s a string is treated as a sequence of bits, using 8

bits per character (that is, using the binary version of the character

code). The two string arguments must have the same number of
characters.

When the arguments are real numbers or symbolics, AND simply
does a true/false test. The result is 1 (true) if both arguments are
non-zero; it 1s & (false) if either or both arguments are zero. This test
1s usually done to compare two test results.

If either or both of the arguments are algebraic expressions, then the
result 1s an algebraic of the form 'symb, HHD symbo'. Execute =ML
(or set flag —3 before executing AND) to produce a numeric result
from the algebraic result.

Related Commands: NOT, OR, XOR

ANIMATE

Animate Command: Displays graphic objects in sequence.

Level n+1...Level 2 Level 1 — Level 1
groby ...grob, My robs —  Ssame stack
groby ...grob, {n{ #X #£Y } delay rep } — same stack

Keyboard Access:

Affected by Flags: None

3-14 Command Reference



APPLY

Remarks: ANIMATE displays a series of graphics objects (or
variables containing them) one after the other. You can use a hst to

specify the area of the screen you want to animate (pixel coordinates
#X and #Y), the number of seconds before the next grob is displayed
(delay), and the number of times the sequence is run (rep). If rep 1s
set to 0, the sequence is played one million times, or until you press

(CANCEL ).

If you use a list on level 1, all parameters must be present.

The animation displays PICT while displaying the grobs. The grobs
and the animate parameters are left on the stack.

Example: The following program draws half a cylinder and rotates it:
# PARSURFACE © *COSCRY Y "SIMO=2 Y &
= TEL
1188 I + S=EHG ERASE DERW FICT RHCL

I & 259 5 SED0 0BJ+ AMIMATE DREUFM

This program also illustrates the use of SEQ and PARSURFACE.
You can adjust the increment value used with SEQ (8 is used here)
to change the number of images drawn by the program, or to use less
Memory. |

APPLY

Apply to Arguments Function: Creates an expression from the
specified function name and arguments.

Level 2 Level 1 — Level 1

{ symb, ... symb, } ‘'name' — ‘'name(symb, ... symby)'

Keyboard Access: («)(SYMBOLIC) (NXT)}HFFEL ¥

Command Reference 3-15



APPLY

Affected by Flags: None

Remarks: A user-defined function f that checks its arguments for
special cases often can’t determine whether a symbolic argument z
represents one of the special cases. The function f can use APPLY to
create a new expression 'f {1 '. If the user now evaluates "',
1s evaluated before f, so the argument to f will be the result obtained
by evaluating z.

The algebraic syntax for APPLY is this:
'HFFLY Cnames symbya ... x SYmby 2

When evaluated in an algebraic expression, APPLY evaluates the
arguments (to resolve local names in user-defined functions) before
creating the new object.

Example: The following user-defined function Asin is a variant

of the built-in function ASIN. Asin checks for special numerical
arguments. If the argument on the stack i1s symbolic (the second case
in the case structure), Asin uses APPLY to return the expression
'‘H=intargument ',

*  Frolment

CASE

Fod THEM aroument AZSIH EMD
C B¢ M G oargument TYRE POS
THEM "MHFFLY CH=ims araument 3 EVAL EHD

taraament==1 " THEHN ‘w2t ERD
'argument==-1"' THEH '~ms2' EHD
argumsnt HS DM

- -

(ENTER) (") Asin (STO)

Related Commands: QUOTE, |

3-16 Command Reference



ARC

ARC

Draw Arc Command: Draws an arc in PICT counterclockwise from
rg, to rg,, with 1ts center at the coordinate specified 1n level 4 and its

radius specified in level 3.

Level 4 Level 3 Level 2 Level 1 — Level 1
(:B: y) L radius Loy L0 —
{#n #m} #nradius 1:91 2;.92 —

Keyboard Access: (PRG) FILT  HEL
Affected by Flags: Angle Mode ( 17 and —18)

The setting of flags —17 and —18 determine the interpretation of zy,
and zp,, (degrees, radians, or grads).

Remarks: ARC always draws an arc of constant radius in pixels,
even when the radius and center are specified in user-units, regardless
of the relative scales in user-units of the z- and y-axes. With user-unit
arguments, the arc starts at the pixel specified by (z, y) + (a, b),
where (a, b) is the rectangular conversion of the polar coordinate
(Zradius; Zg,). The resultant distance in pixels from the starting point
to the center pixel is used as the actual radius, r'. The arc stops at
the pixel specified by (r', zg.,).

