Hitachi

SH Series Cross Assembler

User's Manual

PN: HOO9-A
February 18, 1994

SH Series Cross Assembler

User’s Manual

'HSO700ASCUISE

Preface

This manual describes the SH Series Cross Assembler.

This manual is organized as follows:

Overview: Gives an overview of the functions of the assembler.

Programmer’s Guide: Describes the assembler language syntax and programming
techniques.

User's Guide: Describes the use (invocation) of the assembler program itself.

Appendix: Describes assembler limitations and error messages.

The related manuals are listed below.

For information conceming the SH microprocessor hardware:
“SH7000 Series Hardware Manual™

For information conceming the SH microprocessor executable instructions:
“SH Series Programming Manual” |

For information conceming software development support tools:

“SH Series C Compiler User’s Manual™

“H Series Linkage Editor User's Manual™

*H Series Librarian User’s Manual”

“SH Series Simulator/Debugger User's Manual”

Notes:
« The following symbols have special meanings in this manual.

<item>: <specification item>

A Blank space(s) or tab(s)

> The OS prompt (indicates the input waiting state)

(RET): Press the Return (Enter) key.

O The preceding item can be repeated.

{1 The enclosed item is optional (i.c., can be omitted.)
» Numbers are written as follows in this manual.

Binary: A prefix of “B'" is used.

Octal: A prefix of “Q"” is used.

Decimai: A prefix of “D'" is used.

Hexadecimal: A prefix of “H'” is used.

How&er. when there is no specification, the number without a prefix is decimal.

UNIX is an operating system administrated by the UNIX System Laboratories (United States).

MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

Contents

Overview

Secdon 1l Overview

Section 2 Relationships between the Software Development

Support Tools

Programmer’s Guide

Section 1 Program Elements

1.1

1.2
13

14

1.5
1.6

1.7

Section2 Basic Programming Knowledge

2.1

23

- 1.6.1 Elemeats of Expression

Source Statements

1.1.1 Source Statement Structure

1.12 Coding of Source Statements

1.13 Coding of Source Statements across Multiple Lines .

Reserved Words

Symbols

1.3.1 Functions of Symbols

132 Coding of Symbols

Constants

14.1 Integer Constants

142 Character Constants

Location Counter

Expressions

1.62 Operation Priority
1.63 Notes on Expressions

Character Strings

Sections

2.1.1 Section Types by Usage

2.12 Absolute Address Sections and Relative Address Sections

Absolute and Relative Values

22.1 Absolute Values

222 Relative Values

Symbol Definition and Reference

2.3.1 Symbol Definition

2.32 Symbol Reference

11
11
11
13
15
16
16
16
18
19
19
20
21
23
23
25

29

31

k)
3

38
38
38
39
39
41

2.4 Separate Assembly
24.1 Separate Assembly
2.4.2 Declaraton of Export Symbols and Import Symbols

Section 3 Executable Instructions

3.1 Overview of Executable Instructions

3.2 Notes on Executable Instructions
3.2.1 Notes on the Operation Size
3.2.2 Notes on Delayed Branch Instructions
3.2.3 Notes on Address Calculations

Section 4 Assembler Directives

4.1 Overview of the Assembler Directives
4.2 Assembler Directive Reference

421 Section and Location Counter Assembier Directives
SECTION Section Declaration
ORG ————— Location-Counter-Value Setting
ALIGN —————— Location-Counter-Value Correction

4.22 Symbol Handling Assembler Directives
EQU ————— Symbol Value Setting (resetting not allowed)ccceevrneee
.ASSIGN Symbol Value Seuing (resetting aliowed) ...cccceoveccsennnee.
REG ————— Alias of a Register Name Definition

4.23 Data and Data Area Reservation Assembler Direcuves
.DATA ——————— Integer Data Reservation
.DATAB ——— Integer Data Block Reservaton
SDATA ———— Character String Data Reservation
SDATAB ——— Character String Data Blocks Reservauonocccevevennee.
.SDATAC ‘Character String Data Reservation (with length)
.SDATAZ Character String Data Reservation (with zero

terminator)
.RES ———w——— Data Area Reservaton
.SRES ————— Character String Data Area Reservation .. S
.SRESC ———— Character String Data Area Reservation (wnh length)
.SRESZ ———— Character String Data Area Reservation (with zero
terminator)

4.24 Expor and Import Assembler Directives
EXPORT Export Symbols Declaration
IMPORT Import Symbols Declaration

.GLOBAL ——— Export and Import Symbois Declaration.........cccocerveveenenees

43
43

47
47
52
52
S8
59

63
63
65
65

n
73
75
76
78
80
82
83
85
88

95
97

... 100

102

104
106
107
109

Section 5 File Inclusion Function

Secton 6 Conditional Assembly Funcuon
Overview of the Conditional Assembly Function

6.1

6.2

7.1
712

4.25 Object Module Assembler Directives
OUTPUT —— Object Module Output Controi
.DEBUG ~————— Symbolic Debug Information Output Controt
4.2.6 Assemble Listing Assembler Directives
JPRINT ——————— Assemble Listing Output Control
LIST —————— Source Program Listing Output Controlcccoveveecececincan
.FORM ———— Assemble Listing Line Count and Column
Count Setting .
.HEADING Source Program Listing Header Settingc.conermeucncnenene
PAGE ————— Source Program Listing New Page Insertion
.SPACE -———— Source Program Listing Blank Line Output
4.2.7 Other Assembier Directives
JPROGRAM ——— Object Module Name Setung
.RADIX ————— Default Integer Constant Radix Settingcceeeeeeeeeeccecnee
.END —————Source Program End Declaration L

INCLUDE File Inclusion

6.1.1 Preprocessor Variables
6.12 Conditional Assembly
6.1.3 Ilierated Expansion
6.1.4 Conditional iterated Expansion
. Conditional Assembly Directives
.ASSIGNA Integer Preprocessor Vanable
Definition (redefinition is possible).............
.ASSIGNC Character Preprocessar Variable
Definition (redefinition is possible)............
AlIF .AELSE .AENDI Conditonal Assembly
.AREPEAT .AENDR Iierated Expansion -
.AWHILE .AENDW Conditionat Iterated Expansion
EXTTM Expansion Terminationcceoveeveenenens
Section 7 Macro Function
Overview of the Macro Function
Macro Function Directives
.MACRO .ENDM Macro Definition
EXITM Expansion TermiInationceseeeoseseees

13

Macro Body

113
114
117
119
120
122

... 126

128
130
132
134
135
137
139

141
142

145
145
145
146
147
148
149

150

153
155
157
159
161

163
163
165
166
169
In

74 Macro Call

7.5 Character String Manipulation Functions

LEN Character String Length Count
INSTR Character String Searchccveeniececennnn.
.SUBSTR Character Substring Extraction

Sectdon 8 Automatic Literal Pool Generation Functon

8.1 Overview of Automatic Literal Pool Generation

8.2 Extended Instructions Related o Automatic Literal Pool Generationcccceeeeee.e.

8.3 Literal Pool Output

8.3.1 Literal Pool Ourput after Unconditional Branch (BRA, JMP, RTS, RTE)

8.3.2 Literal Pool Output to the POOL Location

84 Literal Sharing

8.5 Literal Pool Output Suppression

8.6 Notes on Automatic Literal Pool Output

User’s Guide

Section 1 Executing the Assembler

1.1 Command Line Format

1.2 File Specification Format

Section2 Command Line Options
2.1 Overview of the Command Line Options

2.2 Command Line Option Reference

2.2.1 Object Module Command Line Options

OBJECT NOOBJECT ————— Object Module Output Control
DEBUG NODEBUG —~————— Debug information Qutput Control

222 Assemble Listing Command Line Options

LIST NOLIST ————ee——— Assemble Listing Output Control
Source Program Listing Output Control
CROSS_REFERENCE —-—_‘-—— Cross-Reference Listing Output Controt ...

SOURCE NOSOURCE

NOCROSS_REFERENCE
SECTION NOSECTION

Section Information Listing Output

Control
SHOW NOSHOW —————— Source Program Listing Output Controi
LINES Sets the Number of Lines in

the Assembie Listing
COLUMNS Sets the Number of Columns in

the Assemble Listing

175
177
178
180
182

185
185
186
186
187
188
189
190
191

195
195
196

197
197
198
198
199
201
203
204

o)
4

208

210

212

214

215

Appendix

Appendix A Limitations and Notes on Programming

Appendix B Sample Program

Appendix C Assemble Listing Output Example

C.1 Source Program Listing

C2 Cross-Reference Listing

C3 Secuon Information Listing

Appendix D Error Messages

- D.1 Error Types

D2 Ermor Message Tables

Appendix E -ASCH Code Table

219

220

224

226

227
277
229

241

Figures

Overview
Figure 1-1 Function of the ASSEMIDIET ceucmeeneeeeeee et eerete et nsnenene s et e s sene 3
Figure 2-1 Relatonships between the Software Development Support Tools ... 6
Programmer’s Guide
Figure 2-1 Memory Reservation of Common Section 33
Figure 2-2 Data Structure Example Using Dummy Section Kh]
Figure 2-3 Meaning of the Terms Forward and Backward 41
Figurec 2-4 Meaning of the Term External 41
Figure 2-5 Relationship between the Changed Range of the Program and

the Range of the Program that must be Reassembled 43
Figure 3-1 Address Calculation Example (normal case) 59
Figure 3-2 Address Calculation Exampie

(when the value of PC differs due to a branch) 60
Figure 3-3 Address Calculation Example

(when SH microprocessor corrects the value of PC) .. 61
Figure 34 Address Calculation Example

(when SH microprocessor does not correct the value of PC) . 61
Appendix
Figure C-1 Source Program Listing Output Example 224
Figure C-2 Cross-Reference Listing Output Example 225
Figure C-3

Section Information Listing Output Examplie 226

Tables

Programmer's Guide

Table 1-1 Operators 23
Table 1-2 Operator Priority and Association Rules 25
Table 3-1 Addressing Modes. .. 48
Table 3-2 Allowed Displacement Values 50
Table 3-3 Allowed Immediate Values 51
Table 3-4 Executable Instruction and Operation Size Combinations 52
Table 3-5 Relationship between Delayed Branch Instruction and Delay Siot Instructions .. 58
Table 4-1 Assembler Directives 63
Table 8-1 Extended Instructions and Expanded Results 186
User's Guide R

Table 2-1 Command Line Options - 197
Appendix

Table A-1 Limitations and Notes on Programming 219
Table D-1 Command Error Messages - .. 229
Table D-2 Source Program Error Messages 230
Table D-3 Fatal Error Messages 240

Table E-1 ASCII Code Table 241

‘

Overview

(This page intentionally left blank.)

Section 1 Overview

The “SH Series Cross Assembler” (referred to below as the (or this) assembler) converts source
programs written in assembly-language into a format that can be handied by SH microprocessors,
and outputs the result as an object module. Also, the resuits of the assembly processing are output
as an assembie listing.

This assembler provides the following functions to support efficient program development:

« Assembler directives
Give the assembler various instructions.

« File inclusion function
Includes files into a source file.

« Conditional assembly function
Selects source statements 1o be assembled or repeats assembly according to a specificd
condition.

« Macro function
Gives a ame to a sequence of statements and defines it as one instruction.

« Automatic literal pool generation function
Interpretes data transfer instructions MOV.W #imm, MOV.L #imm, and MOVA #imm that are
no provided by the SH microprocessor as extended instructions and expands them into SH
microprocessor executable insguctions and constant data (literals).

Figure 1-1 shows the function of the assembler.

Assembly-ianguage File inclusion

included file
source program

« Assembiler directives

Assambler » Conditional assembly
* Macro

f f - Automatic literal pool generation

Object module Assembie listing

Figure i-1 Function of the Assembler

3

(This page intentionally left blank.)

Section 2 Relationships between the Software
Development Support Tools
The following software development support tools are available for the SH microprocessors.

« SH Series C Compiler (Referred to below as the C compiler.)

« H Series Linkage Editor (Referred to below as the linkage editor.)

o H Series Librarian (Referred to below as the librarian.)

« H Series Object Conventer (Referred 10 below as the object converter.)

o SH Series Simulator/Debugger (Referred to below as the simulator/debugger.)

Note: The linkage editor refers to version 5.0 or jater.
These tools assist in the efficient development of application software.

Figure 2-1 shows the relationships between the software development support tools.

C-language

Editor]

source program

C compiler

Assembly-language
source program

Librarian |
L Jom]

module
[CPU information analyzeﬂ I Linkage editor Library
file
A

CPU Load

information modute

file I '
[Object convernter

1
I Simulator/debugger S-type-format

load module

Figure 2-1 Relationships between the Software Development Support Tools

Supplement:
Use a general purpose editor (2 text editor) to edit source programs.

The C compiler converts programs written in the C-language into either object modules or
assembly-language source programs.

The librarian converts object modules and relocatable load modules into library files. We
recommend handling processing that is common 10 multiple programs as a library file. (This has
several advantages, including allowing modules to be easily managed.)

The linkage editor links together object modules and library files to produce load modules. (Load
modules are programs in a format that a computer can execute.)

The object converter converts load modules into the S-type format. (The S-type format is a
standard load module format.) '

The simulator/debugger assists debugging microprocessor software.

Load modules created by this development support system can be input to several types of
emulator. (Emulators are systems for debugging microprocessor system hardware and software.)
Also, S-type-format load modules can be input into most EPROM writers.

(This page intentionally left blank.)

Programmer’s Guide

(This page intentionally left blank.)

Section 1 Program Elements

If source programs are compared to natural language writing, a source statement will correspond
10 “a sentence.” The “words™ that make up a source statement are reserved words and symbols.
This section describes these basic program elements.

1.1 Source Statements
1.1.1 Source Statement Structure

The figure below shows the structure of a source statement.

{<label>] [A<operation>{A<operand(s)>]] [<comment>)

Example:
SBerT: WOV;T @RO,RS : Thisis an example of a source statement.
|] T
l Comment
Operands
Operation

1.

(1) Label

A symbol that is a tag attached to a source statement is writien as a label.
A symbol is a name defined by the programmer.

(2) Operation

The mnemonic of an executable instruction, an extended instruction, an assembler directive, or a
directive statement is written as the operation.

Executable instructions must be SH microprocessor instructions.

Extended instructions are instructions that are expanded into executable instructions and constant
data (literais). For details, refer to Programmer's Guide, 8, "Automatic Literal Pool Generation
Function”.

Assembler directives are instructions that give directions 10 the assembler.

Directive statements are used for file inclusion, conditional assembly, and macro functions. For
details on each of these functions, refer to Programmer's Guide, 5, "File Inclusion Function”. 6.
"Conditional Assembly Function”, or 7, "Macro Function"”.

(3) Operand
The objeci(s) of the operation’s execution are written as the operand.

The number of operands and their types are determined by the operation. There are aiso
operations which do not require any operands.

(4) Comment

Notes or explanations that make the program easier to understand are written as the comment.

12

1.1.2 Coding of Source Statements
Source statements are written using ASCII characters.

In principie, a single statement must be written on a single line. The maximum length of a line is
255 bytes.

(1) Coding of Label
The label is written as follows:

* Written starting in the first column,
Or:
« Written with a colon () appended to the end of the label.

Examples:
EREETY ; This label is written starting in the first column.
; This label is terminated with a colon.
EETY ; This label is regarded as an error by the assembler,

; since it is neither written starting in the first column
: nor terminated with a colon.

(2) Coding of Operation
The operation is written as follows:

+ When there is no label:
Written starting in the second or later column.

¢ When there is a label:
Written after the label, separated by one or more spaces or tabs.

Examples:

AL RO,RL ; An example with no labal.
1ABEI1l: CADDY R1,R2 ; An example with a iabel.

13

CAUTION!

Since white spaces and tabs are ASCII characters, each space or tab requires a byte of storage.
(3) Coding of Operand
The operand is written following the operation field, separated by one or more spaces or tabs.

Examples:

ADD RS : The ADD instruction takes 2 arguments.
SHAL [R} : The SHAL instruction takes 1 argument.

(4) Coding of Comment
The comment is written following a semicolon (;).
The assembler regards all characters from the semicolon to the end of the line as the comment.

Examples:

ADD RO,RL X ROG RIS

14

1.13 Coding of Source Statements across Multiplé Lines
We recommend writing a single source statement across several lines in the following situations:

» When the source statement is too long as a single statement
« When it is desirable to atach a comment to each operand.

Write source statements across multiple lines using the following procedure.

(a) Insert a new line wriling a comma that separates operands as the point 1o break the line.
(b) Insert a plus sign (+) in the first column of the next line.
{(c) Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

Examples:
.DATA.L H'FFFF0000;
E H'FFOOFFO00;,
H'FFFFFFFF

; Inthis example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

Examples:
.DATA.L H'FFEF0000, T Tnitial value 1.
+ H'FFOOFFOQ0, + Initial value 2.
+ H'FFFFFEFFT i~ Initial value 3.

; This is an example of attaching a comment to each operand.

15

1.2 Reserved Words

Reserved words are names that the assembler reserves as symbols with special meanings.
This assembler uses the following reserved words.
« Register names

RO Rl R2 R3 R4 RS
R6 R7 R8 R9 R10 R11
R12 RI13 R4 RIS Sp*

SR GBR VBR MACH MACL PR

PC
Note: * R1S and SP indicate the same register.
+ Operators (STARTOF, SIZEOF)
« The location counter symbol, the doilar sign (a single character symbol)
Reserved words cannot be used as user-defined symbols.
Reference:

Operators — Programmer’s Guide, 1.6.1, “Expression Elements”
Location counter — Programmer’s Guide, 1.5, “Location Counter”
Symbols — Programmer’s Guide, 1.3, “Symbols”

1.3 Symbols

13.1 Functions of Symbols

Symbols are names defined by the programmer, and perform the following functions.

e Address symbolscceeeee. Express data storage and destination addresses.
« Constant symbolscceeenss Express constants.

» Aliases of register name Express general registers.

o Section names........ccccemeueee Express section names. *

Note: * A section is a part of program, and the linkage editor regards it as a unit of processing.

The following show examples of symbol usages.

16

Examples:

BRA SUBT ; BRA s a branch instruction.
; SUB1 is the address of the destination.
[eizbed
[MAX : .EQ0 100 : .EQU is an assembler directive that sets a value to a
: symbol.
Mov YHEX,RO : MAX exprasses the constant value 100.
MFY: .REG (RO) ; .REG is an assembler directive that defines a register
; name.
MOV #100, MIN' : Hera, MIN is a name for RO. .

. SECTION 3, CODE, ALIGN=4

.
’
.

SECTION is an assembler directive that declares a section.
CD is the name of the current section.

17

1.3.2 Coding of Symbols
(1) Available Characters
The following members of the ASCII character can be used.

« Upper-case and lower-case letters (A to Z,a to z)
« Numbers (0to0 9)

« The underscore character ()

» The dollar sign character ($)

The assembler distinguishes upper-case and lower-case in symbols.
(2) First Character in a Symbol
The first character in a symbol must be one of the following.

» Upper-case and lower-case letters (A0 Z,ato z)
« The underscore character ()
» The dollar sign character ($)

(3) Maximum Length of a Symbol

A symbol may contain up to 32 characters.

The assembler ignores any characters after the first 32.
(4) Names that Cannot Be Used as Symbois

Reserved words cannot be used as symbols. The following names must not be used because they
are used as internal symbols by the assembler.

_$Snnnnn (n is a number from 0t0 9.)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are not
output to assemble listings or object modules.

CAUTION!
The dollar sign character used alone is a reserved word that expresses the locauon counter.
References:

Reserved word$ — Programmer’s Guide, 1.2, “Reserved Words™

18

1.4 Constants
1.4.1 Integer Constants
Integer constants are expressed with a prefix that indicates the radix.

The radix indicator prefix is a notation that indicates the base of the constant.

« Binary numbersccveerrrieanas The radix indicator “B'" plus a binary constant.

+ Octal numbersccconececrsercseens The radix indicator “Q'" plus an octal constant.

« Decimal numberscoeecneneene The radix indicator “D’” plus a decimal constant.

« Hexadecimal numbers The radix indicator “H' ™ plus a hexadecimal constant

The assembler does not distinguish upper-case and lower-case letters in the radix indicator.
The radix indicator and the constant value must be written with no intervening space.

Exampies:

.DATA.B B¥10001000

.DATA.B Q7210 ; These source statements all the same
.DATA.B D'136 ; numerical vaiue.
.DATA.B :H'88 ;

The radix indicator can be omitted. Integer constants with no radix indicator are normaily decimal
constants, although the radix for such constants can be changed with the .RADIX assembler
directive.

References:

Interpretation of integer constants without a radix specified
— Programmer’s Guide, 4.2.7, “Other Assembler Directives™, .RADIX

Supplement:

“Q" is used instead of “O" 10 avoid confusion with the digit 0.

19

1.4.2 Character Constants

Character constants are considered 1o be constants that represent ASCII codes. .

Character constants are writtien by enclosing up to 4 ASCII characters in double quotation marks.
The following ASCII characters can be used in character constants.

ASCITI codes {H‘09 (tab)

H'20 (space) o H'TE (tilde)
Examples:
.DaTA.L [RBCY ; This is the same as .DATA.L H'00414243,
.DATA.W FABY ; This is the same as .DATAW H'4142.
.DATA.B (A4 ; This is the same as .DATA.B H'41.

; The ASCIl code for A is: H'41
; The ASCllcode for B is: H'42
; The ASClicode for Cis: H'43

Use two double quotation marks in succession w indicate a single double quotation mark in a
character constant.

Example:

“DATA.B "23" ; This is a character constant consisting of a singie
double quotation mark.

20

1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object
code (the result of converting executable instructions and data into codes the microprocessor can
regard) is stored.

The value of the location counter is automatically adjusted according to the object code output.

The value of the location counter can be changed intentionally using assembler directives.

Examples:

H*00001000 ; This assembler directive sets the location counter to
; H00001000.

.DATA.W H'FF ; The object code generated by this assembler directive has
; alength of 2 bytes.
; The location counter changes to H'00001002.

.DATA.W H'FO ; The object code generated by this assembier directive has
; alength of 2 bytes.
; The location counter changes to H'00001004.

.DATA.W H'10 ; The object code generated by this assembier directive has
: alength of 2 bytes.
: The location counter changes to H'00001006.

TROIEN: 4 ; The value of the location counter is corrected to be a multiple

; of 4.

: The location counter changes to H'00001008.
.DATA.L H'FFFFEEEF The object code generated by this assembier directive has
a length of 4 bytaes.
The location counter changes to H'0000100C.

LYIRE TIR Y

; (ORG is an assembler directive that sets the vaiue of the location counter.

; ALIGN is an assembler directive that adjusts the value of the location counter.
: .DATA is an assembler directive that reserves data in memory.

: W is a spaecifier that indicates that data is handled in word (2 byte) size.

H L is a specifier that indicates that data is handled in long word (4 byle) size.

21

References:

Setting the value of the location counter
— Programmer’s Guide, 4.2.1, ““Section and Location Counter Assembler Directives” .ORG

Correcting the value of the locaton counter
—» Programmer’s Guide, 4.2.1, “Section and Location Counier Assembler Directives”
ALIGN

The location counter is referenced using the dollar sign symbol.

Examples:

LABELl: .EQU | ; This assembler directive sets the vaiue of the
; location counter to the symbol LABEL1.

: .EQU is an assembler directive that sets the value to a2 symboi.

22

1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value. and are
used as the operands of executable instructions and assembler direcuves.

1.6.1 Elements of Expression

An expression consists of terms, operators, and parentheses.

(1) Terms

The terms are the followings:

« Aconstant

« The location counter reference ($)
e A symbol (exciuding aliases of the register name)
« The result of a calculation specified by a combination of the above terms and an operator.

An independent term is also a type of expression.

(2) Operators

Table 1-1 shows the operators supported by the assembier.

Table 1-1 Operators

Operator Type Opaerator Operation Coding
Arthmetic + Unary plus + <term>
oparations - Unary minus - <term>

+ Addition <dermi> + <term2>

- Subtraction <termi> — <term2>

i Muttiplication dermi> * <term2>

/ Division dermi> / term2>
Logic ~ Unary negation ~ cterm>
operations & Logical AND <termi> & term2>

| Logical OR ermi> | <term2>

- Exclusive OR <termi> ~ <term2>
Section set STARTOF Derives the starting address STARTOF <section name>
opaerations* of a section set.

SIZEOF Derives the size in bytes SIZEOF <section name>

of a section set.

Note: * See the supplement on the following page.

23 .

(3) Parentheses

Parentheses modify the operation priority. .

See the next section, section 1.6.2, “Operation Order”, for a description of the use of parentheses.

Supplement:

In this assembly-language, programs are divided into units called section. Sections are the units in
which linkage processing is performed.

When there are multiple sections of the same type and same name within a given program, the
linkage editor links them into a single “section set”.

STARTOF is an operator that determines ﬁxe starting address of the section set.
SIZEOF is an operator that determines the size of the section set in byte units.
References:

Sections —) Programmer's Guide, 2.1, “Sections”

24

1.62 Operation Priority

When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator priority and by the use of parentheses. The assembler
processes operations according to the following rules.

<Rule 1>

Processing starts from operations enclosed in parentheses.

When there are multiple parentheses, processing starts with the operations surrounded by the
innermost parentheses. ‘

<Rule 2> :
Processing starts with the operaxm with the highest priority.

<Rule3>
Processing proceeds in the direction of the operator association rule when operators have the same
priority.

Table 1-2 shows the operator priority and the association rule.

Table 1-2 Oﬁerator Priority and Association Rules

Priority Operator Association Rule

1 (high) - 4 = STARTOF SIZEOF* Operators are processed from right to left.
2 .y Operators are pracassed from left to right.
3 + - Operators are processed from ieft to right.
4 & Operators are processed from left to right.
S (low) | = . Operators are processed from ieft to right.

Note: * Unary operators have the first priority.

The figures below show examples of expressions.

Exampie 1:

1+ (2-(3+((4-5)1))
(a)
(®)
(c)
(d)

The assembier caiculates this expression in the order (a) to (d).

The resutt of (a) is ~1
The result of (b) is 2
The result of (c) is O
The rasult of (d) is 1

The final resutlt of this caiculation is 1.

Example 2:

- H'FFFFFFF1 + H'000000F0 * H'00000010 | H'OOOOOOFO & H'OOOOFFFF
| @] L& 1 U9 |
L) | :

)

The assembier calculates this expression in the order (a) to (e).

The result of (a) is H'O00C000F
The resutlt of (b) is H'00000F00
The resutt of (c) is H'O000OFOF The final result of this calculation is H'OO000FFF.
The rasuit of (d) is H'000000F0
The result of (e) is H'00000FFF

26

Exampie 3:

- T = 7 H'0000000F
(a)
(d)
(c)
(d

The assembier calculates this expression in the order (a) to (d).

The resuit of (a) is HFFFFFFFO

The resuit of (b) is H'00000010 The final it of thi L
The result of (c) is HFFFFFFEF o final result of this calculation is H'00000011.

The resuit of (d) is H'00000011

27

1.6.3 Notes on Expressions
(1) Internal Processing
The assembler regards expression values as 32-bit signed vaiues.

Example:

“H'FO

The assembier regards H'FO as H'000000FO.
Therefore, the value of ~H'F0 is HFFFFFFOF. (Note that this is not H'0000000F.)

(2) Arithmetic Operators

The multiplication and division operators cannot take terms that contain relative vaiues (values
which are not determined until the end of the linkage process) as their operands.

Also, a divisor of 0 cannot be used with the division operator.
(3) Logic Operators

The logic operators cannot take terms that contain relative values as their operands.

References:

Relative values — Programmer’s Guide, 2.2, “Absolute and Relative Values™.

28

1.7 Character Strings
Character strings are sequences of character data.
The following ASCII characters can be used in character strings.

ASCII codes H'09 (tab)
H'20 (space) to H'7E (tilde)

A single character in a character string has as its value the ASCII code for that character and is
represented as a byte sized data object.

Character strings are written enclosed in double quotation marks.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character string.

Examples:
.SDATA "Helle¥" ; This ftatemem reserves the character string data
.SDATA """Hello!%=" ;":i?:::xatemem reserves the character string data
: “Hello!"
: - .SDATA is an assembler directive that reserves character string data in memory.
Supplement:

The difference between character constants and character strings is as follows.
Character constants are numeric values. They have a data size of either 1 byte, 2 bytes, or 4 bytes.

Character strings cannot be handled as numeric values. A character string has a data size of
between 1 byte and 255 bytes.

29

(This page intentionally left blank.)

Section 2 Basic Programming Knowledge

This section presents the basic knowledge required for programming in asscmblyilanguage.

2.1 Sections

If source programs are compared to natural language writing, a section will correspond 10 a
“chapter.” The section is the processing unit used when the linkage editor links an object modulc.

2.1.1 Section Types by Usage

Sections are classified by usage into the following types.

+ Code section

» Data section

« Common section
» Siack section

+ Dummy section

(1) Code Section
The following can be wriuen in a code section:

- Execuwable instructions
» Extended instructions

« Assembler directives that reserve initialized data.

Examples:
.SECTION CD,CODE,ALIGN=4
MOV.L X,R1
MOV R1,R2
ALIGN 4
X DATA.L H'FFFFEFFF

; This assembiar directive declares a
; code section with the name CD.

; This is an executable instruction.

; This assembler directive reserves
; initialized data.

31

(2) Data Section

The foliowing can be written in a data section:

« Assembler directives that reserve initialized data.
+ Assembler directives that reserve uninitialized data.

Examples:
e —m—— ittt attndad ittt ettt ittt bbbkl he
; .SECTION DT1,5ETA.ALIGN=4 ; This assembler directive declaras |
E : adata section with the name DT1.
i 1
¥
E .DATA.W H'FFO0 ; These assembier directives reserve !
: .DATA.B H'FF : inttialized data. :
)]
‘ :
] — t
] L]
I o e e e e e e e e -
yTTTEmees T T T S S e A
! .SECTION DT2,DATA,ALIGN=4 : This assembler directive declares |
i : a data saection with the name DT2. E
)
] '
E .RES.W 10 ; These assembler directives reserve |
‘ -RES.B 10 ; data areas that do not have initial |
: ; values. i
' — !
) 1
o o o o = = = T T T - - - - - — - -

32

(3) Common Section

A common section is used as a section to hold data that is shared between files when a source
program consists of multiple source files.

The following can be written in a common section:

« Assembler directives that reserve initialized data.
« Assembler directives that reserve uninitialized data.

Supplement:

The linkage editor reserves common sections with the same name to the same area in memory. In
the exampie shown in figure 2-1, the common section CM declared in file A and the common
section CM declared in file B are reserved to the same area in memory.

Program Memory

FieA FieB

Common section CM —\ Common section CM IManW

Figure 2-1 Memory Reservation of Common Section

(4) Stack Section

The section that SH microprocessors use as a stack area (an area for temporary data storage) is
called the stack section.

The following can be written in the stack section:
« Assembler directives that reserve uninitialized data.

Examiples:

.SECTION ST,STACK, ALIGN=4 ; This assembler directive declares a stack
; section with the name ST.

.RES.B 1024 ; This assembler directive reserves a stack
; area of 1024 bytes.

(5) Dummy Section

A dummy section is a hypothetical section for representing data structures. The assembler does
not output dummy sections to the object module.

The following can be written in a dummy section:

« Assembler directives that reserve uninitialized data.

Examples:
.SECTION DM, DUMMY" ; This assembler directive daclares
: adummy section with the name DM.
.RES.B 1 : The assembier does not output the
A: .RES.B 1 : section DM to the object module.
B: ~ .RES.B 2

Specific methods for specifying data structures are described in the suppiement on the next page.

Suppiement:

. " As shown in figure 2-2, it is possibie to access areas in memory by using address symbols from a
dummy section.
Dats structure Memory
Relerence The start of
paint \.r " ares 1 e,
Address __) Thesian of a8 . }-cccoccnaccancnan.
symbal A tem A ! | Dummy 1 plus A Rtem A
Address —e= ro---ec-eomcooeeose - [section The stan of ares —e P-~s===vecccmcmsene } Area 1
symbot B H flem 8 . 1pius B tem 8 :
pesccccccccscancnce H b cceoncccccancanaas
eeememeeesannneed
The start of
area 2
The startof area .. posssmesomosonaoas
2plusA tem A '
The Sian of area —e f-----s-=-ccececcoe Area 2
2pus 8 ltem B

Figure 2-2 Data Structure Example Using Dummy Section

. Coding Example:

; in the example above,
; assume that R1 hoids the starting address of area 1 and R2 holds the starting address of
; area 2.

MOW.L €@(B,Rl),RO : Moves the contents of item B in area 1 to RO.
MOV.L RO,8(B,R2) ; Moves the contents of RO to tem B in area 2.
as .

CAUTION!

1. The following cannot be used in stack and dummy sections:

« Executable instructions
« Extended instructions

« Assembler directives that reserve initialized data
(.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, and .SDATAZ)

2. When using a data or common seclion, be sure to keep in mind whether that section is

reserved 10 ROM or RAM.

2.1.2 Absolute Address Sections and Relative Address Sections

A section can be classified as either an absolute address section or as a relative address section
depending on whether absolute start addresses are given to the sections at assembly.

(1) Absolute Address Sections

The memory location of absolute address sections is specified in the source program. and cannot
be changed by the linkage editor. In this assembly language, locations in an absolute address
section are expressed as absolute addresses, which are addresses that express the position in

memory itself.

Examples:

.SECTION ABS,DATA,OCATE=H:0000F 000

.DATA.W H'11l11

.DATA.W H'2222

; ABS is an absolute-address section.
: The starting address of section ABS is
; the absolute address H'0000F000.

; The constant H'1111 is reserved at
; the absolute address H'0000F000.

; The constant H'2222 is reserved at
; the absolute address H'0000F002.

36

(2) Relative Address Section

The location in memory of relative sections is not specified in the source program, but rather is
determined when the sections are linked by the linkage editor. In this assembly-language,
locations in a relative address section are expressed as relative addresses, which are addresses that
express the position relative to the start of the section itsclf.

Examples:
.SECTION REL,DATA,ALIGN=4' ; REL is a reiative address section.
; The starting address of section REL is
; determined after linkage.
.DATA.W H'1111 ; The constant H'1111 is reserved at the
; relative address H'00000000.
.DATA.W H'2222 ; The constant H'2222 is reserved at the
; relative addrass H'00000002.
Supplement: ‘ -

Dummy sections correspond neither to relative nor to absolute sections.

37

2.2 Absolute and Relative Values

Absolute values are determined when assembly compietes. Relaove values are not determined
until the linkage editor completes.

2.2.1 Absolute Values
The following are the absolute values handled by the assembler.
(1) Constants

« Integer constants
« Character constants
« Symbols that have a value that is one of the above (referred to below as constant symbols).

(2) Absolute Address Values

« The location counter referenced in an absolute address section
« The location counter referenced in a dummy section
 Symbols that have a value that is onc of the above (referred to below as absolute address

symbols).
(3) Other Absolute Values
Expressions whose value is determined when assembly compietes.
2.2.2 Relative Values
The following are the relative values handled by the assembler.
(0)) Rélative Address Values

« The location counter referenced in a relative address segment
+ Symbols that have the above as a value. (Such symbols are referred to as relative address
symbols.)

(2) External Reference Values
Symbols that reference another file (referred to below as import symbols).
(3) Other Relative Values

Expressions whose value is not determined until the linkage editor completes.

38

2.3 Symbol Definition and Reference
2.3.1 Symbol Definition
(1) Normal Definition

The normal method for defining a symbol consists of writing that symbol in the label field of a
source satement. The value of that symbol will then be the value of the location counter at that
point in the program.

Examples:

- bttt tdnbedacheinds bttt Sintudndebab ittt Stttk bt -
E .SECTION DT1,DATA, LOCATE=H'0000F000 ; This statement deciares an
: ; absolute address section.
]]
['
£ .DATA.W H'111l ; The value of X1 becomes H'0000F000. :
] '
] L}
3] .DATA.W H'2222 : The value of X2 becomes H'0000F002. !
: '
' — 1
]]
+ 1
) '
[e m e mmmeemmmm e m— et — - e m e —————————————— e
r- e b S L A
' .SECTION DT2,DATA, ALIGN=4 ; This statement declares a relative address
E ; section. :
] 1
' ¥ .oATA.W H'1111 ; The value of Y1 is determined when the |
H ; linkage editor completes, and its vaiue is |
i ; the stan address of the section. '

]
))
i YZ: .DATA.W H'2222 : The value of Y2 is determined when the E
' ; linkage editor completes, and its valua is |
H the start address of the section pius 2. .
1] 1

- - - D D S - S Y - - -

39

(2) Definition by Assembler Directive

Symbols can be defined by using assembler directives to set an arbitrary value or a special
meaning.

Examples:

DT1 is the section name.

A section namae is aiso a type of symbol,

a symbol that expresses the start

address of a section.

Howaever, the syntactic handling of address
symbols and section names is different.

.secrion T3, DATA, ALIGN=4

LI TR YL U Y

.

.EQU 100 ; The value of X is 100.
X cannot be redefined.

L)

e

The value of Yis 10.

{: ASSIGN 10
Y can be redefined.

z: -REG (R1) : Z becomes an alias of the generat
; register R1.
; Z cannot be redefined.

2.32 Symbol Reference
There are three forms of symbol reference as follows:

« Forward reference
« Backward reference
« Extemal reference

Supplement:

Figure 2-3 shows the meaning of the terms forward and backward as used in this manual.

File
Backward Program start
‘Referance posiion
Forward ' Program end

Figure 2-3 Meaning of the Terms Forward and Backward

Figure 2-4 shows the meaning of the term external as used in this manual.

File

File

[Helerence posiion

External

Figure 2-4 Maeaning of the Term External

41

(1) Forward Reference

Forward reference means referencing a symbol that is defined forward from the point of reference. .
i.c., is defined later in the program.
Examples:
BERA FORRBRD ; BRAis a branch instruction.
; This is a forward reference to the symbol FORWARD.
FOROR:

(2) Backward Reference

Backward reference means referring to a symbol that is defined backward from the point of
reference, i.c., is defined earlier in the program.

Exampies:
BRA B ; BRA is a branch instruction.
; This is a backward reference to the symbot BACK.

(3) External Reference

When a source program consists of multiple source files, a reference to a symbol defined in
another file is called an external reference. External reference is described in the next
section, 2.4, “Separate Assembly”.

42

2.4 Separate Assembly
2.4.1 Separate Assembly

Separate assembly refers to the technique of creating a source program in multiple separate source
files. and finally creating a single load module by linking together those source files’ object
modules using the linkage editor.

The process of developing software often consists of repeatedly correcting and reassembling the
program. In such cases, if the source program is partitioned. it will be only necessary to
reassembie the source file that was changed. As a result, the time required to construct the
complete program will be significanuly reduced.

if a source program is coliected If & source program is partitioned
together in a single file... into several files...
Processing 1 : Processing 1
............... : ‘ ~—File
Procassing 2] Processing 2
SUG——— —File :
XS . H . [
*Processing 37| Processing3 | !
Bt Cnrs: 2ouithoent B : File
Processing 4 3 Processing 4
................ § File
Processing 5 : Processing $
............... H File
Processing 6 | | Processing 6
- : Part of the source program that
’ requires changes.

! : Range of the program that must
be reassembiled.

Figure 2-5 Relationship between the Changed Range of the Program and
the Range of the Program that must be Reassembled

43

The procedure involved in separate assembly consists of steps (a) to (d).
(a) Investigate methods for partitioning the program.
Normally, programs are partitioned by function.
Note that the memory reservation of the section must aiso be considered at this point.
(b) Divide the source program into separate files and edit those files accordingly.
(c) Assemble the individual files.
(d) Link the individual object modules into a singie load module.
2.4.2 Declaration of Export Symbols and Import Symbols

When a source program consists of multiple files, referencing a symbol defined in one file from
another file is called “extemal reference” or “import.” When referencing a symbol externally (this
declaration is called “external definition” or “‘export™), it is necessary to declare to the assembler
that “this symbol is shared between multiple files.”

(1) Export Symbol Declaration

This declaration is used to declare that the definition of the symbol is valid in other filcs. .
EXPORT or .GLOBAL assembler directive is used to make this declaration.

(2) Import Symbol Declaration

This declaration is used to declare that a symbol is defined in another file. .IMPORT or.
GLOBAL assembler directive is used to make this declaration.

Examples:

In this example the symbol MAX is defined in file A and referenced in file B.

File A:
(o) MAX ; Declares MAX to be an exporn symbol.
MAX: .EQU 100 ; Dafines MAX.
File B:
FIMPORT, MAX : Declares MAX to ba an import symbpoi.
MOV #MAX, RO : References MAX.
References:
Symbol Export and Impon

— Programmer's Guide, 4.2.4, “Export and Import Assembler Direcuves”, .EXPORT,
IMPORT, .GLOBAL

(This page intentionally left blank.)

Section 3 Executable Instructions

This section describes the points that must be kept in mind when using executable instructions in
this assembler.

3.1 Overview of Executable Instructions

The executable instructions are the instructions of SH microprocessor. SH microprocessor
interprets and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

!<.m1>:] .A ie>].<op tion size>) IA<adnt.ssinq mode>{,<adaressing modejl {;<comment>)
- H J L H
(]

Cperston Operano Correners

This section describes the mnemonic, operation size, and addressing mode. The other elements
are described in dewail in section 1, “Program Elements”, in the Programmer’s Guide.