If 2y, = zg,, ARC plots one point. If [zg, — zg,| > 360 degrees, 27
radians, or 400 grads, ARC draws a complete circle.

Example: In Degrees mode, with the z-axis display range (XRNG)
specified as —6.5 to 6.5, the command sequence Cid. 82 1 8 F8 HEL
draws an arc counterclockwise from 0 to 90 degrees with a constant
radius of 10 pixels.

Related Commands: BOX, LINE, TLINE

Command Reference 3-17



ARCHIVE

Archive HOME Command: Creates a backup copy of the HOME
directory (that is, all variables), the user-key assignments, and the

alarm catalog in the specified backup object (3 nport & name) in
independent RAM.

Level 1 — Level 1
Ny ot NAMe —
1O name —

Affected by Flags: 1/0 Device (—33), I/ O Messages (— 39) if the

argument 1s : I1: name

Remarks: The specified port number can be ( through 33. The port

used (except 0) must be configured as independent RAM. (See FREE.)
An error will result if there 1s not enough independent RAM in the
specified port to copy the HOME directory.

If the backup object 1s # I2 name, then the copied directory 1s
transmitted in binary via Kermit protocol through the current I1/0
port to the specified filename.

To save flag settings, execute RCLF and store the resulting list in a
variable.

Related Commands: RESTORE

3-18 Command Reference




ARRY—

ARG

Argument Function: Returns the (real) polar angle ¢ of a complex
number Lz, y .

{}
Level 1 — Level 1
(x.¥) — :
'symb' — 'ARG(symb)'
Keyboard Access: (MTH)(NXT)} LHMEL . ARG

Affected by Flags: Angle mode (—17, —18)
Remarks: The polar angle ¢ is equal to:

m arc tan y/z for z > 0

m arc tan y/z + 7 sign y for z < 0, Radians mode
m arc tan y/z + 180 sign y for z < 0, Degrees mode
m arc tan y/z + 200 sign y for z < 0, Grads mode

A real argument z 1s treated as the complex argument .z, 0.

ARRY—

Array to Stack Command: Takes an array and returns its elements
as separate real or complex numbers. Also returns a list of the
dimensions of the array.

Level 1 —~ Levelnm+1 ... Level 2 Level 1
| vector | — Zy ... Zn { Nelfement J
[[ matrix ]] —_ Zyq1 -« Znm { Mrow m_,, }

Command Reference 3-19



ARRY—

Keyboard Access: None. Must be typed in.
Affected by Flags: None

Remarks: The command OBJ— includes this functionality. ARRY—

1s Included for compatibility with the HP 285. ARRY— is not in a
menu.

If the argument 1s an n-element vector, the first element is returned to
level n + 1 (not level nm + 1), and the nth element to level 2.

Related Commands: —ARRY, DTAG, EQ—, LIST—, OBJ—,
STR—

—ARRY

Stack to Array Command: Returns a vector of n real or complex
elements or a matrix of n X m real or complex elements.

Level nm+1 ... Level 2 Level 1 — Level 1
Zy ... Zj Ngiement — [ vector ]
Zy1{ «-+ Znm { Prow M., +  — [[ matrix ]}

Keyboard Access: (PRG) TWFE +HEFR
Affected by Flags: None

Remarks: The elements of the result array should be entered into the
stack in row order, with 271 (or z7) in level nm + 1 (or n + 1), and
Znm (OT zp) in level 2. If one or more of the elements i1s a complex
number, the result array will be complex.

Related Commands: ARRY—, LIST—, —LIST, OBJ—, STR—,
—TAG, —=UNIT

3-20 Command Reference



ASIN

ASIN

Arc Sine Analytic Function: Returns the value of the angle having
the given sine.

{}
Level 1 = Level 1
Z — arc sin z
'symb' — 'ASIN(symb)'

Keyboard Access: («)(ASIN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument z in the domain —1 < z < 1, the
result ranges from —90 to +90 degrees (—7/2 to +#/2 radians; —100
to 4100 grads).