(1) Mnemonic

The mnemonic expresses the type of execuwable instruction. Abbreviations that indicate the type
of processing are provided as mnemonics for SH microprocessor instructions.

The assembler does not distinguish upper-case and lower-case letters in mnemonics.
(2) Operation Size
The operation size is the unit for processing data. The operation sizes vary with the executable

instruction. The assembler does not distinguish upper-case and lower-case letters in the operation
size.

Specifier Data Size

8 ’ Byte

w Word (2 bytes)

L ' Long word (4 bytes)

a7

(3) Addressing Mode

The addressing mode specifies the data area accessed, and the destination address. The addressing
modes vary with the executable instruction. Table 3-1 shows the addressing mode.

Table 3-1 Addressing Modes

Addressing Mode Name Description
Rn Register direct The contents of the general register Rn.
SR SR direct The contents of the status register (SR).
GBR GBR direct The contents of the global base register (GBR).
VBR VBR direct The contents of the vector base register (VBR).
MACH MACH direct The contents of the accumuiator register (MACH).
MACL MACL direct The contents of the accumulator register (MACL).
PR PR direct The contents of the procedure register (PR).
@Rn Register indirect A memory location. The vaiue in Rn gives the
start address of the memory accessed.
@Rn+ Register indirect A memory location. The vaiue in Rn (before being
with post-incremant incremented”’) gives the stant address of the
memory accessed.
SH microprocessor first uses the vaiue in Rn
for the memory reference, and increments Rn
afterwards.
@-Rn Register indirect A memory location. The vaiue in Rn (after being
with pre-decrement decremented"?) gives the starnt address
of the memory accessed. .
SH microprocaessor first decrements Rn, and then
uses that vaiue for the memory reference.
@(disp.Rn) Register indirect A memory location. The start address of the
with displacement "3 memory access is given by: the value of An pius
the dispiacement (disp).
The vaiue of Rn is not changed.
@(R0,Rn) Register indirect A memory location. The start address of the
with index memory access is given by: the value of RO plus
the vaiue of Rn.
The values of RO and Rn are not changed.
@(disp,GBR) GBR indirect with A memory location. The start address of the

displacement

memory accass is given by: the value of GBR plus
the dispiacement (disp).
The value of GBR is not changed.

Notes 1 to 3: See next page.

Table 3.1 Addressing Modes (cont)
Addressing Mode Name

Description

@(R0.GBR) GBR indirect A memory location. The start address of the
with index memory access is given by: the value of GBR plus
the value of RO.
The vaiues of GBR and RO are not changed.
@(disp.PC) PC relative with A memory location. The start address of the
displacement memory access is given by: the value of the PC
plus the displacement (disp).
symbol PC relative specitied [When used as the operand of a branch
with symbol instruction)
. The symbol directly indicates the destination
address.
The assembler derives a displacement (disp) from
>y the symbol and the value of the PC, using the
formula: disp = symbol - PC.
[When used as the operand of a data move
instruction]
- A memory location. The symbol expresses the -
starting address of the memory accessed.
The assembier derives a displacement (disp) fram
the symbol and the vaiue of the PC, using the
formula: disp « symbol - PC.
#imm immediate Expresses a constant.
Note: RAn A general register (RO to R15)™ :
SR The status register
VBR.....coomverernacnrmssonees The vector base register
PR The procedure register
RO The general register RO (when only RO can be specified)
GBRccoverrrescenecneenne ThO global base register
MACH, MACL.............. The accumulator register
PC The program counter

Notes: 1. Increment

The amount of the incremaent is 1 when the operation size is a byte, 2 when the
operation size is a word, and 4 when the opaeration size is a long word.

2. Decrement

The amount of the decrement is 1 when the operation size is a byte, 2 when the
operation size is a word, and 4 when the operation size is a long word.

3. Displacement

A displacemant is the distance between 2 points. in this assembly-language, the unit of

displacement values is in bytes.
4. Concerning R15

R15 can also be specified by the symbol SP. SP is an abbreviation for stack pointer, a

pointar to the stack area.

49

The values that can be used for the displacement vary with the addressing mode and the operation

s1ze.

Table 3-2 Allowed Displacement Values

Addressing Mode

Displacement®

@(disp,Rn)

When the operation size is byte (B):
H'00000000 to H'0000000F (0 to 15)

When the operation size is word (W):
H'00000000 to H'0000001F (0 to 31)

When the operation size is long word (L):
H'00000000 to H'0000003F (0 to 63)

@(disp,GBR)

When the opaeration size is byte (B):
H'00000000 to H'000000FF (0 to 255)

When the operation size is word (W):
H'00000000 to H'000001FF (O to §11)

When the operation size is long word (L):
H'00000000 to H'000003FF (0 to 1023)

@(disp,PC)

When the operation size is word (W):
H'00000000 to H'000001FF (010 511)

When the operation size is long word (L):
H'00000000 to H'000003FF (0 to 1023)

symbol

(When used as a branch instruction operand)

Whaen used as an operand for a conditional branch instruction (BT or BF):
H'00000000 to H'000000FF (O to 255)
HFFFFFF00 to HFFFFFFFF (-256 to -1)

When used as an operand for an unconditional branch instruction

"(BRA, BSR, JMP, JSR, or RTS)

H'00000000 to H'00000FFF (O to 4095)
HFFFFF000 to H'FFFFFFFF (~4096 to -1)

[When used as the operand of a data move instruction]
When the operation size is word (W):

H'00000000 to H'000001FF (0to 511)
When the oparation size is long word {L):

H'00000000 to H'000003FF (0 to 1023)

Note: * Units are bytes, numbers in parentheses are decimal.

S0

The values that can be used for immediate values vary with the executable instruction.

Table 3-3 Allowed Immediate Values

Executable Instruction Immaediate Value
TST, AND, OR, XOR H'00000000 to H'000000FF (0 to 255)
MOV H°00000000 to H'000000FF (0 to 255)
H'FFFFFFB0 to HFFFFFFFF (-128t0 -1)*
ADD, CMP/EQ H'00000000 to H'0O00000FF (0 to 255)
HFFFFFFB0 to HFFFFFFFF (-128to0 -1) *
TRAPA H'00000000 to H"000000FF (0 to 255)
Note: * Valuas in the range H'FFFFFF80 to H'FFFFFFFF can be written as positive decimal
vaiues.
CAUTION!

The assembler corrects the value of displacements under certain conditions.

Condition - Type of Correction

Whaen the operation size is a word and the The lower bit of the displacement is
displacement is not a muttiple of 2 discarded, resulting in the value being
a muitiple of 2.

1l

When the operation size is a long word and | — | The lower 2 bits of the displacament are T

the displacament is nat a multiple of 4 -+ | discarded, resulting in the vaiue being
— | a multiple of 4.

When a displacement of the branch - — | The iower bit of the displacement is

instruction is not a multiple of 2 — | discarded, resulting in the value being
- | a mutiple of 2.

Be sure to take this correction into consideration when using operands of the mode
@(disp.Rn), @(disp.GBR), and @(disp.PC).

Example: MOV.L @(63,R0)

. The assembler corrects the 63 to be 60, and generates object code identical to that for the
statement MOV.L @(60,R0), and wamning number 870 occurs.

51

3.2 Notes on Executable Instructions

3.2.1 Notes on the Operation Size

The operation sizes that can be specified vary with the mnemonic and the addressing mode
combination. Table 3-4 shows the allowable executable instruction and operation size
combinations, ‘

Table 34 Executable Instruction and Operation Size Combinations (part 1)

1. Data Move instructions Opaeration Sizes

. Default when
Mnemonic Addressing Mode B w L Omitted
MOV #immBn Q A a B
MOV @uspPORN ~ o o L T
MOV eymbolRn < o o . T
MOV ReRm " x x o LT
MOV Rn@Rm T o o o « 7T
MOV @RmAm o o o v T
MOV Rn@-Rm - = -
MOV @Res.Am o o o L 77T
MOV TTRo@@ispRn) o o o L T
MOV Rn.@(disp.Am) T x x o L T
MOV @WiseRaMRO o o o « T
MOV @@ispAn)Am *x x o L T
MOV Rn.@(RO,Am) - o0 o o L T
MOV @(R0,Rn).Am o o o L T
MOV RO.@(disp.GBR) o o o L T
MOV @(disp.GBRLRO "o o o L T
MOVA @@spPORO x x o L T
MOVA symbolRO x x o L 7
MOVT Rn) . -
SWAP | Rafm o o x w7
XTRCT RaRm x x o L T
Notes: 1. In this case Rn must be one of R1 1o R15.

2. in this case Rm must be one of R1 to R15.

52

Table 3-4 Executable Instruction and Operation Size Combinations (part 1) (cont)

Symbol meanings:
Rn, RM cerceneeecaenns A general register (RO to R15)
£ R The status register
VBR..........cccoeeeneeeee. Th VECTOr Dase register
(24 5 R, .. The procedure register
210 JRO, The general register RO (when only RO can be spacified)
GBR.....corererrncrrnane The giobal base register
MACH, MACL......... The accumulator register
PC eiiecccencaccssscns .. The program counter
(11,1 | FRRO, An immediate value
symbol ... A symbol
L. 1T 7 T A disptacement vaiue
B eeerrnrecnnencesaesanasasse Byte
L reeeeeccmenosisennssssnanans Long word (4 bytas)
W.eeeee eeeeenenenes Word (2 bytes) ° : -
[© Y UTUO O Valid specification
PR — Invalid specification: ' -
The assembier regards instructions with this combination as the spacification
being omitted.
. QPRI The assembler regards them as extended instructions.
References: -
Extended Instructions
— Programmer’s Guide, 8.2, “Exiended Instructions Related to Automatic Literal Pool
Generation”

S3

Table 34 Executsable Instruction and Operation Size Combinations (part 2)

2. Arithmetic Operation instructions

Operation Sizes

Defauit when
Mnemonic Addressing Mode B w L Omitted
ADD RAn,Rm x O L
ADD #mmAn i T T o 0 T
ADDC RnAm . *x x o L T
ADDV RnRm - *x x o L T
CMPEQ #immRo - x x o v T
CMPEQ) ReRm x ""x‘““.:s""-i ____________
CMP/HS) Rn,Rm T -x- x -6““-1-. ------------
CMPGE RaRm x x o L 7
-CMP/HI Rn.Rr-n -------------------------- ; "“;-“"O"""-L ------------
CMPGT RaRm T x x o L 7
cMPPZ R0 T x x o L
CMPPL R TS x x o L T
CMPSTR | RnRm 5 x x o L
ovi ReRm x x o L
oIvos Rn.Rr;: x ""x""":S"-"I.
pvou T o eperands) | x x x —
EXTS o Rn.Rm"" ----------------- 6 "“(—)"";“““W -----------
EXTU Rn,Am o o o x w T
MAC @Rne@Rme x o x w7
MULS RaRm 7% x x o L 7
MULU ReRm) x x o L
NEG | RnRMm x x o L T
NEGC ReRm x x o L
suB - Rn,Rt;\ x "“x""“:;“""L ------------
susc 1 AnRm x x o v 7
suev | RmAm T x x o L 7

Table 3-4 Executable Instruction and Operation Size Combinations (part 3)

3. Logic Operation instructions

Operation Sizes

Default when

Mnemonic Addressing Mode B w L Omitted

AND Rn,Rm x x 0 L

AND - #mmAo x x o L Tt
AND #mm@RO.GBR) < o x x B 77T
NOT “"Rn.Rm -
OR Rn,Rm T x x O TTTUTT
OR TsimmRAo 5 x x o L T
OR #mm.@RO.GBR) < o x x B 7T
TAS @Rn T T o x x 8
TsT “TRnAm T TTTTTTTTT
TST gmmRO x x o L T
ST #imm.@(RO.GBR) « o x x B TTC
XOR Ramm TS x x o L T
XOR #mmRO > x x o o T
XOR #imm.@(R0.GBR)) o x x B8

S5

Table 3-4 Executable Instruction and Operation Size Combinations (part 4)

4. Shift Instructions Operation Sizes

Default when
Mnemonic Addressing Mode B w L Omitted
ROTL Rn X O L
ROTR Rn x x 6““-1 ------------
ROTCL Rn *x x o i U
ROTCR Rn) T x x o L T
SHAL Rn x x o L
SHAR Rn } x x o L 7T
sSHLL Ra x x o u T
SHLR Rn T *x x o LT
SHLL2 Ra TN x x o L T
SHLR2 Rn TS x x o LT
SHLL8 An o x x o L 7T
SHLR8 Rn TS x x o L T
SHLL16 Rn TS x x o L T
SHLR16 Rn T *x x o L T

Table 34 Executable Instruction and Opi:ration Size Combinations (part 5)

§. Branch Instructions Operation Sizes

Defauit when
Mnemonic Addressing Made B- W L Omitted
BF symbot x x x —
BT T symbol T xx < =TT
BRA symbol T} x x x =TT
BSR o symbol TTTTTTTTTTTTTTTTTTTTT, x x x =TT
JMP @Rn - XTI
JSR _@mn T x x x =T
RTS T (nooperands) x x x —

56

Table 3-4 Executable Instruction and Operation Size Combinations (part 6)

5; System Control instructions

Operation Sizes
Defauit when

Mnemonic Addressing Mode B w L Omitted
CLRT (no operands) x x x —
Cwmmac (o operands) | x % x e
LDC Rn,SR x x "5“'"1
1DC Rn,GBR T x x o L 77T
oc Rn.VBR) x x o L 77
[hYe @Rn+.SR x x o t
1pc @RrmGBR x x o L 7T
LDC @Rn+.VBR - XX o TTTTUTTTTTT
LDS Rn.MACH ot x x o L
1Ds RmMACL TS o
Lbs RnPR - N
DS @Rn+ MACH ” x x o L 7 -
DS @Rn+.MACL x x o v - ~
ws @Rne.PR S x x o U T
NOP (no op;r-a-n:!s) x ”x x TTTTTTTTTTTTT
RTE T o eoperands) | x| x ox — -
SETT (mopor.a.n;!s) x "x X - T
SLEEP) (o operands) | x x % —
STC SR.Rn x x o i
STC GBR.Rn T x x o L 77
STC VBR.Rn x % o L
STC SR@Rn . TS x x o L
sTC GBR.@-Rn x x o L
STC VBR@-Rn T x x o TTUTTTTTTT
sTS MACHRn T x x o L T
STS MACLRn TR TS
STS PRAN x X UTSTTTTOTUTT
sTs MACH@-Rn x X TUSTTTTTUUTUTTTT
STs "MACL.@-Rn T X OXTTTUTSTTTTTUOTTTT
sTs PR@-An TS OTTTTTTT
TRAPA gimm TS %k TSTTTTROTTT

57

3.2.2 Notes on Delayed Branch Instructions

The unconditional branch instructions (BRA, BSR, JMP, ISR, RTS, and RTE) are delayed branch
instructions. SH microprocessors execute the delay siot instruction (the instruction directiy
following a branch instruction in memory) before executing the delayed branch instruction.

If an instruction inappropriate for a delay slot is specificd, the assembler issues error number 150.

Table 3-5 shows the relationship between the delayed branch instruction and the delay slot
instructions.

Table 3-5 Relationship between Delayed Branch Instruction and Delay Slot Instructions

Delayed Branch
Delay Siot BRA BSR JMP JSR RTS RTE
BF x X x X x x
8T x X x x X x
BRA x x x x x x
BSR x x x x x x
JMP x x x x x X
-JSR X X x x x x
RTS x x x x x x
RTE x x x x x x
TRAPA x x x x x
MOV @(disp,PC),Rn A A A A A A
symbol.Rn a A x x x x
MOVA @(disp.PC),RO A A a A A a
symbol,RO A A x x x
Extended MOV.L #imm.Rn x X x x x x
instructions MOV.W #imm.Rn x x x x x x
MOVA #imm RO x x x x x
Any other instruction o o]

o QO ®; ®)
Symbol meanings: '
O Normal, i.e., the assembler generates the specified object code.

A Waming 871
Note on the vaiue of PC: PC =« <destination address for the delayed branch instruction> + 2
The assembier generates the specified object code.

X e Error 150 or 151
The instruction specified is inappropriate as a delay siot instruction.
The assembler generates object code with a NOP instruction (H'0009) in the object code.

58

CAUTION!

If the delayed branch instruction and the following instruction are coded in different sections. the
assembier does not check the delay slot instruction.

References:

Extended Instructions
— Programmer’s Guide, 8.2, “Extended Instructions Related to Automatic Literal Pool
Generation”

3.23 Notes on Address Calculations

When the operand addressing mode is PC relative with displacement, i.e., @(disp,PC), the vaiue
of PC must be taken into account in coding. The vaiue of PC can vary depending on cenain
conditions. -

(1) Normail Case

The value of PC is the first address in the currently executing instruction plus 4 bytes.

Examples:
(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Memory

Absolute addresses
H'00001000 MOV.L @(8,PC).R0

PC| H'00001004 }

-disp = 8 bytes

H'0000100C | Area being
accessaed

4

2 bytes

Figure 3-1 Address Calculation Example (normal case)

59

(2) During the Delay Slot Instruction

The value of PC is destination address for the delayed branch instruction plus 2 bvtes.

Exampiles:

(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Absolute addresses

H'00001000

L1 « H'00001006

Memory

BRA L1

MOV.L @(8.PC),R0O

Sranch destnaton tor the

PCl H'00001008 }

H'00001010 |

Area being
accessed

v

2 bytes

disp = 8 bytes

Figure 3-2 Address Calculation Example (when the vaiue of PC differs due to a branch)

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

60

(3) During the Execution of Either a MOV.L @(disp.PC),Rn or a MOVA @(disp.PC).R0

When the value of PC is not a muitiple of 4 SH microprocessors correct the value by discarding
the lower 2 bits when calculating addresses.

Exampies: 1. When SH microprocessor corrects the value of PC.
(Consider the state when a MOV instruction is being executed at absolute
address H'00001002.)

Memory
Address
H'00001002 MOV.L @(8.PC).R0

H'00001004

disp = 8 bytes

The vaiue of the PC H'0000100C
is corrected to be
a muttiple of 4.

I— Area being accessed ~—

A

2 bytes

Figure 3-3 Address Caiculation Example
{when SH microprocessor corrects the vaiue of PC)

2. When SH microprocessor does not correct the value of PC.
(Consider the state when a MOV instruction is being cxecuted at absolute
address H'00001000.)

Memory
Address
H'00001000 MOV.L @(8,PC).R0

PC |H'00001004

The value of the PC
is not changed. H'0000100C

disp = 8 bytes

— Area being accessed —

'

2 bytes

Figure 3-4 Address Calculation Example
(when SH microprocessor does not correct the value of PC)

61

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

62

Section 4 Assembler Directives

4.1 Overview of the Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. Table 4-1
lists the assembier directives provided by this assembier.

Table 4-1 Assembler Directives

Type Mnamonic Function

Section and the location .SECTION Declares a section.

counter ORG Sets the value of the location counter.
ALIGN Corrects the vaiue of the location counter.

Symbolis EQU Sets a symbol vaiue (reset not allowed).
.ASSIGN Sets a symbol value (reset allowed).
.REG Definas the alias of a register name.

Data and data area .DATA Reserves integer data.

reservation .DATAB Reserves integer data blocks.
.SDATA Reserves character string data.
.SDATAB Reserves character string data blocks.
SDATAC Reserves character string data (with langth).
.SDATAZ Reserves character string data (with zero

terminator).
.RES Reserves data area.
SRES Reserves character string data area.
.SRESC Reserves character string data area (with length).
.SRESZ Reserves character string data area (with zero
terminator).
Export and import symbol .EXPORT Declares export symbois.
' IMPORT Declares import symbols.

.GLOBAL Declares export and import symbols.

Object modules OUTPUT Controls object module output.
.DEBUG ~ Controts the output of symbolic debug information.

Table 4-1 “Assembler Directives (cont)

Type Mnemonic Function
Assemble listing .PRINT Controls assembie listing output.
LIST Controls the output of the source program iisting.
.FORM Sets the number of fines and columns in the
assemble listing.
.HEADING Sets the header for the source program listing.
.PAGE Insens a new page in the source program listing.
.SPACE Outputs blank lines to the source program fisting.
Other directives .PROGRAM Sets the name of the object module.
RADIX Sets the radix in which integer constants with no
radix specifier are interpreted.
.END Deciares the end of the source program.

4.2 Assembler Directive Reference
4.2.1 Section and Location Counter Assembler Directives

This assembler provides the following assembler directives concerned with sections and the
location counter.

.SECTION |

Declares a section.