A real argument outside of this domain 1s converted to a complex
argument z = z + 0z, and the result 1s complex.

The inverse of SIN 1s a relation, not a function, since SIN sends more
than one argument to the same result. The inverse relation for SIN 1s
expressed by ISOL as the general solution

"M ML Sl -1 2l +mEnl

The function ASIN 1s the inverse of a part of SIN, a part defined by
restricting the domain of SIN such that 1) each argument is sent to

a distinct result, and 2) each possible result is achieved. The points
in this restricted domain of SIN are called the principal values of the
inverse relation. ASIN 1n its entirety 1s called the principal branch of

the inverse relation, and the points sent by ASIN to the boundary of
the restricted domain of SIN form the branch cuts of ASIN.

The principal branch used by the HP 48 for ASIN was chosen because

1t 1s analytic 1in the regions where the arguments of the real-valued
inverse function are defined. The branch cut for the complex-valued
arc sine function occurs where the corresponding real-valued function

Command Reference 3-21



ASIN

1s undefined. The principal branch also preserves most of the
important symmetries.

The graphs below show the domain and range of ASIN. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side

of a cut. The graph of the range shows where each side of each cut 1s
mapped under the function.

These graphs show the inverse relation 'RHZIHZ #0122 ml+mwEm] !
for the case nf=0. For other values of nl, the vertical band in the
lower graph is translated to the right (for n1 positive) or to the left
(for nl negative). Taken together, the bands cover the whole complex
plane, which 1s the domain of SIN.

View these graphs with domain and range reversed to see how the
domain of SIN 1s restricted to make an inverse funciion possible.
Consider the vertical band in the lower graph as the restricted domain

&= gy y2. SIN sends this domain onto the whole complex plane 1n
the range bl = T4y vt = ZIMCz. y2 1n the upper graph.

Related Commands: ACOS, ATAN, ISOL, SIN

Domain: Z = (X,y) |

Range: W = (u,v) = ASIN(X.y)

Hiriitiriri?

1211111111218
<—

Branch Cuts for ASIN(Z)

3-22 Command Reference



ASINH

ASINH

Arc Hyperbolic Sine Analytic Function: Returns the inverse
hyperbolic sine of the argument.

{}
Level 1 — Level 1
Z — asinh 2z
'symb' — 'ASINH(symb)'

- Keyboard Access: (MTH) Hi{F HEIHH

Attected by Flags: Principal Solution (—1), Numerical Results (—3)

Remarks: The inverse of SINH is a relation, not a function, since
SINH sends more than one argument to the same result. The inverse
relation for SINH is expressed by ISOL as the general solution

'ASIHHCZ b #0-12"nl+w*isnl’

The function ASINH is the inverse of a part of SINH, a part defined
by restricting the domain of SINH such that 1) each argument is sent
to a distinct result, and 2) each possible result is achieved. The points
1n this restricted domain of SINH are called the principal values of the
inverse relation. ASINH in its entirety is called the principal branch of
the inverse relation, and the points sent by ASINH to the boundary of

the restricted domain of SINH form the branch cuts of ASINH.

The principal branch used by the HP 48 for ASINH was chosen
because 1t 1s analytic in the regions where the arguments of

the real-valued function are defined. The branch cut for the
complex-valued ASINH function occurs where the corresponding

real-valued function is undefined. The principal branch also preserves
most of the important symmetries.

The graph for ASINH can be found from the graph for ASIN (see
ASIN) and the relationship asinh z = —: asin 1z.

Related Commands: ACOSH, ATANH, ISOL, SINH

Command Reference 3-23



ASN

Assign Command: Defines a single key on the user keyboard by
assigning the given object to the key zyey, which 1s specified as re.p.

1}
Level 2 Level 1 R L evel 1
Obj Xl-cey —
'SKEY' Xiey —

Keyboard Access: (4_-,)( MODES) k

Affected by Flags: User-Mode Lock ( 61) and User Mode (—62)
affect the status of the user keyboard

Remarks: The argument zyey, 1s a real number rc.p specifying the
key by its row number r, column number ¢, and plane (shift) p. The
legal values for p are as follows:

Plane, p Shift
0 or 1 unshifted
2 (4q) left-shifted
3 (;») right-shifted
4 (@) alpha-shifted
5 (a) (&9) alpha left-shifted
6 (@) (i) alpha right-shifted

Once ASN has been executed, pressing a given key in User or 1-User
mode executes the user-assigned object. The user key assignment
remains in effect until the assignment 1s altered by ASN, STOKEYS,
or DELKEYS. Keys without user assignments maintain their standard
definitions.

If the argument 0bj 1s the name 'ZKEEY ', then the specified key 1s
restored to its standard key asmgnment on the user keyboard. This

3-24 Command Reference




AOSH

is meaningful only when all standard key assignments had been

suppressed (for the user keyboard) by the command 'Z' DELKEYSZ
(see DELKEYS).

To make multiple key assignments simultaneously, use STOKEYS. To
delete key assignments, use DELKEYS.

Be careful not to reassign or suppress the keys necessary to cancel
User mode. If this happens, exit User mode by doing a system halt
(“warm start”): press and hold and the C key simultaneously,
releasing the C key first. This cancels User mode.

Example: Executing ASN with GETI in level 2 and 2%5. 3 1n level
1 assigns GETI to () (" ") on the user keyboard. ((¢#)(" ") has a

location of 85.3 because 1t 1s eight rows down, five columns across, and

right-shifted.) When the calculator is in User mode, pressing () (" ")
now executes GETI (instead of executing (" ™)).

Related Commands: DELKEYS, RCLKEYS, STOKEYS

ASR

Arithmetic Shift Right Command: Shifts a binary integer one bit to
the right, except for the most significant bit, which 1s maintamed.

1)

Keyboard Access:

Affected by Flags: Binary Integer Wordsize ( D through —10),
Binary Integer Base (—11, —12)

Remarks: The most significant bit 1s preserved while the remaining
(wordsize—1) bits are shifted right one bit. The second-most

significant bit is replaced with a zero. The least significant bit 1s
shifted out and lost.

Command Reference 3-25



ASR

An arithmetic shift is useful for preserving the sign bit of a binary
integer that will be shifted. Although the HP 48 makes no special

provision for signed binary integers, you can still interpret a number
as a signed quantity.

Related Commands: SL, SLB, SR, SRB

ATAN

Arc Tangent Analytic Function: Returns the value of the angle
having the given tangent.

{}
Level 1 — Level 1
Z — arc tan 2z
'symb’ — 'ATAN(symb)'

Keyboard Access: («)(ATAN)

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Angle Mode (—17, —18)

Remarks: For a real argument, the result ranges from —90 to +90
degrees (—7/2 to +m/2 radians; —100 to +100 grads).

The inverse of TAN is a relation, not a function, since TAN sends
more than one argument to the same result. The inverse relation for
TAN is expressed by ISOL as the general solution

"HTHM O d+menl

The function ATAN 1s the inverse of a part of TAN, a part defined by

restricting the domain of TAN such that 1) each argument is sent to a
distinct result, and 2) each possible result is achieved. The points in
this restricted domain of TAN are called the principal values of the
inverse relation. ATAN 1n its entirety 1s called the principal branch of
the inverse relation, and the points sent by ATAN to the boundary ot

the restricted domain of TAN form the branch cuits of ATAN.

3-26 Command Reference



ATAN

The principal branch used by the HP 48 for ATAN was chosen because
1t is analytic in the regions where the arguments of the real-valued
inverse function are defined. The branch cuts for the complex-valued
arc tangent function occur where the corresponding real-valued
function i1s undefined. The principal branch also preserves most of the
important symmetries.

The graphs below show the domain and range of ATAN. The graph of
the domain shows where the branch cuts occur: the heavy solid line
marks one side of a cut, while the feathered lines mark the other side
of a cut. The graph of the range shows where each side of each cut is
mapped under the function.

These graphs show the inverse relation 'ATAMCE 2 +m#nl ' for the
case nl=0. For other values of n1, the vertical band in the lower
graph 1s translated to the right (for nf positive) or to the left (for nI

negative). Taken together, the bands cover the whole complex plane,
which 1s the domain of TAN.

View these graphs with domain and range reversed to see how the
domain of TAN is restricted to make an inverse function possible.
Consider the vertical band in the lower graph as the restricted domain
£ = tgy y». TAN sends this domain onto the whole complex plane in
the range I{ = Cus v = TAMCzs 32 in the upper graph.