.ORG |

Sets the value of the location counter.

| ALIGN |

Adjusts the value of the location counter 10 a muitiple of the boundary alignment value.

65

.SECTION

Section Declaration

Syntax

.SECTIONA<section name> [,<section attribute> [, {LOCATE=
<start address>,ALIGN=<boundary alignment value>}]]

Statement Elements
1. Label

The label field is not used.
2. Operation

Eater the .SECTION mnemonic in the operation field.
3. Operands
a. First operand: the section name
The rules for section names are the same as the rules for symbols.

References: Naming sections
' — Programmer’s Guide, 1.3.2, “Coding of Symbols™

b. Second operand: the section atribute

Attribute Section Type
?OD %7 o Code section
DATA Data section
STACK Stack section
COMMON Common section
DUMMY Dummy section

The shaded section indicates the default value when the specifier is omitted.

The section usage type is determined by the attribute specification.
When the specification is omited, the section will be a code section.

66

.SECTION

c. Third operand: start address or boundary alignment vaiue

Specification Section Type
LOCATE = <starnt address> Absolute address section
ALIGN = <boundary alignment value> Relative address section

The specification determines whether the section type will be an absolute address section
or a relative address section. When the specification is omitted, the section will be a
relative address section with boundary alignment value of 4.

Description

1. .SECTION is the section declaration assembler directive.

A section is a part of a program, and the linkage editor regards it as a unit of processing. The
following describes section declaration using the simple examples shown below.

— Source program
SECTIONALCU, CODE, ALIGN=4 «—{— This statement declares the start of

i s eeeeemenmenaeann, section CD.
: Source statement set 1~ : «a—i— This part of the source program
belongs to section CD.
TSECTION - DI DATA, ALIGCN=3 i This statement declares the starnt
yememececcecamamseemsmmmemmenseanenaans , of section DT.
Source statement set 2 \ <a—}— This part of the source program

belongs to section DT.

L This statement declares the start of
saction DM.

L This part of the source program
belongs to section DM.

|__ This statement deciares the end ot the
source program.

Note: * This example assumes that the .SECTION
assembler directive does not appear in any
of the source statement sets 1 to 3.

67

[.SECTION |

2. Itis possible to redeclare (and thus restart, i.e., re-enter) a section that was previously
declared in the same file. The following is a simpie example of section restart.

— SOUurce program
.SECTION CD, CODE, ALIGN=4 «a—— This statement declares the start of
eeeeceseessmcomsecensenncaseensennnn . section CD.
: Source statement set 1" ! <a—— This par of the source program
: : belongs to section CD.
.SECTION DT, DATA,ALIGN=4
: Source statement set 2 :
FSECTION -XCDi ~—— This statement daclares the restan
- reeemcesenmcomaemann - of section CD.

: : «s—t+— This pant of the source program
: ' aiso belongs to section CD.

: : (This part of the program is a
continuation of source statement set 1.)

.END

Note: * Tﬁis example assumas that the .SECTION
assembler directive does not appear in any
of the source statement sets 1 to0 3.

CAUTION!

When using the .SECTION assembler directive to restart a section, the second and third operands
must be omitted. (The oniginal specifications when first declaring the section remain valid.)

3. Use LOCATE = <start address> as the third operand when starting an absolute address
section. The start address is the absolute address of the start of that section.

The start address must be specified as follows:

» The specification must be an absolute value,
and,
« Forward reference symbols must not appear in the specification.

68

| .sEcTION

The values allowed for the start address are from H'00000000 to HFFFFFFFF. (From
—2,147,483,648 10 4,294,967.295 in decimal.)

Use ALIGN = <boundary alignment value> to start a relative address section. The linkage

editor will adjust the start address of the section to be 2 multiple of the boundary alignment
value.

The boundary alignment value must be specified as follows:

« The specification must be an absolute value, .
and,

« Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 2°, 21,22, ... 23L.
For code sections, the values must be 4 or larger powers of 2, e.g. 22,23, 24, ..., 231,

The assembler provides a default section for the following cases.

.« The use of executable instructions when no section has been declared.
« The use of data reservation assembler directives when no section has been deciared.
« The use of the .ALIGN assembler directive when no section has been declared.
« The use of the .ORG assembler directive when no section has been declared.
« Reference 1o the location counter when no section has been declared.

« The use of statements consisting of only the label field when no section has been
declared.

The default section is the following section.

e Section name: P
« Sectiontype: Code section :
Relative address section (with a boundary alignment value of 4)

69

| .sEcTION

Coding Example
[sfntutedtiietetdad ettt dddesieshedeha ittt -
: .ALIGN q 1 ; This secton of the program belongs © the default secon P.
E .DATA.L H'11111111 E ; The defauit secton P is & code section. and is a relaove
: —_— : ; address secuon with a boundary alignment vaiue of 4.
| S p U ——— -
[EEERTOH,ICD, CODE, ALIGN=4
r === "%
: MoV RO,R1 1 - This saction of the program belongs 1o the section CD.
E MoV RO,R2 E ; The secton CD is a code sechon. and i1s a relabve adoress
: — : ; SeChONn with & bounaary aignment value of 4.
[- ool

S ERrTON= DT, DATA, LOCATE=H 00001000

-—— - - -———

X1: .DATA.L H'22222222 :
.DATA.L H'33333333 :
]
[]

—

P LT

-END

LTI T I 1)

This secnon of the program belongs 10 the secton DT.
The secvon DT is a data secoon, and is an absolute address
secthion with a start address of H00001000.

Note: This example assumes the .SECTION assembler directive does not appear in the parts

indicated by *~".

70

.ORG

Location-Counter-Value Setting

Syntax

.ORGA<location-counter-value>

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .ORG mnemonic in the operation field.
3. Operands

Enter the new vaiue for the location counter in the operand field.
Description

1. .ORG is an assembier directive that sets the vaiue of the location counter. The .ORG
assembler directive is used to place executable instructions or data at a specific address.

2. The location-counter-value must be specified as follows:

« The specification must be an absolute value or an address within the section,
and,
« Forward reference symbols must not appear in the specificauon.

“The values allowed for the location-counter-value are from H'00000000 to H'FFFFFFFF.
(From -2,147,483,648 10 4,294,967,295 in decimal.)

When the location-counter-value is specified with an absolute value, the following condition
maust hold:

<location-counter-value> 2 <section stant address> (when compared as unsigned values)

7

3. The assembler handles the value of the location counter as follows.

The value is regarded as an absolute address value within an absolute address section.
The value is regarded as a relative address value within a relative address section.

Coding Exampie

Absolute address
HFFFFO000 —= 22 H11111111

Absolute address i the .ORG assembier directive.
HFFFF0010 —={ %% H'22222222 "

DT, DATA, LOCATE=H 'FFFF0000 |

H'11111111

H'FFFF0010 : This statement sets the value of the iocation
counter.

H'22222222 The integer data H'22222222 is stored at

; absolute address H'FFFF0010.

Memory

Locations from H'FFFF0004
to H'FFFFOOOF are not
changed due to the use of

72

.ALIGN

Location-Counter-Value Correction

Syntax

.ALIGNA<boundary alignment value>

Statement Elements
1. Label
The label field is not used.
2. Operatnon
Enter the .ALIGNv mnemonic in the operation ficld.
3. Operands

Enter the boundary alignment value (the basis for adjusting the location-counter-value) in the
operand field.

Description

1.

.ALIGN is an assembier directive that corrects the location-counter-value to be a multiple of
the boundary alignment value. Executable instructions and data can be allocated on specific
boundary values (address multiples) by using the .ALIGN assembler directive.

The boundary alignment value must be specified as follows:

« The specification must be an absolute vaiue,
and,
« Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 2°, 2!, 22, ..., 231,

The boundary alignment value specified by .ALIGN directive must be less than or equal to
the boundary alignment value specified by .SECTION directive.

When .ALIGN is used in a code section, data section, or dummy section, the assembler
inserts NOP instructions in the object code® to adjust the value of the location counter. Odd
byte size areas are filled with H'09.

73

.ALIGN

When .ALIGN is used in a dummy or stack section, the assembler oniy adjusts the value of
the location counter, and does not fill in any object code in memory.

Note: * This object code is not displayed in the assemble listing.

Coding Example

-DATA.B H'1l1
.DATA.B H'22
.DATA.B H'33

FALTGN] 2 ; This statement adjusts the vaiue of the location
.DATA.W H'4444 ; counter to be a muttiple of 2.
pran(e g 4 ' ; This statement adjusts the value of the location
.DATA.L H*'55555555 ; counter to be a multipie of 4.

r]
E Explanatory Figure for the Coding Exampie E
))
E This example assumes that the byte sized integer data H'11 is originally located at the J
E 4-byte boundary address. The assembler will insert the filler dawa as shown in the figure -
E below. : :
: Memory '
] m‘ :
E boundary ; !
) [
: '
i H11 : H22 ; H33 ' H'09 ;
: H4d444 | - H0009 ;
' H'55555555 . .
: — : Codes filled in by '
i the assembler. E
' \ ~/ :
] v)
E 4 bytes E

o

cenoco- - - - " - - -

74

4.22 Symbol Handling Assembler Directives

This assembler provides the following assembler directives concerned with symbols.

| EQU |

Sets a symbol value.

| .ASSIGN

Sets and resets a symbotl value.

.REG

Defines the alias of a register name.

75

[.EQU |

Symbol Value Setting (resetting not allowed)

Syntax

<symbol>{:]A.EQUA<symbol value>

Statement Elements
1. Label

Enter the symbol that is to be set a value in the label field.

2. Operation
Enter the .EQU mnemonic in the operation field.
3. Obeﬁnds

Enter the value to be set to the symbol in the operand ficld.
Description
1. .EQU is an assembler directive that sets a value to a symbol.
Symbols defined with the EQU directive cannot be redefined.
2. The symbol value must be specified as follows:

» The specification must be an absolute value or an address value,
and,
+ Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to HFFFFFFFF. (From
-2,147.483:648 10 4,294 967,295 in decimal.)

76

.EQU

Coding Example
Xi: 90 10 ; The value 10 is setto X1.
X2: FEQU 20 ; The vaiue 20 is set to X2.
CMP/EQ #X1,R0 ; This is the same as CMP/EQ #10.R0.
BT LABEL1
CMP/EQ #X2,RO ; This is the same as CMP/EQ #20,R0.
BT LAREL2

77

.ASSIGN

Symbol Value Setting (resetting aillowed)

Syntax

<symbol>(:]A.ASSIGNA<symbol value>

Statement Elements
1. Label
Enter the symbol that is to be set a value in the label field.
2. Operation
Enter the .ASSIGN mnemonic in the operation field.
3. Operands
Enter the value to be set to the symbol in the operand field.
Description
1. .ASSIGN is an assembler directive that sets a value to a symbol.
Symbols defined with the .ASSIGN directive can be redefined with the .ASSIGN directive.
2. The symbol value must be specified as follows: .

» The specification must be an absolute value or an address value,
and,
» Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to HFFFFFFFF. (From
-2,147.483,648 t0 4,294 ,967.295 in decimal.)

3. Definitions with the .ASSIGN directive are valid from the point of the definition forward in
the program.

78

ASSIGN |

4. Symbols defined with .ASSIGN have the following limitations:

They cannot be used as export or import symbols.
They cannot be referenced from the simulator/debugger.

Coding Example

X1: TRSSIGN. 1

X2: JASSIGN 2 .
CMP/EQ #X1.RO ; This is the same as CMP/EQ #1 RO.
BT LABEL1 .
CMP/EQ #X2.RO : This is the same as CMP/EQ #2,R0.
BT LABEL2 . ’

X1: TRSSIGN. 3

X2: PASSIGN: 4
CMP/EQ #X1,RO ; This is the same as CMP/EQ #3.R0.
BT LAEEL3
CMP/EQ #X2,R0O ; This is the same as CMP/EQ #4,R0.
BF. LABEL4

79

Alias of a Register Name Definition

Syntax

<symbol>[:)A.REGA(<register name>)

Statement Elements

1

Label

Enter the symbol to be defined as the alias of a register name in the label field.
Operation

Enter thc. REG mnemonic in the operation field.

Operands

Enter the register name for which the alias of a register name is being defined in the operand
field.

Description

1.

REG is the assembler directive that defines the alias of a register name.

The alias of a register name defined with .REG can be used in exactly the same manner as the
original register name.

The alias of a register name defined with .REG cannot be redefined.
The alias of a register name can only be defined for the general registers (RO to R15, and SP).

Definitions with the .REG directive are valid from the point of the definition forward in the
program.

Symbols defined with .REG have the following limitatons:

* They cannot be used as export or import symbols.
* They cannot be referenced from the simulator/debugger.

80

Coding Example

MIN: TREG (R10)

MAX: treG] (R11)
MOV #0,MIN ; This is the same as MOV #0,R10.
MOV #99,MAX ; This is the same as MOV #99 R11.
CMP/HS MIN,R1
BF LABEL
CMP/HS R1l,MAX
BF LABEL

81

4.2.3 Data and Data Area Reservation Assembler Directives

This assembler provides the following assembler directives that are concerned with data and data

area reservation.

[.DATA

| DATAB

| . SDATA

1 .SDATAB

[. SDATAC

[.SDATAZ

| .SRES

[. SRESC

] .SRESZ.

Reserves integer data.

Reserves integer data blocks.

Reserves character string data.

Reserves character string data blocks.

Reserves character string data (with length).
Reserves character string data (with zcré terminator).
Reserves data area.

Reserves character string data area.

Reserves character string data area (with length).

Reserves character string data area (with zero terminator).

82

.DATA

Integer Data Reservation

Syntax

{<symbol>{:])A.DATA(.<operation size>jA<integer data>(,<integer cata>....

Statement Elements
1. Label

Enter a reference symbol in the label field if required.
2. Operation

a. Mnemonic
Enter .DATA mnemonic in the operation field.

b. Operation size
Spscifier Data Size
8 Byte
w Word (2 bytes)

L======:=4W Long word (4 bytes)

PERERCTEgE A4

The shaded section indicates the default value when the specifier is omitted.

The specifier determines the size of the reserved data.
The long word size is used when the specifier is omitied.

3. Operands

Enter the values 1o be reserved as data in the operand field.
Description
1. .DATA is the assembier directive that reserves integer data in memory.

2. Arbitrary values, including relative values and forward reference symbols, can be used 1o
.specify the integer data.

83

—

.DATA

3. Therange of values that can be specified as integer data varies with the operation size.

Operation Size integer Data Range*®

B H'00000000 to H'000000FF (O to 255)
HFFFFFF80 to HFFFFFFFF (-128t0 -1)

w H'00000000 to H'0000FFFF (0 to 65,535)
H'FFFF8000 to HFFFFFFFF (~32,768 to -1)

L H'00000000 to H7FFFFFFF (O to 4,294,967,295)
H'80000000 to H'FFFFFFFF (-2,147,483,648t0 -1)

Note: * Numbers in parentheses are decimal.

Coding Example
ALIGN 4 ; (This statement adjusts the value of the
location counter.)
X: PBRTAL. H'111111ll :
sDATA.WZ H'2222,H'3333 : These statements reserve integer data.
YORTA.B] H'44,H'SS :

(eemermecccccscccccmascmr e ey

Explanatory Figure for the Coding Example

Memory

Address symbol

X

SN 11 11 11

2222 [33 33
44 [55

[J

Note: The data in this figure
is hexadecimal.

- - -~ - - -

84

.DATAB

Integer Data Block Reservation

Syntax

{<symbol>[:])A.DATAB(.<cperation size>}A<block count>,<integer data>

Statement Elements
1. Label

Enter a reference symbol in the label field if required.
2. Operation

a. Mnemonic
Enter .DATAB mnemonic in the operation field.

b. Operation size
Specifler Data Size
8 Byte
w Word (2 bytes)

L-s=m=~er3 Long word (4 bytes)

‘The shaded section indicates the default vaiue when the specifier is omitted.

The specifier determines the size of the reserved data.
The long word size is used when the specifier is omited.

3. Operands

a. First operand: block count
Enter the number of times the data value is repeated as the first operand.

b. Second operand: integer data
Enter the value to be reserved as the second operand.

—

.DATAB

Description

1.

.DATAB is the assembler directive that reserves the specified number of integer data
consecutively in memory.

The block count must be specified as follows:

« The specification must be an absolute vaiue,
and,
» Forward reference symbols must not appear in the specification.

Arbitrary values. inciuding relative values and forward reference symbols, can be used w0
specify the integer data.

The range of values that can be specified as the block size and as the integer data varies with
the operation size. -

Operation Size Block Size Range*

B H'00000001 to HFFFFFFFF (1 t0 4,294,967,295)

w H'00000001 to H7FFFFFFF (1 10 2,147.483,647)

L H'00000001 to H3FFFFFFF (1 to 1,073,741,823)

Operation Size integer Data Range®

8 H'00000000 to H'000000FF (0 to 255)
HFFFFFF80to HFFFFFFFF (-12810 -1)

w H'00000000 to H'O00OFFFF (0 to 65,535)
HFFFFB000 to HFFFFFFFF (-32,76810 -1)

L H'00000000 to H7FFFFFFF (0 to 4,294,967,295)

H'80000000 to HFFFFFFFF (-2,147.483,648 to -1)

Note: * Numbers in parenthesas are decimal.

86

| .DATAB

Coding Example
.ALIGN 4 ; (This statement adjusts the vatue of the
; location counter.)
X: [BRTAE.L, 1,H°'11111111 :
EDATAB.W: 2,H'2222 ; This statement reserves two blocks of integer
BT 3,H'33 ; data.

Explanatory Figure for the Coding Example

Memory
Addrass symbol
X

11 11 117 11
22 22122 22
33 {33 | 33 |

Note: The data in this figure
N J is hexadecimal.

O L LR L LR R R it |

=S = = N E e E . e - - SeSessateae - - oo

beccrcccesewessssmes~eemm—meeo-o~=

87

| .spama

Character String Data Reservation

Syntax

(<symbol>(:)]A.SDATAA"<character string>”[,"<character string>”...]

Statement Elements
1. Label
Enter a reference symbol in the label field if required.
2. Operation
Enter the .SDATA mnemonic in the operation field.
3. Operands
Eater the character string(s) to be reserved in the operand field.
Description
1. .SDATA is the assembler directive that reserves character string data in memory.
References: Character strings — Programmer’s Guide, 1.7, “Character Strings”
2. A control character can be appended to a character string.

The syntax for this notation is as follows.

"“<character string>”<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

* The specification must be an absolute value,
and, '
* Forward reference symbols must not appear in the specification.

88

.SDATA

Coding Exampie
.ALIGN 4 ; (This statement adjusts the vaiue of
; the location counter.)
Xz TSDATA] "ARAAA" ; This statement reserves character string data.
ESDATAY " *EBB""" ; The character string in this example includes
; double quotation marks.
TShATA® “RBAB"<H'07> ; The character string in this example has
: a control character appended.
o e e e e e e S TS S TS S S S ST T E e]
i Explanatory Figure for the Coding Exampie i
' '
1] [
E Memory :
¢ Address '
{ symbol :
¢ X 414141 41 '
: 41 | 22 42 42 '
! 42 22|41 42 :
; 41 42 07] Notes: 1. The data in this figure is E
! hexadecimal. H
)]
l 2. The ASCHi code for “A” is: H'41. |
; N) The ASCII code for "B” is: H'42. |
! e The ASCIl code for “=* is: H'22. !
| 4 bytes :
e mmcmmmmeemeeece—cmeeeceeesmmemmeemmemmmmeese-e-ee——mee—mm—e——— J

89

.SDATAB

Character String Data Blocks Reservation

Syntax

[<symbol>([:]]A.SDATABA<block count>, “<character string>”

Statement Elements
1. Label

Enter a reference symbo! in the label field if required.

2. Operation
Enter the .SDATAB mnemonic in the operation field.
3. Operands

a. First operand: <block count>
Enter the number of character strings as the first operand.

b. Second operand: <character string>
Enter the character string to be reserved as the second operand.

Description

1. .SDATAB is the assembler directive that reserves the specified number of character strings
consecutively in memory.

References: Character strings — Programmer’s Guide, 1.7, “Character Strings”
2. The <block count> must be specified as follows:

« The specification must be an absolute vaiue,
and,
« Forward reference symbols must not appear in the specification.

A value of 1 or larger must be specified as the block count.

The maximum value of the block count depends on the length of the character string data.

90

.SDATAB

(The length of the character string data multiplied by the block count must be less than or
equal to HFFFFFFFF (4,294,967,295) bytes.)

A control character can be appended to a character string.

The syntax for this notation is as follows.

“<character string>”<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

« The specification must be an absolute vaiue,
and,
« Forward reference symbols must not appear in the specification.

N

.SDATAB

Coding Example

JALIGN 4 ; (This statement adjusts the vaiue of the

; location counter.)
X TSPATAE? 2. "ARAAA” ; This statement reserves two character string

; data blocks.