Related Commands: ACOS, ASIN, ISOL, TAN

Command Reference 3-27



ATAN

Domain: Z = (X,y)

Range: W = (u,v) = ATAN(X,y)

N
PN

'\.\\\}\\\\\\\\

V

|

|

|

|

 (

|

AVWAMAMANMAL

Branch Cuts for ATAN(Z)

ATANH

Arc Hyperbolic Tangent Analytic Function: Returns the inverse
hyperbolic tangent of the argument.

1)

Level 1 — Level 1

Z — atanh z
'symb' — 'ATANH{(symb)'

Keyboard Access: (MTH): HiE HTHH

Affected by Flags: Principal Solution (—1), Numerical Results (—3),
Infinite Result Exception (—22)

3-28 Command Reference



ATANH

Remarks: For real arguments |z| > 1, ATANH returns the complex
result obtained for the argument (z, 0). For a real argument z==1,
an Infinite Result exception occurs. If flag —22 is set (no error),
the sign of the result (MAXR) matches that of the argument.

The 1nverse of TANH is a relation, not a function, since TANH sends
more than one argument to the same result. The inverse relation for

TANH 1s expressed by ISOL as the general solution
'"HTHMHCZ 2 +mrx1¥ml

The function ATANH 1s the inverse of a part of TANH, a part defined

by restricting the domain of TANH such that 1) each argument is sent
to a distinct result, and 2) each possible result is achieved. The points

in this restricted domain of TANH are called the principal values of
the inverse relation. ATANH in its entirety 1s called the principal
branch of the inverse relation, and the points sent by ATANH to the
boundary of the restricted domain of TANH form the branch cuis of
ATANH.

The principal branch used by the HP 48 for ATANH was chosen

because 1t 1s analytic in the regions where the arguments of
the real-valued function are defined. The branch cut for the

complex-valued ATANH function occurs where the corresponding
real-valued function 1s undefined. The principal branch also preserves

most of the important symmetries.

The graph for ATANH can be found from the graph for ATAN (see
ATAN) and the relationship atanh z = —i atan :z.

Related Commands: ACOSH, ASINH, ISOL, TANH

Command Reference 3-29



ATICK

Axes Tick-Mark Command: Sets the axes tick-mark annotation in
the reserved variable PPAR.

Level 1 — Level 1
X —
N —
{ Xy } —
{ #n #m } —

Keyboard Access: («)(PLOT) FFHE
Affected by Flags: None

Remarks: Given z, ATICK sets the tick-mark annotation to z units

on both the z- and the y-axis. For example, 2 would place tick-marks
every 2 units on both axes.

Given #n, ATICK sets the tick-mark annotation to #n pixels on both

the z- and the y-axis. For example, #5 would place tick-marks every
H pixels on both axes.

Given { z y }, ATICK sets the tick-mark unit annotation for each axis
individually. For example, { 10 3 } would mark the z-axis at every
multiple of 10 unmits, and the y-axis at every multiple of 3 units.

Given { #n #m } ATICK sets the tick-mark pixel annotation for each

axis individually. For example, { 6 2 } would mark the z-axis every 6
pixels, and the y-axis every 2 pixels.

Related Commands: AXES, DRAX

3-30 Command Reference



ATTACH

ATTACH

Attach Library Command: Attaches the library with the specified
number to the current directory. Each library has a unique number. If
a port number is specified, 1t 1s ignored.

i}

Level 1 — Level 1

Mibra ry

:”pc:rrt :nlibrary

Affected by Flags: None

Remarks: To use a library object, 1t must be in a port and 1t must
be attached. A library object from an application card (ROM) is
automatically in a port (1-33), but a library object copied into RAM
(such as through the PC Link) must be stored into a port using STO.

Many libraries are attached automatically when an application card 1s
installed. Others require you to ATTACH them, as do many libraries
copied into RAM. (The owner’s manual for the application card or
library will tell you which of 1ts library objects must be attached
manually.) You can also ascertain whether a library is attached to the
current directory by executing LIBS.