BOEE; 2,.°""EBB""" ; The character string in this example inciudes
; double quotation marks.

ISHRTARY 2, "RBAB"<H' 07> ; The character string in this exampie has
; acontrol character appended.

-
]

]

]

'

E Memory

\ Address

]

:;V"‘“' ~FT A a1 4
5 41 | 41 41 41
' 41 41 |22 42
‘ 4242 22[22
i 42 42 42 22
: 41 42 41 42
! 07 | 41 42 41
¢ 42 07 |

:

:

'

i N y
: Y

E 4 bytes

1

Notes: 1. The data in this figure is
hexadecimal.

2. The ASCIl code for “A” is: H'41.
The ASCIi code for *B” is: H'42.
The ASCII code for “~" is: H'22.

92

.SDATAC

Character String Data Reservation (with length)

Syntax

[<symbol>(:]]A.SDATACA “<character string>”(, “<character string>”...]

Statement Elements

1.

Label

Enter a reference symbol in the label field if required.
Operation ‘

Enter the .SDATAC mnemonic in the operation field.
Operands

Enter the character string(s) to be reserved in the operand field.

Description

1.

.SDATAC is the assembler directive that reserves character string data (with length) in
memory.

A character string with length is a character sring with an inserted leading byte that indicates
the length of the stnng.

The length indicates the size of the character string (not including the length) in bytes.
References: Character strings — Programmer’'s Guide, 1.7, “Character Strings” .
A control character can be apbended to a character string.

The syntax for this notation is as follows.

“<character string>”<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

93

.SDATAC |

» The specification must be an absolute vaiue,

and,
» Forward reference symbols must not appear in the specification.

Coding Example
.ALIGN 4 ; (This statement adjusts the value of the
; location counter.)
X: FEDATACT “AAAAA" : This statement reserves character string data
; (with length).
FEDRTAC newERBe" ; The character string in this example inciudes
; double quotation marks.
TEDRTAC, "ABAB"<H' 07> ; The character string in this example has
; acontrol character appended.
'r "" i
! Explanatory Figure for the Coding Exampie !
) [
t]
E Memory :
5 Address '
mbol ~ ‘
: ;V 0541414 1
H 41 41105 22 :
: 4242 42 27| :
| 05 41 42 41 :
' 2 07] Notes: 1. The data in this figure is ‘
H hexadecimal. .
< L}
; 2. The ASCII code for “A”is: H'41. !
! \ ~ J The ASCII code for “B"is: H'42.
' The ASCIl code for **"is: H'22. |
' 4 bytes '
Lo me e e e m e m e mmm e e m e m—mmm mm o —mmmmm o m mm mm i m e J

.SDATAZ

Character String Data Reservation (with zero terminator)

Syntax

[<symbol>[:]]A.SDATAZA “<character string>”[,”<character string>“...]

Statement Elements
1. Label
Enter a reference symbol in the label field if required.
2. Operation
Enter the .SDATAZ mnemonic in the operauon field.
3. Operands
Enter the character string(s) 10 be reserved in thcj. operand field.
Description

1. .SDATAZ is the assembler directive that reserves character string data (with zero terminator)
in memory.

A characier string with zero terminator is a character string with an appended trailing byte
(with the value H'00) that indicates the end of the string. '

References: Character strings — Programmer's Guide, 1.7, “Character Strings”™
2. A control character can be appended to a character string.

The syntax for this notation is as follows.

“<character string>”<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

95

= The specification must be an absolute value,

and,
« Forward reference symbols must not appear in the specificauon.
Coding Example
.ALIGN 4 ; (This statement adjusts the vaiue of the
; location counter.)
X: TSDATEZ: “AAAAA" ; This statement reserves character string
; data (with zero terminator).
TSINTRZ: bl - 1 el ; The character string in this example inciudes
; double quotation marks.
PSDATAZ" “ABAB"<H' 07> ; The character string in this example has
; acontrol character appended.
T T T T T a
¢ Explanatory Figure for the Coding Exampie '
] 1
[} 1
E Memory '
! Address '
) l " l.
; ;ymm 21 a1 41 a4l :
! 41 00] 22 42 ,
! 42 42 22 00 :
! 41 42 41 42)
; 07__00 Notes: 1. The data in this figure is '
! hexadecimal. '
] 1
: 2. The ASCli code for "A™ is: H'41. |
g . ¥) The ASCIl code for “B is: H'42. |
! The ASCll code for *=" is: H22. .
! 4 bytes '
1 [
‘ [l

96

Data Area Reservation

Syntax

[<symbol>[:]]A.RES[.<operation size>)A<area count>

Statement Elements
1. Label
Enter a reference symbol in the label field if required.

2. Operation

a Mnemonic
Enter .RES mnemonic in the operation field.

b. Operation size
Specitier Data Size
B Byte
w Word (2 bytes)

ﬁ:ﬁm Long word (4 bytes)

The shaded section indicates the default vaiue when the specifier is omitted.

The specifier determines the size of one area.
The long word size is used when the specifier is omitted.

3. Operands

Enter the number of areas to be reserved in the operand ficld.

97

Description

1.

2.

.RES is the assembler directive that reserves data areas in memory.
The area count must be specified as follows:

« The specification must be an absolute vaiue,
and,
« Forward reference symbols must not appear in the specification.

The range of values that can be specified as the area count vanes with the operation size.

Operation Size ° Area Count Range*

B H'00000001 to H'FFFFFFFF (1 t0 4.294,967.295)
w H'00000001 to H7FFFFFFF (110 2,147.483.647)
L H'00000001 to HIFFFFFFF (1 to 1,073,741,823)

Note: * Numbers in parentheses are decimai.

98

Coding Example

P L T T T L et E]

{This statement adjusts the value of the location
counter.)

This statement reserves 2 long word size areas.
This statement reserves 3 word size areas.
This statament reserves 5 byte size areas.

P TR TR

Explanatory Figure for the Coding Example

Address symbol
X

L L L T

Memory
77,
o
\ v- J/

4 bytes

99

-SRES

Character String Data Area Reservation

Syntax

[<symbol>(:]]A.SRESA<character string area size>(,<character string area size>...]

Statement Elements
1. Label

Enter a reference symbol in the label field if required.

2. Operation
Enter the .SRES mnemonic in the operation field.
3. Operands

Enter the sizes of the areas to be reserved in the operand field.
Description .
1. .SRES is the assembler directive that reserves character string data areas.
2. The character string area size must be specified as follows:

+ The specification must be an absolute value,
and,
« Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000001 to
HFFFFFFFF (from 1 10 4.294,967295 in decimal).

100

.SRES

Coding Example
.ALIGN 4 ; (This statement adjusts the vaiue of the location
; counter.)
X: TSREST 7 : This statement reserves a 7-byle area.
ESRES € ; This statement reserves a 6-byte area.

... -

P

E Explanatory Figure for the Coding Example :
E Memory E
i Address symbol ~:
! X ——'\ '
; -4..3-'. E -//// E
; i i :
' :
' :
: .
‘ :
5 . J \
: v '
E 4 bytes E
e mmmmmmmmmemmmmeeeomnmnmmmcemmnemmnen ;

101

-

.SRESC

Character String Data Area Reservation (with length)

Syntax

{<symbol>(:])A.SRESCA<character string area size>(,<character siring area size>...;

Statement Elements

1.

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SRESC mnemonic in the operation field.

Operands

Enter the sizes of the areas (not including the length) to be reserved in the operand field.

Description

1.

.SRESC is the assembler directive that reserves character string data areas (with length) in
memory.

A character string with length is a character string with an inserted leading byte that indicates
the length of the string.

The length indicates the size of the character sring (not including the iength) in bytes.
References: Characier strings — Programmer’s Guide, 1.7, “Character Strings”™
The character string area size must be specified as follows:

» The specification must be an absolute value,
and,
» Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000000 to
H'000000FF (in decimal, from O to 255).

102

.SRESC

3. The size of the area reserved in memory is the size of the character string area itseif plus 1
byte for the count.

Coding Example
.ALIGN 4 ; (This statement adjusts the vaiue of the location

; counter.)

X: TeRESCS 7 : This statement reserves 7 bytes pius 1 byte for
; the count.

FSRESC. 6 ; This statement reserves 6 bytes pius 1 byte for

; the count.

pom=mnmnae- e e e mmem————m e e e e e eee— o ———m—mmmma

E Explanatory Figure for the Coding Example

[}

E Memory

H Addrass symbol

: X

1 [EP-A4) L] - Ll

] " "

' K -t H

i G

: A

E

]

]

]

[}

E \ v J

E 4 bytes

4

.

103

.SRESZ

Character String Data Area Reservation (with zero terminator)

Syntax

{<symbol>(:]]A.SRESZA<character 3tring area size>(,<character string area size>...|

Statement Elements

1.

Label

Enter a reference symbol in the label field if required.
Operation

Enter the .SRESZ mnemonic in the operation field.
Operands

Enter the sizes of the areas (not including the terminating zero) to be reserved in the operand
field.

Description

1.

2.

.SRESZ is the assembler directive that allocates character string data areas (with zero
termination).

A character string with length is a character string with an appended trailing byte (with the
value H'00) that indicates the end of the string.

References: Character strings — Programmer’s Guide, 1.7, “Character Strings™
The character string area size must be specified as follows:

« The specification must be an absolute value,
and,
» Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000000 to
H'000000FF (in decimal, from O to 255).

104

| .SRESZ |

3. The size of the area reserved in memory is the size of the character string area itseif plus i
byte for the terminating zero.

Coding Example
-ALIGR 4 ; (This statement adjusts the value of the location counter.)
X: FSRESZY 7 ; This statement reserves 7 bytes plus 1 byte for
; the terminating byte.
PERESZ; 3 : This statement reserves 6 bytes pius 1 byte for

; the terminating byte.

- - - - - = = . 4 . . o = S . e . G W 4 e o = - - -

Explanatory Figure for the Coding Example

§ Memory %
: Address symbol ;
PooX ~— :
E Y E
;) E
a — g
’ E 4 bytes %

r

105

4.2.4 Export and Import Assembler Directives

This assembler provides the following assembler directives concemned with export and import

.EXPORT]

Declares expart symbols.

This declaration allows symbols defined in the current file 1o be referenced in other files.

.IMPORT |

Declares import symbols.

This declaration allows symbols defined in other files to be referenced in the current file.

.GLOBAL J

Declares export and impon symbols. .

This declaration allows symbols defined in the current file to be referenced in other files, and
allows symbols defined in other files to be referenced in the current file.

106

.EXPORT

Export Symbols Declaration

Syntax

.EXPORTA<symbol> [, <symbol>...]

Statement Elements

1.

Label
‘The label field is not used.
Operation

Enter the EXPORT mnemonic in the operation field.

3. Operands
Enter the symbols to be declared as export symbols in the operand field.
Description

1.

.EXPORT is the assembler directive that declares export symbols.

An export symbol declaration is required to reference symbols defined in the current file from
other files.

2. The following can be declared to be export symbols.

+ Constant symbols (other than those defined with the .ASSIGN assembler directive)
+ Absolute address symbols (other than address symbols in a dummy section)
« Relative address symbols

To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol. and also to declare it 1o be an import symbol.

Import symbols are declared in the file in which they are referenced using either the .
IMPORT or the . GLOBAL assembler directive.

107

.EXPORT |

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:
[EXPORT, MAX ; This statement declares X to be an export
; symbol.
X: .EQU H'10000000 ; This statement defines X.
File B:
.IMPORT X : This statement declares X to be an import
: symbol.
<ALIGN 4
.DATA.L X ; This statement references X.

108

. IMPORT

Import Symbols Declaration

Syntax

. IMPORTA<symbol> [, <symbol>...]

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .IMPORT mnemonic in the operation field.
3. Operands ‘
Enter the symbols to be declared as import symbols in the operand field.
Description
1. .IMPORT is the assembler directive that declares import symbols.
An import symbol declaration is required to reference symbols defined in another file.
2. Symbols defined in the current file cannot be declared to be import symbols.

3. To reference a symbol as an import symbol. it is necessary 10 declare it to be an export
symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the . EXPORT
" or the GLOBAL assembler directive.

109

. IMPORT |

Coding Example

(In this example, a symbol defined in file A is referenced from fiie B.)

File A:
.EXPORT X ; This statement declares X to be an export
; symbol.
X: -EQOD H'10000000 ; This statement defines X.
File B:
IPoRTY X : This statement deciares X to be an import
; symbol.
JALIGN 4
DATA.L X ; This statement references X.

110

| .GLOBAL |

Export and Import Symbols Declaration

Syntax

.GLOBALA<symbol> [, <symbol>...]

Statement Elements
1. Label

The Iabel field is not used.
2. Operation

Enter the GLOBAL mnemonic in the operation field.
Operands

Enter the symbols to be declared as export symbols or as import symbols in the operand field.

Description

1.

.GLOBAL is the assembler directive that declares symbols to be either export symbols or
import symbols.

An export symbol declaration is reqmred 10 reference symbols defined in the current file from
other files. An import symbol declaration is required to reference symbols defined in another
file. '

A symbol defined within the current file is declared to be an export symbol by a GLOBAL
declaration.

A symbol that is not defined within the current file is declared to be an import symbolbya.
GLOBAL declaration.

The following can be declared 0 be export symbols.

« Constant symbols (other than those defined with the .ASSIGN assembler directive)

111

« Absolute address symbols (other than address symbols in a dummy section)

» Relative address symbols

4. To reference a symbol as an import symbol, it is necessary to declare it to be an expornt
symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined usiﬁg either the . EXPORT

or the .GLOBAL assembler directive.

Import symbols are declared in the file in which they are referenced using either the .
IMPORT or the GLOBAL assembler directive.

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:
EGaT x ; This statement declares X to be an export
: symbol.
X: .EQO0 H'10000000 ; This statement defines X.
File B:
e, x : This statement deciares X to be an import
: symbol.
.ALIGN 4
.DATA.L X : This statement references X.

112

4.2.5 Object Module Assembler Directives

This assembler provides the following assembler directives concerned with object modules.

| .OUTPUT

Controis object module and debug information output.

.DEBUG

Controls the output of symbolic debug information.

13

.ouTPUT |

Object Module Output Control

Syntax

.OUTPUTA<output specifier>(,<output specifier>)

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .OUTPUT mnemonic in the operation field.

3. Operands: <output specifier>

Output Specifier Output Controi

OBJ T"S@8irriss An object module is output.

NOOBJ Noobject module is output.
DBG Dabug information is output in the object module.

NODBG .iisziciiwd No debug information is output in the object module.

The shaded section indicates the default value when the specitier is omitted.

The outpwt specifiers control object module and debug information output.

Description

1. .OUTPUT is the assembler directive that controls object module and debug information

2. Ifthe .OUTPUT directive is used two or more times in a program with inconsistent output

output.

specifiers, an error occurs.

Example: -~
.OUTPUT OBJ

.OUTPUT NODBG |« OK

—

.OUTPUT CBJ
.OUTPUT NOOBJ

—

« Error

114

.OUTPUT

3. Specifications conceming debug information output are only valid when an object moduie is
output.

" 4. The assembler gives priority to command line option specifications concerning object module
and debug information output

References: Object module output
—» User’s Guide, 2.2.1, “Object Module Command Line Options” OBJECT
NOOBJECT

Debug information output
— User's Guide, 2.2.1, “Object Module Command Line Options” DEBUG
NODEBUG

Coding Example

Note: This exampie and its description assume that no command line options concerning object
module or debug information output were specified.

.OUTPUT OBJ . . : Anobject module is output.
; No debug information is output.

—

.OUTPUT 0BJ,DBG ; Both an object module and debug information
; is output.
.OUTPUT 0BJ,NODBG ; An object module is output.

; No debug information is output.

118

[* .OUTPUT

Suppiement:

Debug information is required when debugging a program using the simulator/debugger, and is
part of the object module.

Debug information includes information about source statements and information about symbols.

116

.DEBUG

Symbolic Debug Information Output Control

Syntax

.DEBUGA<output specifier>

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .DEBUG mnemonic in the operation field.
3. Operands: output specifier

Output Specifier Output Control

Symbolic debug information is output starting with the next source
statement.

OFF Symbolic debug information is not output starting with the next
source statement.

The shaded section indicates the default value when the specitier is omitted.

The output specifier controls symbolic debug information output.
Description
1. .DEBUG is the assembler directive that controls the output of symbolic debug information.

This directive allows assembly time to be reduced by restricting the output of symbolic debug
information to only those symbols required in dcbugging.

2. The specification of the .DEBUG directive is only valid when both an object module and
debug information are output.

117

[.omsuc |

References: Object module output
— Programmer’s Guide, 4.2.5, “Object Module Assembler Directives”,
.OUTPUT
— User’s Guide, 2.2.1 “Object Module Command Line Options™
OBJECT NOOBJECT

Debug information output

— Programmer’s Guide 4.2.5, **Object Module Assembler Directives”™,
OUTPUT

— User’s Guide, 2.2.1, “Object Modute Command Line Options”
DEBUG NODEBUG

Coding Example

Starting with the next statement, the assembier
; does not output symbolic debug information.

ON Starting with the next statement, the assembier

outputs symbolic debug information.

s

——
ERL OFF
———
]
—

Supplement:

The term “symbolic debug information” refers to the parts of debug information concerned with
symbols. .

118

4.2.6 Assemble Listing Assembler Directives

This assembler provides the following assembler directives for controlling the assembile listing.

[PRINT

[.LIST

| .FORM

| .meapme

[PAGE

[.SPACE
Supplement:

Controls assemble listing output.

Controls the output of the source program listing.

Sets the number of lines and columns in the assemble listing.
Sets the header for the source program listing.

Insents a new page in the source program listing.

Outputs blank lines to the source program listing.

The assemble listing is a listing 10 which the results of the assembly are output, and includes a
source program listing, a cross-reference listing, and a section information listing.

References: For a detailed description of the assemble listing, see appendix C, **Assembie
Listing Output Exampie”.

119

| .PRINT

Assemble Listing Output Control

Syntax

.PRINTA<output specifier>(,<output specifier>...]

Statement Elements

1. Label

The label ficld is not used.

2. Operation

Eanter the PRINT mnemonic in the operation field.

3. Operands: output specifier

Output Specifier Assembier Action

LIST An assembie listing is output.

NOUST: wai®. 028 Noassemble listing is outout.
SRC=¥IW=3-%7Y A source program listing is output in the assemble listing.

NOSRC No source program listing is output in the assemble listing.

CREF S SiRmvoira

A cross-reference listing is output in the assembile listing.

NOCREF

No cross-referencs listing is output in the assembile listing.

SCT A= o

A section information listing is output in the assemble listing.

NOSCT

No section information listing is output in the assemble listing.

The shaded sections indicate the default setlings when the specifier is omitted.

The output specifier controls assemble listing output.

120

.PRINT

Description

1. PRINT is the assembler directive that controls assembie listing output.

2. If the PRINT directive is used two or more times in a program with inconsistent output

specifiers, an error occurs.
Exampile: ~
.PRINT LIST

.PRINT NOSRC

—

« 0K

—

.PRINT LIST
.PRINT NOLIST

« Error

3. The output specifiers concemed with the source program listing, the cross-reference listing,
and the section information listing are only valid when an assemble listing 1s output.

4. ‘The assembler gives priority to command line option specifications concerning assemble

listing output.

References: Assemble listing output
— User’s Guide, 2.2.2, “Assemble Listing Command Line Options”

LIST NOLIST

SOURCE NOSOURCE

CROSS_REFERENCE NOCROSS_REFERENCE

SECTION NOSECTION

Coding Example

Note: This example and its description assume that no command line options concemning
assemble listing output are specified.

BRINEG LIST

S —

; All types of assembte listing are output.

——

FPRINT® LIST,NOSRC,NOCREF

; Only a section information listing is output.

121

| .uisT |

Source Program Listing Output Control

Syntax

.LISTA<ocutput specifier>{,<output specifier>...]

Output type: {ON|OFF | COND INOCOND | DEF | NODEF | CALL | NOCALL | EXP |
NOEXP | CODE INOCODE }

Statement Elements
1. Label
The label field is not used.
2. Operation
Enter the .LIST mnemonic in the operation field.
3. Operands

Enter the output specifiers in the operand filed.

Description

1. .LIST is the assembler direcuve that conuois output of the source program listing in the
following three ways:

1 Selects whether or not to output source statements.

II Selects whether or not to output source statements related o the condiuonal assembly and
macro functions.

I Selects whether or not to output object code lines.

122

.LIST —I

2. Output is conmolled by output specifiers as follows:

Output Specitier
Type Output Notoutput Object Description -
1 jON%SH OFF Source statements The source statements following this directive
Il |COND: NOCOND Failed condition Condition-faiied .AIF directive statements
IDEF .1 NODEF Definion _Macro definition statements

.AREPEAT and .AWHILE definition statements
NCLUDE directive statements

(ASSIGNA and .ASSSIGNC directive
statements

Call Macro call statements,
.AIF and .AENDI directive statements

Expansion Macro GXDans—ion Statemen-t; """"""""""
AREPEAT and .AWHILE expansion
statements

i ',CO_DE._.J NOCODE Objectcode lines The object code lines exceeding the source
- statement lines

7

The shaded sections indicate the default settings when the specifier is omitted.

3. The specification of the .LIST directive is only valid when an assembie listing is output.

References: Source program listing output
— Programmer’s Guide, 4.2.6, " Assemble Listing Assembler Directives™,
PRINT .
- User’s Guide, 2.2.2, “Assemble Listing Command Line Options™.
LIST NOLIST SOURCE NOSOURCE

3. The assembler gives priority to command line option specifications conceming source
program listing output.

References: Output on the source program listing
— User's Guide, 2.2.2, “Assembie Listing Command Line Options™
SHOW NOSHOW

4. .LIST directive statements themselves are not output on the source program listing.

123

l— .LIST
Coding Exampie
- DISTOC NOCOND, NODEE; =~ —--~~--~- This statament controls source program

SHIFT

SHIFT

SHIFT

ASSIGNA \COUNT

-AIF \&SHIFT GE 16
SHIR16 \Rd
.ASSIGNA \&SHIFT-16
-AENDI

.AIF \4(SHIFT GE 8
SHILR8 \Rd
.ASSIGNA \&SHIFT-8
.AENDI

AIF \GSHIFT GE 4 .
SHIR2 \Rd

SHIR2 \Rd
.ASSIGNA \&SHIFT-4
-AENDI

AIF \GSHIFT GE 2
SHILR2 \Rd
.ASSIGNA \&SHIFT-2
-AENDI

AIF \&SHIFT GE 1

SHLR \Rd
.AENDI

.ENDM

SHLRN 23,R0O
.END

——re -

listing output.

These statements define a general-
purpose muttiple-bit shift proedure as a
macro instruction.

Macro cail

Note: This exampie and its description assume that no command line options conceming source

program listing output are specified.

124

.LIST

Source Listing Output of Coding Exampie

The LIST assembler directive suppresses the output of the macro definition, .ASSIGNA directive
statement, and .ATF condition-failed statements.

#=* SH SERIES ASSEMBLER Ver. 1.2 #**+ 07/09/93 16:33:49
PAGE 1
PROGRAM NAME =
31 31
32 32 SHLRN 23,RO
33 M
35 M
36 M .AIF 23 GE 16
- 37 00000000 4029 c SHIR16 RO
39 M -AENDI
40 M
41 M .AIF 7 GE 8
45 M
46 M .AIF 7 GE 4
47 00000002 4009 c SHLR2 RO
48 00000004 4009 c SHLR2 RO
50 M .AENDI
S1 M
52 M .AIF 3 GE 2
53 00000006 4009 C SHLR2 RO
S5 M .AENDI
56 M
S7 M .AIF 1 GE 1
58 00000008 4001 c SHLR RO
S9 M .AENDI
60 33 .END
*«22+TOTAL ERRORS -0
swe+*TOTAL WARNINGS 0

—

128

[.FORM |

Assemble Listing Line Count and Column Count Setting

Syntax

.FORMA<size specifier>(,<size specifier>...]

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the FORM mnemonic in the operation field.

3. Operands: size specifier

Slze Specifier Listing Size
LIN=dine count> The specified vaiue is set to the number of lines per page.
COLe=<column count> The specified value is set to the number of columns per line.

These specifications determine the number of lines and columns in the assemble listing.
Description

1. .FORM is the assembler directive that sets the number of lines per page and columns per line
in the assemble listing.

2. The line count and column count must be specified as follows:

* The specifications must be absolute values,
and,
 Forward reference symbols must not appear in the specifications.

The values allowed for the line count are from 20 to 255.
The vaiues allowed for the column count are from 79 10 255.

3. The FORM directive can be used any number of times in a given source program.

126

.FORM

4. The assembler gives priority to command line option specifications concerning the number of
lines and columns in the assemble listing.

References: Seuing the line count in assemble listing
— User's Guide, 2.2.2, “Assemble Listing Command Line Options”
LINES

Setting the column count in assemble listing
— User’s Guide, 2.2.2, “Assemble Listing Command Line Options”
COLUMNS .

S. 'When there is no specification of command line option or .FORM assembler direcuve
specification for the line count or the column count, the following values are used:

o Line counlom e 60 lines
« Column count......... 132 columns
Coding Exampie

Note: This example and its description assume thm no command line options concerning the
assemble listing line count and/or column count are specified.

—

FToRM LIN=60, COL=200 ; Starting with this page, the number of lines
; per page in the assembile listing is 60 lines.
; Also, starting with this line, the number of
; columns per line in the assembie listing is
; 200 columns.

—

4331 LIN=SS, COL=150 ; Starting with this page, the number of lines
; per page in the assembie listing is 55 lines.
: Also, starting with this line, the number of
; columns per line in the assemble listing is
; 150 columns.

127

|7 .HEADING

Source Program Listing Header Setting

Syntax

.HEADINGA”<character string>”

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the . HEADING mnemonic in the operation field.
Operands: character string

Enter the header for the source program listing in the operand field.

Description

1.

.HEADING is the assembler directive that sets the header for the source program listing.
A character string of up to 60 characters can be specified as the header.

References: Character strings
—» Programmer’s Guide, 1.7, “Character Strings”

The .HEADING directive can be used any number of times in a given source program.
The range of validity for a given use of the . HEADING directive is as follows:

« When the HEADING directive is on the first line of a page, it is valid starting with that
page. ’
* When the . HEADING directive appears on the second or later line of a page, it is valid
starting with the next page.

128

.HEADING

Coding Example

—

"""SAMPLE.SRC"" WRITTEN BY YAMADA"

P - - " - - - - - - - - = - - - ——— = -

Explanatory Figure for the Coding Example

Source program listing

-- 1=— Page boundary
le— Sacond line

\I—Header

"SAMPLE.SRC" WRITTEN BY YAMADA

/.

129

.PAGE 1

Source Program Listing New Page Insertion

Syntax
.PAGE
Statement Elements
1. Label
The label field is not used.
2. Operation
Enter the PAGE mnemonic in the operation field.
3. Operands
The operand field is not used.
Description

1. .PAGE is the assembler directive that inserts a new page in the source program listing at an

arbitrary point.

2. The PAGE directive is ignored if it is used on the first line of a page.

3. .PAGE directive statements themselves are not output to the source program listing.

130

.PAGE J
Coding Example
MWV RO,R1
RTS
MW RO,R2
CPAGE ; A new page is specitied here since the
; section changes at this point.
.SECTION DT,DATA,ALIGN=4
.DATA.L H'11111111
.DATA.L H'22222222
.DATA.L H'33333333
:‘ """""""" P et L L LL Lt Sttt Sttt Sttt ,m———tessees “
E Explanatory Figure for the Coding Example !
1
E Source program listing E
1 s~ t
i 18 00000022 6103 18 MoV RO, R1 :
. 19 00000024 0008 19 Ts .
H 20 00000026 6203 20 MoV RO, R2 .
: :
1]]
[(]
[} [
1]
[} 1
[] t
) [
L]]
L]]
1]
[}]
]]
]]
1 , New
: page
V| eee s SERIES ASSEMBLER Ver. 1.2 *** 10710793 10:23:30 !
: PROGRAM NAME = :
. .
i 22 00000000 22 .3ECTICN DT, DATA,ALIGN '
H 23 00000000 11111111 23 LDATA.L H'11111111 .
' 24 00000004 22222222 24 .DATA.L H'22222222 !
! 25 00000008 33333333 25 .DATA.L ¥'33333333 '
' :
]]
[] 1\
4 1
[} 1

Note: See appendix C, "Assemble Listing Output Example”. lor an explanation of the contents of the

131

.SPACE |

Source Program Listing Blank Line Output

Syntax

.SPACE [A<line count>]

Statement Elements
1. Label
The label field is not used.
2. Operation
Enter the .SPACE mnemonic in the operation field.
3. Operands: line count
Enter the number of blank lines in the operand field.
- A single blank line is output if this operand is omitted.
Description
1. .SPACE is the assembler directive that outputs the specified number of blank lines to the
source program listing. Nothing is output for the lines output by the .SPACE directive; in
particular line numbers are not output for these lines.
2. The line count must be specified as follows:

« The specification must be an absolute vaiue,
and,
+ Forward reference symbols must not appear in the specification.

Values from 1 to 50 can be specified as the line count.

3. When a new page occurs as the result of blank lines output by the .SPACE directive, any
remaining blank lines are not output on the new page. '

4. .SPACE directive statements themselves are not output to the source program listing.

132

.SPACE

Coding Example

.SECTION DT1,DATA,ALIGN=4

.DATA.L H'11111111

.DATA.L H'22222222

.DATA.L H'33333333

.DATA.L H'44444444 ; Inserts five blank lines at the point
s3] Yo pli] : where the section changes.
.SECTION DT2,DATA, ALIGN=4

E.xplammry Figure for the Coding Example
Source program listing

PROGRAM NAME =

00000000
00000000
00000004
00000008
0000000¢

WA N

6 00000000

—~—

e SH SERIES ASSEMBLER Ver. 1.2 °*

11111111
22222222
33333333
44444444

10/10/93 12:23:50

1 .SECTION OT1,DATA, ALIGN=4
2 -DATA.L H'l1lillil
3 JDATA.L 4122222222
4 JOATA.L . #*33333333
5 LCATA.L H144444444
6 .SECTICN CT2,DATA, ALIGN=4

program listing.

IR R e LD L L LT LY

Note: See appendix C, “Assembie Listing Output Exampie”, for an explanation of the contents of the acurce

r
]
1
]
1
¢
]
]
t
[}
'
]
1)
]
]
]
[}
]
[}
t
]
]
]
]
[}
[}
]
]
'
]
]
]
[]
(]
)
]
'
'
'
]
[}
|
[}
]
[}
[]
)
[]
]
[}
[}
]
)
)
]
]
L]
]
)
)
[}
]
[}
]
]
t
[]
]
]
]
]
]
[}
]

[DI SR A

133

4.2.7 Other Assembler Directives

This assembler provides the following additional assembler directives.

-PROGRAM

Sets the name of the object module.

.RADIX ' |

Sets the radix in which integer constants with no radix specifier are interpreted.

Declares the end of the source program.

134

| .PROGRAM

Object Module Name Setting

Syntax

.PROGRAMA<object module name>

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .PROGRAM mnemonic in the operation field.
3. Operands: <object module name>

Enter a name that identifies the object module in the operand field.
Description
1. .PROGRAM is the assembler directive that sets the object module name.

The object module name is a name that is required by the H Series Linkage Editor or the
H Series Librarian o identify the object module.

2. Object module naming conventions are the same as symbol naming conventions.
The assembler distinguishes upper-case and lower-case letter in object module names.

References: Coding of symbols
— Programmer’s Guide, 1.3.2, “Coding of Symbols”

3. Setting the object module name with the PROGRAM directive is valid only once in a given

program. (The assembler ignores the second and later specifications of the . PROGRAM
directive.)

135

[.ProGRAM |

4. If there is no PROGRAM specification of the object module name, the assembler will set a

default (implicit) object module name.

The default object module name is the file name of the object file (the object module output
destination). '

Example: Object file name --rweeeree PROG .. OBJ !

File name File format

Object module name ----- PROG

References: User's Guide, 1.2, “File Specification Format”

5. The object module name can be the same as a symbol used in the program.

Coding Example

EPROGRAM] PROGL ; This statement sets the object module name to be
: : PROG1.

——

136

-RADIX

Default Integer Constant Radix Setting

Syntax

.RADIXA<radix specifier>

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the .RADIX mnemonic in the operation field.

3. Operands: radix specifier

Radix Specifier Radix of Integer Constants with No Radix Specification
8 Binary

Q Octal

EREESReE Docimal

H " Hexadecimal

The shaded section indicates the defautt setting when the specifier is omitted.

This specifier sets the radix (base) for integer constants with no radix specification.
" Description

1. .RADIX is the assembler directive that sets the radix (base) for integer constants with no
radix specification.

2. When there is no radix specification with the RADIX directive in a program, integer
constants with no radix specification are interpreted as decimal numbers.

3. If hexadecimal (radix specifier H) is specified as the radix for integer constants with no radix
specification, integer constants whose first digit is A through F must be prefixed witha 0
(zero). (The assembler interprets expressions that begin with A through F 1o be symbols.)

137

.RADIX

4. Specifications with the RADIX directive are valid from the point of specification forward in
the program.

Coding Example
D
X: .EQU 100 ; This 100 is decimal.
ERIDDY H
Y: .EQU 64 ; This 64 is hexadecimal.
R H 4
2: .EQU OF : A zero is prefixed to this constant “OF" since it would
. ; - be interpreted as a symbol if it were written as simply
: F.
]

138

Source Program End Declaration

Syntax

.END [A<start address>]

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the END mnemonic in the operation field.
3. Operands: start address
Enter the start address for simulation in the operand field if required.
Description
1. .END is the assembler directive that declares the end of the source program.
Assembly processing terminates at the point that the .END directive appears.

2. If a start address is specified with the [END directive in the operand field, the
simulator/debugger starts simulation from that address.

3. The start address must be specified with either an absolute value or an acidress value.

4. The value of the start address must be an address in a code section.

139

Coding Example

.SECTION CD,CODE,ALIGN=4

——

FEND; START ; This statement declares the end of the source
; program,

; The simulator/debugger starts simulation from the address indicated by the value of the-
; symboi START.

140

Section 5 File Inclusion Function

The file inclusion function allows source files to be inserted into other source files at asscmbtly
time. The file inserted into another file is called an included file.

This assembler provides the .INCLUDE directive to perform file inclusion. The file specified
with the .INCLUDE directive is inserted at the location of the .INCLUDE directive.

Example:

gty o —

- INCLUDE “"FILE.H" 5 Included file FILE.H

R e e -
‘ .

-
)

!

' _SECTION CD1,CODE,ALIGN=4 | : .E :
1 - MOV #ON,RO V. . OFF: .ZQU 0
'

,

[

N A R A
File included result (source iist)
__ !INCLUDE "FILE.H"
ON:" _EQU 1
OFF: .EQU O

.SECTION CD1,CODE,ALIGN=4
MOV #ON, RO

141

.INCLUDE |

File Inclusion
Syntax
.INCLUDEA"<file name>"

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the INCLUDE mnemonic in the operation field.
3. Operands

Enter the file to be included.
Description

1. .INCLUDE is the file inclusion assembler directive.

v 2. Ifno file format is specified, only the file name is used as specified (the assembler does not
assume any default file format).

Reference: User's Guide, 1.2, "File Specification Format”

3. The file name can include the directory. The directory can be specified either by the absolute
path (path from the route directory) or by the relative path (path from the current directory).

Note: The current directory for the INCLUDE directive in a source file is the directory where the
assembler is initiated. The current directory for the INCLUDE directive in an included
file is the directory where the inciuded file exits.

4. Included files can include other files. The nesting depth for file inclusion is limited to eight
levels (multiplex state).

142

. INCLUDE

Coding Example

This example assumes the following directory configuration and operations:
SN
/

» Starts the assembler from the route
directory (/) ’

dirt dir2 « Inputs source file /dirlffilel.src

Insents file2.h in filel.src

Insens file3.h in file2.h

The start command is as follows:
/asmsh /dirl/filel.src (RET)

filel.src must have the following inclusion directive:

.INCLUDE "dir2/file2.h" . /is the current directory (relative path specification).
or .
.INCLUDE "/dir2/file2.h" ; Absolute path specification

file2.h must have the following inclusion directive:

.INCLUDE "file3.h" ;. /dir2 is the current directory (relative path
specification).
or
.INCLUDE "/dir2/file3d.h"” ;. Absolute path specification

CAUTION!

When using MS-DOS, change the slash in the above exampie to a backslash (V).

(This page mntentionally left blank.)

144

Section 6 Conditional Assembly Function

6.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

Selects whether or not to assemble a specified part of a source program according to the
specified condition. ‘
Iteratively assembles a specified part of a source program.

6.1.1 Preprocessor variables

Preprocessor variables are used to write assembly conditions. Preprocessor variables are of either
integer or character type.

1.

Integer preprocessor variables

Integer preprocessor variables are defined by the .ASSIGNA directive (these vanables can be
redefined).

When referencing integer preprocessor variables, insert a backslésh (V) and an ampersand (&)
in front of them.

Exampie:
LELAG: _.ASSIGNA 1 |
.AIF \&FLAG EQ 1 ; MOV RORI is assembled
MOV RO,R1 ;. when FLAGIs 1.
.AENDI
2. Character preprocessor variables

Characier preprocessor variables are defined by the .ASSIGNC directive (these vanables can
be redefined).

When referencing character preprocessor vanables, insen a backslash (\) and an ampersand
(&) in front of them.

Exampie:
LAG: = :ASSIGNC_TON"

. " -

.AIF E\&,E‘LAG" EQ "ON" ; MOV ROR1 is assembled
MOV RO,R1 . when FLAG is "ON".
.AENDI

145

6.1.2 Conditional Assembly

The conditional assembly function determines whether or not to assemble a specified part of a

source program accarding to the specified condition. A coding exampie is shown below.

—

.AIF <condition>

<Stataments to ba assembled when the condition is satisfied>

TRELSE N - TTTTTTTTTTTR
L <Statements 1o be assembled when the condition is not satisfied> H
.AENDI :)
—~ '
This part can be omitted from the coding.
Example:

—

.AIF "\&FLAG" EQ "ON" -

MOV RO,R10 . These statements

MOV R1,R11 . will be assembled

MOV R2,R12 . when FLAG is "ON".
.AELSE
" MOV R10,R0 . These statements

MOV R11,R1 . will be assembled

MOV R12,R2 . when FLAG is not "ON".
:AENDI :

146

6.1.3 Iterated Expansion

A part of a source program can be iteratively assembled the specified number of times. A coding
example is shown below.

—

.AREPEAT <count>
<Statements to be iterated>

.AENDR
Example:
; This exampie is a division of 64-bit data by 32-bit data.
;. R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits): Unsigned
TST RO, RO . Zero divisor check
BT zero_div
CMP/HS RO,R1 ; Ovaertiow check
BT over_div _
DIVOU ; Flag initialization
ERFEFERT 32
ROTCL R2 ; These statements are
pIV1 RO,R1 "~ iteratad 32 times.
- RRERDR]
ROTCL R2 ; R2 = quotient

147

6.1.4 Conditional Iterated Expansion

A part of a source program can be iteratively assembied while the specified condition is satisfied.

A coding example is shown below.

—

.AWHILE <condition>
<Statements to be iterated>
.AENDW

Example:

TblSiz: .ASSIGNA 50 :

MoV A_Tbll,R1 ;
MOV A_Tbl2,R2 ;
CLRMAC ;

PAWHILE \&TblSize GT O ;

MAC.W GRO+,@R1+ ;
TblSiz: .ASSIGNA \&TblSiz-1 :

TS

S MACL, RO ,

This example is a multiply and accumuiate
operation.

TbiSiz: Data table size

R1: Start address of data table 1

R2: Start address of data table 2

MAC register initialization

While TbiSiz is larger than 0,

this statement is iteratively assembled.

1 is subtracted from Tb!Siz.

The result is obtained in RO.

148

6.2 Conditional Assembly Directives

This assembler provides the following conditional assembly directives.

[.assiena | Defines an integer preprocessor variable. The defined
variable can be redefined.
[.ASSIGNC] Defines a character preprocessor variable. The defined
variable can be redefined.
.AIF Determines whether or not to assembie a part of a source
.AELSE program according 1o the specified condition. When the
.AENDI condition is satisfied, the statements after the .AIF are
assembled. When not satisfied, the statements after the
.AELSE are assembied.
.AREPEAT Repeats assembly of a part of a source program (between
.AENDR .AREPEAT and .AENDR) the specified number of times.
.AWHILE Assembles a part of a source program (between . AWHILE
.AENDW and .AENDW) iteratively while the specified condition is satisfied.
[Exzmm | Terminates .AREPEAT or .AWHILE iterated expansion.

149

| .assiaNa

Integer Preprocessor Variable Definition (redefinition is possible)

Syntax

<preprocessor variable>(:].ASSIGNAA<value>

Statement Elements

1.

Label

Enter the name of the preprocessor variable.
Operation

Enter the .ASSIGNA mnemonic in the operation field.
Operands

Enter the value to be assigned to the preprocessor variable.

Description

1.