A library that has been copied into RAM and then stored (with STO)
into a port can be attached only after the calculator has been turned off

and then on again following the STO command. This action (off/on)

creates a system halt, which makes the hibrary object “attachable.”
Note that 1t also clears the stack, local variables, and the LAST stack,

and it displays the MATH menu. (To save the stack first, execute
DEFTH +LIST 'name' ST )

The number of libraries that can be attached to the HOME directory
is limited only by the available memory. However, only one library

at a time can be attached to any other directory. If you attempt to
attach a second library to a non- HOME directory, the new library will
overwrite the old one.

Command Reference 3-31



ATTACH
Related Commands: DETACH, LIBS

AUTO

Autoscale Command: Calculates a y-axis display range, or an z-
and y-axis display range.

Keyboard Access: («)(PLOT) (NXT) HLITI
Affected by Flags: None

Remarks: The action of AUTO depends on the plot type as follows:

Plot Type Scaling Action

FUNCTION | Samples the equation in E() at 40 values of the
independent variable, equally spaced through the

z-axis plotting range, discards points that return
+00, then sets the y-axis display range to include
the maximum, minimum, and origin.

CONIC Sets the y-axis scale equal to the z-axis scale.

POLAR Samples the equation 1n FQ) at 40 values of the
independent variable, equally spaced through

plotting range, discards points that return oo,

then sets both the z- and y-axis display ranges in
the same manner as for plot type FUNCTION.

PARAMETRIC | Same as POLAR..
TRUTH No action.

BAR Sets the r-axis display range from 0 to the number
of elements mn X DAT, plus 1. Sets the y-range to

the minimum and maximum of the elements. The
z-axis 1s always included.

3-32 Command Reference



Plot Type Scahing Action

HISTOGRAM | Sets the z-axis display range to the minimum and
maximum of the elements mn 2 DAT'. Sets the
y-axis display range from 0 to the number of rows

in Y DAT.

SCATTER | Sets the z-axis display range to the minimum and
maximum of the independent variable column
(XCOL) in X DAT'. Sets the y-axis display range to
the minimum and maximum of the dependent

variable column (YCOL).

AUTO does not aftfect 3D plots.

AUTO actually calculates a y-axis display range and then expands
that range so that the menu labels do not obscure the resultant plot.

AUTO does not draw a plot—execute DRAW to do so.

Example: The program « FUMCTION AUTO DRAL DEAX = sets the
plot type to FUNCTION, autoscales the y-axis, plots the equation 1n
E(Q), and adds axes to the plot.

Related Commands: DRAW, xH, SCALE, SCLY, *W, XRNG,
YRNG

AXES

Axes Command: Specifies the intersection coordinates of the z- and

y-axes, tick-mark annotation, and the labels for the z- and y-axes.
This information 1s stored in the reserved variable PPAR.

Level 1 — Level 1

(x, ¥) s
{ (x, y) atick "x-axis label" "y-axis label" } —s

Command Reference 3-33



AXES

Affected by Flags: None

Remarks: The argument for AXES (a complex number or list) is

stored as the fifth parameter in the reserved variable PPAR. How the
argument 1s used depends on the type of object it is:

m If the argument 1s a complex number, 1t replaces the current entry

m PPAR.

m If the argument 1s a list contalning any or all of the above variables,
only variables that are specified are affected.

atick has the same format as the argument for the ATICK command.
This 1s the variable that i1s affected by the ATICK command.

The default value for AXES 1s ¢8G2,

Axes labels are not displayed in PICT until subsequent execution of
LABEL.

Example: The command sequence
LEl. s 2 M Nyt HEES LABEL

specifies an axes intersection at 7 £, B2, tick-mark annotation every 2
units, and puts the labels t and u in PICT. The labels are positioned
to 1dentify the horizontal and vertical axes respectively.

Related Commands: ATICK, DRAW, DRAX, LABEL

BAR

Bar Plot Type Command: Sets the plot type to BAR.