.ASSIGNA is the assembler directive that defines a value for an integer preprocessor
variable. The syntax of integer preprocessor variables is the same as that for symbols. The
assembier distinguishes uppercase and lowercase lenters.

The preprocessor variables defined with the .ASSIGNA directive can be redefined with the
.ASSIGNA directive.

The values for the preprocessor variables must be the following:
» Constant (integer constant and character constant)

« Defined preprocessor variable

« Expression using the above as terms

Defined preprocessor vanables are valid from the point of specification forward in the source
program.

Defined preprocessor variables can be referenced in the following locations:

150

.ASSIGNA |

.ASSIGNA directive

.ASSIGNC directive

« .AIF directive

» .AREPEAT directive

o .AWHILE directive

« Macro body (source statements between .MACRO and .ENDM)

‘When referencing integer preprocessor variables, insert a backslash (\) and an ampersand (&)
in front of them.

\&<preprocessor variable>(']

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe (') can be added.

151

_ASSIGNA |
Coding Example
; This example generates a generai-purpose muitiple-bit
; shift instruction which shifts bits to the nght by the
; number of SHIFT.
RN: .REG RO ; ROissetto Rn.
e ASSIGNA ~: 27, ; 27issetwo SHIFT

SHIR16
SHLR8
SHLR2
SHLR1

The expanded resuits are as follows:

Condition: SHIFT 2 16
: When the condition is satisfied. Rn is shifted to the right by 16 bits.
; 16 is subtracted from SHIFT.

; Condiition: SHIFT 28
. When the condition is satisfied, Rn is shifted to the right by 8 bits.
; 8 is subtracted from SHIFT.

Condition: SHIFT 2 4
. When the condition is satisfied, Rn is shifted to the night by 4 bits.

; 4 is subtracted from SHIFT.

;. Condition: SHIFT 22
; When the condition is satisfied. Rn is shifted to the right by 2 bits.
; 2is subtracted from SHIFT.

; Condition: SHIFT = 1
;. When the condition is satisfied, Rn is shifted to the right by 1 bit.

|

Rl ;. When the condition is satisfied, Rn is shifted to the right by 16 bits.
Rl ; When the condition is satished, Rn is shiftad to the nght by 8 bits.
R1 ; When the condition is satisfied, Rn is shifted to the nght by 2 bits.
Rl ;. When the condition is satisfied. Rn is shifted to the right by 1 bit.

182

| .asstenc

Character Preprocessor Variable Definition (redefinition is possible)

Syntax

<preprocessor variable>[:].ASSIGNCA"<character string>"

Statement Elements

1.

Label

Enter the name of the preprocessor variable.

2. Operation
Enter the .ASSIGNC mnemonic in the operation field.

3. Operands
Enter the character string enclosed with double-quotation marks (").

Description

1. .ASSIGNC is the assembler directive that defines a character string for an character
preprocessor variable. The syntax of character preprocessor variables is the same as that for
symbols. The assembler distinguishes uppercase and lowercase letters.

2. ‘The preprocessor variables defined with the . ASSIGNC directive can be redefined with the
.ASSIGNC directive.

3. Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (7).

4. Defined preprocessor variables are valid from the point of specification forward in the source
program. '

S. Defined preprocessor variables can be referenced in the following locations:

« .ASSIGNA directive
« .ASSIGNC directive
« .AJF directive

153

| .ASSIGNC

« .AREPEAT directive
* AAWHILE directive
* Macro body (source statements between .MACRO and .ENDM)

When referencing character preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.

\&<preprocessor variable>{']

To clearly distinguish the preprocessor variable name from the rest of the source statement.
an apostrophe () can be added.

Coding Example

T or < ASSIGNC rON% ; "ON"is setto FLAG.

.ATF FRGFIAGT EQ "ON" ; MOV RO,R1 is assembied
MOV RO,R1 ; when FLAG is "ON".

Al , -.‘ TLAG ;X : A space (" °) is added to FLAG.
;:? 'OFF‘lsaddodtoFLAGA
Issxec- "\ &m

AR apo: apostrophe (') is used to distinguish FLAG and AND.
: FLAG finally becomas "ON AND OFF".

154

.AIF | .AELSE .AENDI

Conditional Assembly

Syntax

.AIFA<terml>A<relational operator>A<term>

<Source statements assembled if the condition is satisfied>

.AELSE

<Source statements assembled if the condition is not satisfied

.AENDI
Statement Elements
1. Label
The label field is not used.
2. Operation

Enter the .AIF, .AELSE (can be omitted), or AENDI mnemonic in the operation field.
3. Operands

.AIF: Enter the condition. Refer to the description below.

.AELSE: The operand ficld is not used.

.AENDI: The operand field is not used.

Description

1. .AIF,.AELSE. and .AENDI are the assembier directives that select whether or not to
assemble source statements according to the condition specified. The .AELSE direcuive can
be omitted.

2. The condition must be specified as follows:

.AIFA<terml>A<relational operator>A<termZ>

155

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared., the condition always fails.

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (*). To specify a double quotation mark in a character string, enter two
double quotation marks (" *) in succession.

3. The following relational operators can be used:

EQ: terml = term2
NE: term] = term2
GT: terml > term2
LT terml < term2
GE: terml 2 term2
LE: terml S term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

l

FALI, “\&FLAG" EQ "ON"

MOV RO,R10 . These statements

MOV R1,R11 ; are assembled

MOV R2,R12 . when FLAG is "ON".

MOV R10,.RO . These statements

MOV R11.R1 ; are assembied

MOV R12,R2 ; when FLAG is not "ON".
PAENDY

156

.AREPEAT .AENDR

Iterated Expansion

Syntax

.AREPEAT <count>
<Source statements iteratively assembled>

. AENDR

Statement Elements

1. Label
The label field is not used.
2. Operation

Enter the . AREPEAT or AENDR mnemonic in the operation field.

3. Operands
.AREPEAT: Enter the number of iterations.
.AENDR: The operand field is not used.
Description

1. .AREPEAT and .AENDR are the assembler directives that assembie source staiements by
iterative expansion the specified number of umes.

2. The source statements between the .AREPEAT and .AENDR directives are iterated the
number of times specified with the AREPEAT directive. Note that the source statements are
simply copied the specified number of times, and therefore, the operation does not loop at
program execution.

3. Counts are specified by constants or preprocessor variables.

4. Nothing is expanded if a value of 0 or smatler is specified.

157

.AENDR

Coding Example

TST RO,RO

BT zero_div
CcMP/HS RO,R1

BT over_div
DIVOU

tAREPEAT; 32
ROICL R2

pIV1 RO,R1
PaDR

ROICL R2

: This example is a division of 64-bit data by 32-bit data.
; R1:A2 (64 bits) + RO (32 bits) = R2 (32 bits): Unsigned
: Zero divisor check

Ovaertlow check

Flag initialization

. These statements are
. iterated 32 times.

; R2 = quotient

158

. AWHILE l . AENDW

Conditional Iterated Expansion

Syntax

.AWHILEA<terml>A<relational operator>A<term2>

<Source statements iteratively assembled>

. AENDW
Statement Elements
1. Label
The label field is not used.
2. Operation

Enter the . AWHILE or AENDW mnemonic in the operauon field.

3. Operands
LAWHILE: Enter the condition to iterauvely expénd source statements.
.AENDW: The operand field is not used.

Description

1. .AWHILE and .AENDW are the assembler directives that assemble source statements by
iterative expansion while the specified condition is sausfied.

2. The source statements between the AWHILE and .AENDW directives are iterated while the
condition specified with the AWHILE directive is satisfied. Note that the source statements
are simply copied iteratively, and therefore, the operation docs not loop at program execution.

3. The condition must be specified as follows:
.AWHILEA<terml>A<relational operator>A<term2>

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.

159

AWHILE | . AENDW

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (7). To specify a double quotation mark in a character string, enter two
double quotation marks (" ") in succession.

Conditional iterated expansion terminates when the condition finally fails. An infinite loop
occurs if a condition which never fails is specified. Accordingly, the condition for this
directive must be carefully specified. '

4. The following relational operators can be used:

EQ: terml = term2
NE: terml # term2
GT: terml > term2
LT terml <term2
GE: terml 2 term2

LE: terml < term2 .
Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.
Coding Example
: This example is a multiply and accumulate
; operation.
TblSiz: .ASSIGNA SO . TbiSiz: Data table size
MV A_Tbll,R1 ; R1: Stan address of data table 1
MV A_Tbl2,R2 ; R2: Start address of data table 2
CLRMAC : MAC register initialization
PRWETIE; \aTblSize GT 0 ; While TbiSiz is larger than 0,
MAC.W GRO+,8R1+ : this statement is iteratively assembled.
TblSiz: .ASSIGNA \&TblSiz-1 . 1is subtracted from TbiSiz.
sTS MACL, RO ; The resuit is obtained in RO.

160

EXITM |

Expansion Termination

Syntax

. EXIT™M

Statement Elements
1. Label

The label field is not used.
2. Operation

Eater the .EXITM mnemonic in the operation field.

3. Operands
The operand field is not used.
Description

1. .EXITM is the assembler directive that terminates an iterated expansion (AREPEAT w0
~ .AENDR) or a conditional iterated expansion (.AWHILE to AENDW).

2. Either expansion is terminated when this directive appears.

3. This directive is aiso used to exit from macro expansions. The location of this directive must
be specified carefuily when macro instructions and iterated expansion are combined.

Reference: Macro expansion
—» Programmer’s Guide, 7.2, "Macro Function Directives”

161

EXITM |

Coding Example

——

COUNT .ASSIGNA O
JAWHIIE 1 EQ 1

ADD RO,R1
ADD R2,R3

COUNT ASSIGNA \&COUNT+1

EXTTM -
-AENDI
-AENDW

—

The expansion results are as follows:

ADD RO,R1
ADD R2,R3
ADD RO,R1
ADD R2,R3

AIF \&COUNT EQ 2 ;

; Ois setto COUNT.
; An infinite loop (condition is aiways satisfied) is

spaecified.

1 is added to COUNT.
Condition: COUNT « 2

When COUNT is updated and satisfies the condition specified with the .AIF directive, .EXITM is
assembled. When .EXITM is assembled. .AWHILE expansion is terminated.

;. When COUNT is 0

When COUNT is 1

After this, COUNT becomes 2 and expansion is terminated.

162

Section 7 Macro Function

7.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as
one macro instruction. This is called a macro definition. Macro instructions are defined as
follows:

~—

.MACRO <macro name>
<macro body>
.ENDM

~—

A macro name is the name assigned to a macro instruction, and a macro body is the statements 10
be executed as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro
instructions are calied as foliows:

—

<defined macro name>

—

An exampie of macro definition and macro call is shown below.

Example:

.MACRO: SUM : Processing 10 obtain the sum of RO, R1. R2,
MOV RO,R10 ;. and R3 is defined as macro instruction SUM.
ADD R1,R1l0
ADD R2,R10
ADD R3,R10

M
ISUMS ; This statement calls macro instruction SUM.
: Macro body MOV RO.R10
' ADD R1,R10
; ADD R2,R10
| : ADD R3,R10

: is expanded from the macro instruction.

163

Parts of the macro body can be replaced when expanded by the following procedure:
1. Macro definition
a. Declare formal parameters in the MACRO directive.

b. Use the formal parameters in the macro body. Formal parameters must be identified in the
macro body by placing a backslash (V) in front of them.

2. Macro call
Specify macro parameters in the macro call.

When the macro instruction is expanded, the formal parameters are repiaced with their

corresponding macro parameters.
Example:
+MACRO___SUM ARGl: ; Formal parameter ARG1 is defined.
MOV RO, \ARGYL : ARG1 is referenced in the macro body.

AoD 1, hRei]

ADD R2,\ARGL

ADD R3,\ARGL,
M3

L —d

m ;. This statement calls macro instruction SUM
; specitying macro parameter R10.
; The formai parameter in the macro body is
; replaced with the macro parameter, and
: MOV RO,R10
; ADD R1,R10
: ADD R2.R10
: ADD R3,R10 is expanded.

164

7.2 Macro Function Directives

This assembler provides the following macro function directives.

.MACRO Defines a macro instruction.
.ENDM
[.EXITM j Terminates macro instruction expansion.

165

Macro Definition

Syntax

.MACROA<macro name>[A<formal parameter>[=<default>]
[,<formal parameter>...]]}

Statement Elements
1. Label
The label field is not used.
2. Operaton
Enter the MACRO or .ENDM mnemonic in the operation field.
3. Operands

.MACRO: Enter the name and formal parameters for the macro instruction to be defined.
When formal parameters are defined, their defaults can be defined (defaults can
be omited).

.ENDM: The operand filed is not used.

Description

1. .MACRO and .ENDM are the assembler directives that define a macro instruction (a
sequence of source statements that are collectively named and handled together).

2. Macro definition

Naming as 2 macro instruction the source statements (macro body) between .MACRO and
.ENDM directives is called a macro definition.

3. Macro name
Macro names are the names assigned t0 macro instructions.
4. Formal parameters

Formal parameters are specified so that parts of the macro body can be replaced by specific

166

parameters at expansion time. Formal parameters are replaced with the character stnings
(macro parameters) specified at macro expansion (macro call).

a. Formal parameter syntax

The syntax for formal parameters is the same as that for symbols. The assembler
distinguishes uppercase and lowercase letters.

b. Formal parameter reference
Formal parameters are used (referenced) at the pant 10 be replaced in the the macro body.
The syntax of formal parameter reference in macro bodies is as follows:
\<formal parameter name>{']

To clearly distinguish the preprocessor variable name from the rest of the source
statement, an apostrophe () can be added.

. Formal parameter defaults

Defaults for formal parameters can be specified in macro definitions. The default specifies the

character string 10 replace the formal parameter when the corresponding macro parameter is
omiued in a macro call.

The default must be enclosed by double quotation marks (") or angle brackets (<>) if any of
the following characters are included in the defauit.

= Space

« Tab

+ Comma(,)

« Semicolon (;)

« Double quotation marks ()
« Angle brackets (< >)

The assembler inserts defaults at macro expansion by removing the double quotation marks or
angle brackets that enclose the character strings.

167

6. Restrictions on macro definitions
a. Macros cannot be defined in the following locations:

« Macro bodies (between MACRO and .ENDM directives)
« Between .AREPEAT and .AENDR directives
« Between .AWHILE and .AENDW directives

b. The ENDM directive cannot be used within a macro body.

c. No symbol can be inserted in the label field of the ENDM directive. The .ENDM
directive is ignored if its label field is not blank, but no error is generated in this case.

Coding Example
BacRD sum : Processing to obtain the sum of RO, R1, R2,
MW RO,R10 ; and R3 is defined as macro instruction SUM.
ADD R1,R10
ADD R2,R10
ADD R3,R10
CERDH,
@ ; This statement calls macro instruction SUM
. Macro body MOV RO.R10
: ADD R1.R10
: ADD R2.R10
: ADD R3,R10is expanded.

168

.EXIT™™

Expansion Termination

Syntax

.EXITM

Statement Elements
1. Label

The label field is not used.
2. Operation

Enter the EXTTM mnemonic in the operation field.

3. Operands
The operand field is not used.
Description

1. .EXITM is the assemblier directive that terminates a macro expansion. This direcuve can be
specified within the macro body (between .MACRO and .ENDM directives).

2. Expansion is terminated when this directive appears.

3. This directive is also used to exit from iterated expansions specified with the . AREPEAT or
_AWHILE directive. The location of this directive must be specified carefully when macro
instructions and iterated expansion are combined.

169

Coding Exampie
MACRO SUM P1
MOV RO,R10
ADD R1,R10] M
ADD R2,R10
A @
ADD R3,R10
.ENDM

l

s EEXITM

ST

EXITM is expanded at (2) and macro expansion is terminated. Only the statements indicated by

(1) are expanded.

170

7.3 Macro Body

The source statements between the . MACRO and .ENDM directives are called a macro body. The
macro body is expanded and assembled by a macro cail.

1. Formal parameter reference

Formal parameters are used to specify the parts to be replaced with macro parameters at macro
expansion.

The syntax of formal parameter reference in macro bodies is as foliows:
\<formal parameter name>{"']

To clearly distinguish the formal parameter name from the rest of the source statement. add an
apostrophe ().

Coding example:
.MACRO PLUS1 P,P1 . P and P! are formal parameters.
ADD #1,\P1 . Formal parameter P1 is referenced.
.SDATA "\p'1"” . Formal paramcier P is referenced.
. ENDM
PLUSI R,R1 . PLUSI is cxpanded.

Expanded results are as follows:

ADD. #1,R1 . Formal parameter P1 is refercnced.
.SDATA "R1" . Formal paramcter P is referenced.

Preprocessor variable reference

Preprocessor variables can be referenced in macro bodics.
The syniax for preprocessor variable reference is as follows:
\&<preprocessor variable name>{']

To cicarly distinguish the formal paramecter name from the rest of the source statement. add an
apostrophe ().

171

Coding exampie:

.MACRO PLUS1

.SDATA "Y&y'1l"

.ENDM

v .ASSIGNC "R"

Vi .ASSIGNA 1
PLUS1

Expanded results are as follows:
ADD #1,R1

.SDATA "R1"

ADD #1, RGN

; Preprocessor variable V1 is referenced.
;. Preprocessor variabie V is referenced.

; Preprocessor variable V is defined.
; Preprocessor variable V1 is defined.
; PLUSI is expanded.

Preprocessor variable V1 is referenced.
; Preprocessor variable V is referenced.

3. Macro generation number

The macro generation number facility is used to avoid the problem that symbols used within a
macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a macro.

This will result in symbols that are unique to each macro call.

The macro generation number marker is expanded as a S digit decimal number (between

00000 and 99999) unique to the macro expansion.

The syntax for specifying the macro gcn.emion number marker is as follows:

\@

Two or more macro generation number markers can be written in a macro body, and they will

be expanded 10 the same number in one macro call.

CAUTION!

Because macro generation number markers are expanded to numbers, they must not be written at

the beginning of symbol names.

Reference: Programmer's Guide, 1.3.2, "Coding of Symbols™

172

Coding exampie:

.MACRO RES_STR STR, Rn

BRA

NOP
ISTER -SDATA "\STR"

-ALIGN 2

.ENDM

Different symbois are generated each time

RES_STR "ONE",RO0
RES_STR is expandad.

RES_STR "TWO",R1
Expanded results are as follows:

MOV.L #stx00000,RO

BRA end_str00000
NOP

str00000 .SDATA "ONE"
.ALIGN 2

MOV.L #str00001,R1

BRA end_stx00001
NOP

str00001 .SDATA "TWO"
.ALIGN 2

4. Macro replacement processing exclusion
Whea a backslash (\) appears in a macro body, it specifies macro replacement processing.
Therefore a means for excluding this macro processing is required when it is necessary to use
the backslash as an ASCII character.
The syntax for macro replacement processing exclusion is as follows:

\ (<macro replacement processing excluded character string>)

The backslash and the parentheses will be removed in macro processing.

173

Coding example:

.MACRO BACK_SLASH_SET

vy WA 0 ; \is expanded as an ASCIl character.
.ENDM
Expanded resuits are as follows:
MOV #°\",R0O ; \is expanded as an ASCIi character.

S. Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal comments.

When comments in the macro body are not required in the macro expansion code (to avoid
repeating the same comment in the listing file), those comments can be coded as macro
internal comments to suppress their expansion.

The syntax for macro intenal comments is as follows:
\:;<comment>

Coding example:

.MACRO PUSH Rn

MOV.L \Rn, @-R15 T,f \Rn is a register.
.ENDM
PUSH RO

Expanded results are as follows (the comment is not expanded):
MOV.L RO,@-R15

6. Characier string manipulation functions

Character string manipulation functions can be used in the body of a macro. The following
character string manipulation functions are provided.

LEN Character string length.

INSTR Character string search.

SUBSTR Character string substring.
References:

.LEN — Programmer's Guide, 7.5, "Character String Manipuiation Functions", .LEN
INSTR — Programmer's Guide, 7.5, "Character String Manipulation Functions”, .INSTR

SUBSTR - Programmer’s Guide, 7.5, "Character String Manipulation Functions”, .SUBSTR

174

.

7.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Syntax

[<symbol>] <macro name>([<macro parameter>
[, <macro parameter> ...]]

Statement Elements
1. Label

Enter a reference symbol in the label field if required.
2. Operation

Enter the macro name to be expanded in the operation field. The macro name must have been
already defined before a macro calil, '

3. Operands

Enter character strings as macro parameters to replace formal parameters at macro expansion.
The formal parameters must have been declared in the macro definition with . MACRO.

Description

1. Macro parameter specification
Macro parameters can be specified by either positional specification or keyword specification.
a. Positional specification

The macro parameters are specified in the same order as that of the formal parameters
declared in the macro definition.

b. Keyword specification

Each macro parameier is specified following its corresponding formal parameter, separated
by an equal sign (=).