Keyboard Access: («)(PLOT)(NXT) “THT FIYFE BHRE
Affected by Flags: None

Remarks: When the plot type is BAR, the DRAW command plots a
bar chart using data from one column of the current statistics matrix
(reserved variable X DAT). The column to be plotted is specified

by the XCOL command, and 1s stored in the first parameter of the
reserved varlable L PAR. The plotting parameters are specified in the
reserved variable PPAR, which has the following form:

3-34 Command Reference



BAR

{Zmint Uminsd “Tmazs Ymaz! indep res azes plype depend
For plot type BAR, the elements of PPAR are used as follows:

B Zrin, Ymin ! 18 @ complex number specifying the lower left corner ot
PICT (the lower left corner of the display range). The default value

1S f=F, Ga—S. 10,

B Toax, Ymax ! 15 @ complex number specifying the upper right corner
of PICT (the upper right corner of the display range). The default
value 1s 15,52, 20

m indep is either a name specifying a label for the horizontal axis, or a
list containing such a name and two numbers, with the smaller of
the numbers specifying the horizontal location of the first bar. The

default value of indep 1s X.

m res is a real number specifying the bar width in user-unit
coordinates, or a binary integer specifying the bar width in pixels.
The default value 1s 8, which specifies a bar width of 1 1n user-unit

coordinates.

m azes 1s a list containing one or more of the following, in the order
listed: a complex number specifying the user-unit coordinates of
the plot origin, a list specifying the tick-mark annotation, and two
strings specifying labels for the horizontal and vertical axes. The
default value 1s (H, 8.

m ptype 1s a command name specifying the plot type. Executing the
command BAR places the command name BAR in PPAR.

m depend 1s a name specitying a label for the vertical axis. The default
value 1s Y.

A bar 1s drawn for each element of the column in Y DAT. Its width
1s specified by res and its height is the value of the element. The

location of the first bar can be specified by tndep; otherwise, the value
IN * Zmin, Ymin . 1S used.

Related Commands: CONIC, DIFFEQ, FUNCTION, GRIDMAP,
HISTOGRAM, PARAMETRIC, PARSURFACE, PCONTOQOUR,
POLAR, SCATTER, SLOPEFIELD, TRUTH, WIREFRAME,
YSLICE

Command Reference 3-35



BARPLOT

Draw Bar Plot Command: Plots a bar chart of the specified column
of the current statistics matrix (reserved variable Y DAT).

Keyboard Access: (q)(STAT) PLI
Affected by Flags: None

Remarks: The data column to be plotted is specified by XCOL
and 1s stored as the first parameter in reserved variable 3 PAR. The

default column i1s 1. Data can be positive or negative, resulting in bars

above or below the axis. The y-axis is autoscaled, and the plot type is
set to BAR.

When BARPLOT is executed from a program, the resulting plot does
not persist unless PICTURE, PVIEW (with an empty list argument),
or FREEZE 1s subsequently executed.

Related Commands: FREEZE, HISTPLOT, PICTURE, PVIEW.
SCATRPLOT, XCOL

BAUD
Baud Rate Command: Specifies bit-transfer rate.
{7}
Level 1 — Level 1
NMpaudrate —

Keyboard Access: (q)(1/0) IOFARE BRLL
Affected by Flags: None
Remarks: Legal baud rates are 1200, 2400, 4800, and 9600 (default).

For more 1information, refer also to the reserved variable JOPAR (1/0
parameters) in appendix D, “Reserved Variables.”

Related Commands: CKSM, PARITY, TRANSIO

3-36 Command Reference



BESTFIT

BEEP

Beep Command: Sounds a tone at n hertz for r seconds.

17

Level 2 Level 1 — Level 1

nfrequency Jlr:a-:iL:rati«:.vrm

Keyboard Access: (PRG)(NXT) LHT
Affected by Flags: FError Beep (—56)

Remarks: The frequency of the tone is subject to the resolution of
the built-in tone generator. The maximum frequency is approximately
4400 Hz; the maximum duration is 1048.575 seconds. Arguments
greater than these maximum values default to the maxima.

Related Commands: HALT, INPUT, PROMPT, WAIT

BESTFIT

Best-Fitting Model Command: Executes LR with each of the
four curve fitting models, and selects the model yielding the largest

correlation coefhicient.

Keyboard Access: (&)(STAT) EFRE MODL EE:TE

Affected by Flags: None

Remarks: The selected model 1s stored as the fifth parameter 1in the
reserved variable ) PAR, and the associated regression coeflicients,
intercept and slope, are stored as the third and fourth parameters,

respectively. For a description of L PAR, see appendix D, “Reserved
Variables.”

Related Commands: EXPFIT, LINFIT, LOGFIT, LR, PWRFIT

Command Reference 3-37



BIN

Binary Mode Command: Seclects binary base for binary integer
operations. (The default base is decimal.)

Keyboard Access: (MTH) EHEE  EIH

Affected by Flags: Binary Integer Wordsize (—5 through —10),
Binary Integer Base (—11, —12)

Remarks: Binary integers require the prefix #. Binary integers
entered and returned in binary base automatically show the suffix k.
If the current base is not binary, binary numbers can still be entered

by using the suffix b (the numbers are displayed in the current base,
however).

The current base does not affect the internal representation of binary
integers as unsigned binary numbers.

Related Commands: DEC, HEX, OCT, STWS, RCWS

BINS

Sort Into Frequency Bins Command: Sorts the elements of the
independent column (XCOL) of the current statistics matrix (the
reserved variable Y DAT') into (npins + 2) bins, where the left edge of
bin 1 starts at value z.,;, and each bin has width zwigth.

{}
Level3 Level2 Level1 — Level 2 Level 1
xmin Xwidth nbins — [[ MTyint -+ nbinn]] [”binl_ nbinR ]
Keyboard Access: (q)(STAT) 1VFHRE BIHES

Affected by Flags: None

Remarks: BINS returns a matrix containing the frequency of
occurrences In each bin, and a 2-element array containing the
frequency of occurrences falling below or above the defined range of
z-values. The array can be stored into the reserved variable Y DAT

3-38 Command Reference



BLANK

and used to plot a bar histogram of the bin data (for example, by
executing BARPLOT).

For each element z in XDAT, the nth bin count n¢eq pin n 18
incremented, where:

L — Tmin

Nfregbinn — 1P
L Ewidth -

for iy < T < Zmax, Where Tmax = Tmin + (nbins)(mwidth)-

Example: If the independent column of ¥ DAT contains the following
data:

E.

—
L

-y
n -
i i

= &P 3

I

il
11

1 4 &2 8 11
| 25 EIHSreturns LES 102105102102 1Jandl 11 1.

The data has been sorted into 5 bins of width 2, starting at z-value 1
and ending at z-value 11. The first element of the matrix shows that 5

z-values (2 1 1 1 2) fell in bin 1, where bin 1 ranges from z-value 1
through 2.99999999999. The vector shows that one z-value was less

than z,,;, (&), and one was greater than zmax (13).

Related Commands: BARPLOT, XCOL

BLANK

Blank Graphics Object Command: Creates a blank graphics object
of the specified width and height.

1}

Keyboard Access: (PRG) GELHE ELAH
Affected by Flags: None
Related Commands: —GROB, LCD—

Command Reference 3-39



BOX

Box Command: Draws in PICT a box whose opposite corners are
defined by the specified pixel or user-unit coordinates.

1

Level 2 Level 1 > Level 1

{ #ny #my } { #ny #my } —
(X]_ryl) (X:Zr .ij) —

Keyboard Access: (PRG) FILT B

Affected by Flags: None
Related Commands: ARC, LINE, TLINE

BUFLEN

Buffer Length Command: Returns the number of characters in the

HP 48’s serial input buffer and a single digit indicating whether an
error occurred during data reception.

Level 1 — Level 2 Level 1

Keyboard Access: (¢)(1/0) (NXT) &
Affected by Flags: None

Remarks: The digit returned to level 1 is i if no framing, UART
overrun, or mput-buffer overflow errors occurred during reception,
or & 1f one of these errors did occur. (The input buffer holds up to

255 bytes.) When a framing or overrun error occurs, data reception
ceases until the error 1s cleared (which BUFLEN does); therefore, n
represents the data received before the error.

3-40 Command Reference




BYTES

Use ERRM to see which error has occurred when BUFLEN returns &
to level] 1.

Related Commands: CLOSEIO, OPENIO, SBRK, SRECV, STIME,
XMIT

BYTES

Byte Size Command: Returns the number of bytes and the
checksum for the given object.

{)

Level 1 R Level 2 Level 1

obj — #nchecksum xsize

Affected by Flags: None

Remarks: If the argument is a built-in object, then the size 1s 2.5
bytes and the checksum 1s # 8.

If the argument is a global name, then the size represents the name
and its contents, while the checksum represents the contents only. The
size of the name alone is (3.5 + 2 x n), where n is the number of
characters 1n the name.

Example: Objects that decompile identically can have different byte
sizes and checksums