175

2. Macro parameter syntax

Macro parameters must be enclosed by double quotation marks (") or angle brackets (<>) if
any of the following characters are included in the macro parameters:

. Spacc

« Tab

« Comma (,)

« Semicolon (;)

« Double quotation marks (")
e Angle brackets (< >)

Macro parameters are inserted by removing the double quotation marks or angle brackets that
enclose character strings at macro expansion.

Coding Example

.MACRO SUM FROM=(Q, TO=9

; Macro instruction SUM and format
;. parameters FROM and TO are defined.

MOV R\FROM, R10 7
COUNT .ASSIGNA \FROM+1

.AWHILE \&COUNT LE \TO Macro body is coded

MOV R\&COUNT,R10 using formal parameters.
COUNT .ASSIGNA \&COUNT+1

.AENDW '

.ENDM -

suM 0,5] Both will be expanded

SUM TO=5 into the same statements.

Expanded results are as follows (the formal parameters in the macro body are replaced with

macro parameters):
MOV RO, R10
MOV Rl, R10
MOV R2, R10
MOV R3, R10
MOV R4, R10
MOV RS, R10

176

7.8 Character String Manipulation Functions

This assembler provides the following character string manipulation functions.

[. LEN J Counts the length of a character string.
[. INSTR] Searches for a character string.
[.suBSTR | Extracts a character string.

177

Character String Length Count

Syntax

.LEN[A] ("<character string>")

Description

1. .LEN counts the number of characters in a character string and replaces itself with the number
of characters in decimal with no radix.

2. Character strings are specified by enclosing the desired characters in double quotation marks
("). To specify a double quotation mark in a character string, enter two double quotation
marks in succession. '

3. Macro formal parameters and preprocessor variables can be specified in the character string as
shown below.

.LEN("\<formal parameter>")
.LEN("\&<preprocessor variable>")

4. This function can only be used within a macro body (between MACRO and .ENDM
directives). -

178

Coding Example:

.MACRO RESERVE_LENGTH P1

.ALIGN 4
.sRes PRENTONPIT)Y
.ENDM

—

RESERVE_LENGTH ABCDEF
RESERVE_LENGTH ABC

Expanded results are as follows:

.ALIGN 4

.SRES 6 : "ABCDEF" has six characters.
.ALIGN 4

.SRES 3 . "ABC" has three characters.

179

—

.INSTR

Character String Search

Syntax

.INSTR[A] ("<character string 1>","<character string 2>"

{,<start position>])

Description
1. .INSTR searches character string 1 for character string 2, and replaces itself with the

numerical value of the position of the found string (with 0 indicating the start of the stnng) in
decimal with no radix. .INSTR is replaced with -1 if character sing 2 does not appear in
character strning 1.

Character strings are specified by enclosing the desired characters in double quotation marks
("). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

The <start position> parameter specifies the search start position as a numerical value, with O
indicating the start of the string. Zero is used as default when this parameter is omitted.

Macro formal parameters and preprocessor variables can be specified in the character strings
and as the start position as shown below.

.INSTR("\<formal parameter>", ...)
.INSTR("\&<preprocessor variable>", ...)

This function can only be used within a macro body (between MACRO and .ENDM
directives).

180

.INSTR

Coding Example:

—

.MACRO FIND_STR Pl
.DATA.W .INSTR("ABCDEFG","\P1",0) .
.ENDM

———

FIND_STR CDE
FIND_STR H

Expanded resuits are as follows:

.DATA.W 2 . The start position of "CDE" is 2 (O indicating the
baginning of the string) in “ABCDEFG*®
.DATA.W -1 ; "ABCDEFG" inciudes no "H".

181

[.sumstr

Character Substring Extraction

Syntax

.SUBSTR(A] ("<character string>",<start position>
,<extraction length>)

Description

1. .SUBSTR extracts from the specified character string a substring starting at the specified start
position of the specified length. .SUBSTR is replaced with the extracted character string
enclosed by double quotation marks (7).

2. Character strings are specified by enclosing the desired characters in double quotation marks
(M. To specify a double quotation mark in a character string, enter 2 double quotation marks
in succession.

3. The value of the extraction start position must be 0 or greater. The value of the extraction
length must be 1 or greater.

4. Ifillegal or inappropriate values are specified for the <start position> or <extraction length>
parameters, this function is replaced with a blank space (" 7).

5. Macro formal parameters and preprocessor variables can be specified in the character string,
and as the start position and extraction length parameters as shown below.

.SUBSTR("\<formal parameter>", ...)
.SUBSTR (" \&<preprocessor variable>", ...)

6. This function can only be used within a macro body (between .MACRO and .ENDM
directives).

182

[
ll .SUBSTR

Coding Example:

——

.MACRO RESERVE_STR P1l=0 P2

.SDATA .SUBSTR("ABCDEFG",\P1l,\P2)
.ENDM

—

RESERVE_STR 2,2 -
RESERVE_STR ,3

. Macro paramataer P1 is omitted.
Expanded resuits are as follows:

.SDATA "CD"
.SDATA "ABC"

183

(This page intentionally left blank.)

184

Section 8 Automatic Literal Pool Generation Function

8.1 Overview of Automatic Literal Pool Generation

To move 2-byte or 4-byte constant data (referred to below as a "literal”) to a register. a literal pool
(a collection of literals) must be reserved and referred to in PC relative addressing mode. For
literal pool location, the following must be considered:

« Is data stored within the range that can be accessed by data move instructions?

Is 2-byte data aligned to a 2-byte boundary and is 4-byte data aligned to a 4-byte boundary?
Can data be shared by several data move instructions?

« Where should the literal pool be located in the program?

The assembler automatically generates from a single instruction a .DATA directive and a PC
relative MOV or MOVA instruction, which moves constant data 1o a register.

For example, this function enables program (a) below to be coded as (b):

@

MOV.L DATAl, RO
MOV.L DATAZ,R1

.ALIGN 4
DATAl .DATA.L H'12345678
DATA2 .DATA.L 50000

®)

MOV.L #H'12345678,R0
MOV.L #500000,R1

185

8.2 Extended Instructions Related to Automatic Literal Pool Generation

The assembler automatically generates a literal pool corresponding to an extended instruction
(MOV.W #imm, Rn; MOV.L #imm, Rn: or MOVA #imm, RO0) and calculates the PC relative
displacement value.

An extended instruction source statement is expanded to an executable instruction and literal data
as shown in table 8-1.

Table 8-1 Extended Instructions and Expanded Results

Extended Instruction Expanded Resuit

MOV.W #imm, Rn MOV.W @(disp. PC). Rn and 2-byte literal data
MOV.L #imm, Rn MOV.L @(disp. PC), Rn and 4-byte literal data
MOVA #imm, RO MOVA @(disp. PC), RO and 4-byte literal data

8.3 Literal Pool Output
The literal pool is output to one of the following locauons:

« After an unconditional branch (after the delay siot instruction following BRA, JMP, RTS, or
RTE)
« Where a .POOL directive has been specified by the programmer

The assembler outputs the litcral corresponding to an extended instruction to the nearcst output
location following the extended instruction. The assembier gathers the literals to be output as a
literal pool.

CAUTION!

When a label is specificd in a delay slot instruction, no literal pool will be output to the location
following the delay slot.

186

83.1 Literal Pool Output after Unconditional Branch (BRA, JMP, RTS, RTE)

An example of literal pool output is shown below.

Automatic literal pool generation result (source list)

1

1

4

]

]

]

1

)

)

1

1{

]

1

]

[}

)

]

! 8 O0OOFOOA 6A03
t

L]

]

)

]

)

)

t

[]

[}

[}

' "14’%-- R
'
1

.END

Source program
~ - ——— adababshdindadsininted i T
: .SECTION CD1,CODE, LOCATE=H'0000F000
| CD1_START:
! MOV.L #H'FFFF0000,RO
: MOV.W #H'FFO00,R1
E MOV.L #CD1_START,R2
; MOV #FF,R3
B -
: MOV RO,R10
b .END |
LIl Ll

.SECTION CD1,CODE, LOCATE=~H'0000F000

‘1 0000F000 1
2 0000F000 2 CD1_START
3 0000F000 5004 3 MOV.L
4 0000F002 1103 4 MOV.W
S 0000F004 S205 5 MOV.L
6 0000F006 6300 6 MOV
7 0000F008 00OB 7 RTS

8 MOV

#H'FFFF0000, RO
#H'FF00,R1
#CD1_START, R2
¥FF.R3

RO,R10

T#%4# BEGIN-POOL ****
7m FOR* SOURCE-LINE 4

“Z:DATA FOR SOURCE-LINE 3
“DATA FOR SOURCE-LINE 5
" wxw® END~POOL *we*

187

8.3.2 Literal Pool Output to the POOL Location

If literal pool output location after unconditional branches is not available within the valid
displacement range (because the program has a smail number of unconditional branches), the
assembler outputs error message 402. In this case. a POOL directive must be specified within the
valid displacement range.

The valid displacement range is as follows:

. Word-size operation: 0to 511 bytes
» Long word-size operation: 0 to 1023 bytes

When a literal pool is output to a POOL location, a branch instruction is also inseried 1o jump
over the literal pool.

An example of literal pool output is shown below.

+

1

1

]

i MOV.L #H'FFFF0000,RO
1

' MOV.W #H'FFOO,R1

i MOV.L #CD1_START,R2
+

:

1

L}

)

t

)

MOV #FF.R3
- POOL
.END
il iyl
Automatic literal pool generation result (source list)
1 0000F000 1 .SECTION CD1,CODE, LOCATE=H' 0000F000 !
i 2 DOGOF000 2 CD1_START: !
3 0OOOF000 5012 3 MOV.L #H'FFFF0000, RO 5
! 4 00OOF002 110E 4 MOV.W #H'FF00,R1 !
‘ 5 0000F004 5216 5 MOV.L #CD1_START,R2 :
! 6 00OOF006 6300 6 MoV #H'FF,R3
: 7 0OOOCF008 7 .POOL !
, "’a"‘""‘“""‘""' e *xex REGIN-POOL *#tw® ,
' 9°000CF008 A0O6 BRA TO END-POOL E
i 10 OOCOFOOA 0009 NOP :
! 110000F00C FF00 DATA FOR SOURCE-LINE 4 f
i 12 OOOOFOCE 0000 . . - ALIGNMENT CODE :
i 13 0000F010 FFFF0000 DATA FOR SOURCE-LINE 3 l
! 14 000CF014 OOOOF000 DATA FOR SOURCE-LINE 5 !
: 15) . *w*we END-POOL **=*= ,
16 8 .END 5

8.4 Literal Sharing

When the literals for several extended instructions are gathered into a literal pool. the assembicr
makes the extended instructions share identical immediate data.

The following operand forms can be identified and shared:

- Symbol
+ Consuant
« Symbol * constant

In addition 10 the above, expressions that are determined 1o have the same value at asscmbly
processing may be shared. '

However, extended instructions having different operation sizes do not share literal data even
when they have the same immediate data.

An example of literal data sharing among extended instrucuons is shown below.

Source program

| .SECTION CD1,CODE, LOCATE=H' 0000F000 ;
1 »
! CD1_START: '
: MOV.L #H'FFFFO000,RO
MOV.W #H'FFOO0,R1 :
' ‘MOV.L #H'FFFFO000,R2
!
E
)
1
[

MoV #H'FF,R3 f

RTS :

MOV RO,R10 :
e BN e

N A A A A A A
Automatic literal pool generation resuit (source list)

CTTTTiToecoFooo T 1T "SECTION Col,CoDE. LOCATE=H" 0000F000
E 2 000OF000 2 CD1_START:
' 3 0000F000 5004 3 MOV.L H'FFFF0000,RO ;
: -4 0000F002 1103 4 MOV.W #H'FF00.R1 :
S 0000F004 5204 5 - MOV.L #H'FFFF0000,R2 ;
: 6 000OF006 6300 6 MoV #H'FF,R3 :
' 7 000OF008 00OB 7 RTS :
! 8 000CFOOA 6A03 8 MOV R0, RIC :
E 9 *see BEGIN-POCL ****
' 10 000OF0OC FFO0 DATA FOR SOURCE-LINE 4 :
E 11 000OFOOE 0000 ALIGNMENT CODE
' 12 000CF010 FFFF0000 v DATA FOR SOURCE-LINE 3,5 :
¢ 13 *w** END-POCL ~*=* :
R 9 e END e ;

8.5 Literal Pool QOutput Suppression

When a program has too many unconditional branches. the following problems may occur:

» Many small literal pools are output
« Literals are not shared

In these cases, suppress literal pool output as shown below.

—~ |
<delayed branch instruction>
<delay slot instruction>

.NOPOOL

Example

Source program
o —~) :
| CASE1 ; '
! MOV.L #H'FFFF0000,RO ------- Extended instruction 1l
' RTS '
: NOP :
; ~.NOPOCL --E.---- No literal pool is output here
' CASE2: '
; MOV.L #H'FFFFO000,R0 --t---- Extended insmuction 2
: RTS '
: NOP |
E --:r---—- Literal pool is output here
D e oo e o e e e TS e e = e - - - -

N A A A A A

Automatic literal pool gencration result (source list)
R T :
| 20 0000FO00 20 CASE1: :
! 21 000OF000 5001 21 MOV.L #H'FFFT0000,RO ;
! 22 0000F002 00O0B 22 RTS ;
! 23 0000F004 0009 ' 23 NOP {
voo24 24 .NOPOOL ;
! 25 000OFOD6 25 CASE2: !
! 26 0000F006 5001 26 MOV.L #H'FFFF0000.RO :
! 27 O0OOFC08 000B 27 RTS :
{ 28 OOOOFOOA 0009 28 NOP }
to29 *ew* BEGIN-POOL **+* ;
! 30 000OFOOB 0000] ALIGNMENT CODE ;
E 31 000CF00C FFFF0000 DATA FOR SOURCE-LINE 21,26
P32 ses* END-POOL ***~ -
] 1

8.6 Notes on Automatic Literal Pool Output

1.

If an error occurs when an extended instruction is wrten

— Extended instructions must not be specified in delay siots (error 151).

— Extended instructions must not be specified in reiative sections having a boundary
alignment value of less than 2 (error 152).

— MOVL #imm, Rn or MOVA #imm, RO must not be specified in relative secuions having a
boundary alignment value of less than 4 (error 152).

If an error occurs when a POOL directive is written
POOL directives must not be written after unconditional branches (error 522).
If an error occurs when a NOPOOL directive is written

NOPOOL directives are valid only when written after delay slot instructions. If written at
other locations, the NOPOOL directive causes error 521.

If the displacement of an executable instruction exceeds the valid range when an exiended
insgruction is expanded :

The assembier generates a literal pool and outputs error message 402 for the instruction having
a displacement outside the valid range.

Solution: Move the literal pool output location by the .NOPOOL direcuve, or change the
location or addressing mode of the insruction causing the error.

If the literal pool output location cannot be found

If the assembler cannot find a literal pool output location satisfying the following conditions in
respect to the extended instruction, .

— Same file
— Same section
~ Forward direction

the assembler outputs, at the end of the section which includes the extended instruction, the
literal pool and a BRA instruction with a2 NOP instruction in the delay siot to jump around the
literal pool, and outputs warning message 876.

If the displacement from the extended instruction exceeds the valid range

If the displacement of the literal pool from the extended instruction exceeds the valid range,
error 402 is generated.

Solution: Output the literal pool within the valid range using the .POOL direcuve.

191

(This page intentionally left blank.)

192

User’s Guide

(This page intentionally left biank.)

Section 1 Executing the Assembler

1.1 Command Line Format

To start the assembler, enter a command line with the following format when the host computer
operating system is in the input wait state.

> A K nout. aource sade2d [<input source file>...j{{4] <command line options> ...,
(1) Q@))}

(1) Assembler start command.
(2) Name of input source file. Multiple source files can be specified at the same time.
(3) Command line options, which specify the assembly method in more detail.

CAUTION!

When multiple source files are specified on the command line, the unit of assembly processing
will be the concatenation of the specified files in the specified order.

In this case, the END directive must appear only in the last file.
Supplement:

The assembler remmns the operating system a return code that reports whether or not the assembly
processing terminated normally. The rewrn value indicates the level of the errors occurred as
follows. '

Normal termination 0
‘Wamings occurred 0
Errors occurred MS-DOS: 2

: UNIX: 1

Fatal error occurred MS-DOS: 4

' UNIX: 1

195

1.2 File Specification Format
Files handled by the assembier are specified in the following format
<file name>. [<file format>)

The term “file name”™ as used in this manual normally refers to both the file name and the file
format.

Example:
(File name)
file.src A file with the file name file and the file format src.
prog.obj A file with the file name prog and the file format obj.

The file format is used as an identifier to distinguish the contents of the file. Thus two files with
differing formats are different files even if the file name is the same.

Example:

file.src . o]
file.obj These file names specify different files.

The assembler handles the following types of file.

« Source file
This is a source program file. If a source program file is specified without the file format, the
file format src will be supplied.

e Object file
This is an output destination file for object modules. If an object file is specified without the
file format, the file format obj will be supplied. If an object file is not specified to the
assembler, a file with the same name as the source file (the first specified source file) and with
the file format obj will be used.

« Listing file
This is an output destination file for assemble listings. If a listing file is specified without the
file format, the extension lis will be supplied. If a listing file is not specified to the assembler,
a file with the same name as the source file (the first specified source file) and with the file
format lis will be used. '

Note: The PC system treats all-file names, command lines, and subcommand lines as capital leuers.

196

Section 2 Command Line Options

2.1 Overview of Command Line Options

Command line options are detailed specifications of the assembly processing. Table 2-1 shows an
overview of the command line options.

Table 2-1 Command Line Options

Type Command Line Option Function
Object moduie OBJECT Control output of an object module.
specifications NOOBJECT
DEBUG Controi output of debug information.
NODEBUG :
Assembie listing LIST Control output of an assemble listing.
specifications NOLIST
SOURCE Control output of a source program fisting.
NOSOURCE
CROSS_REFERENCE Control output of a cross-reference listing.
NOCROSS_REFERENCE
SECTION Controt output of a section information
NOSECTION listing.
SHOW Control output of the source program
NOSHOW listing.
LINES Sets the number of lines in the assemble
listing.
COLUMNS Sets the number of columns in the
assembile listing.
CAUTION! ’
When starting the assembler on MS-DOS, enter a slash (/) instead of a hyphen (-) before the
command line options.
Supplement:

The assemble listing is a listing to which the results of the assembly processing are output, and
consists of a source program listing, a cross-reference listing, and a section information lisung.

References: See appendix C, “Assemble Listung Example”, for a dctailed description of the
assemble listing.

2.2 Command Line Option Reference

2.2.1 Object Module Command Line Options

This assembler provides the following command line options concerned with object modules.

| OBJECT | | NOOBJECT

These command line options control output of an object module.

DEBUG | | NODEBUG |

These command line options control output of debug information.

Note: The syntaxes are written for a UNIX system; use a slash (/) instead of a hyphen (-) for
an MS-DOS system.

198

OBJECT NOOBJECT

-

Object Module Output Control

Syntax

EJBJECT (= <object output file>]
ESGBBJECT
The abbreviated forms are indicated by shading.

Description
1. The OBJECT option specifies output of an object module.
The NOOBJECT option specifies no output of an object module.

2. The object output file specifies the output destnation for the object module.

3. When the object output file parameter is omitted. the assembler takes the foilowing actions:

 If the file format is omitted:
The file format obj is supplied.

« If the specification is compietely omitted:
The file format obj is appended to the name of the input source file (the first specified
source file).

4. Do not specify the same file for the input source file and the output object file.

199

| omsEcr NOOBJECT

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Resuit

OBJECT (regardiess of any specification) An object moduie is output.

NOOBJECT (regardless of any specification) An object module is not output.

(no spacification) .OUTPUT OBJ An object module is output.
OUTPUT NOOBJ An object moduie is not output.
(no specification) An object module is output.

200

DEBUG | NODEBUG T

Debug Information Output Control

Syntax

EQEBUG
ERGhEBUG
The abbreviated forms are indicated by shading.

Description
1. The DEBUG option specifies output of debug informauon.
The NODEBUG option specifies no output of debug information.

2. The DEBUG and NODEBUG options are only valid in cases where an object module 1s
being output.

References: Object module output
— Programmer’s Guide, 4.2.5, “Object Module Assembler Direcuves”,
.OUTPUT
— User’s Guide, 2.2.1, “Object Module Command Line Options”,
OBJECT NOOBJECT

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line opuons.

Command Line Option Assembler Directive Resuit
DEBUG (regardiass of any specification) Debug information is output.
NODEBUG (regardless of any spacification) Debug information is not
7 output.
(no specification) OUTPUT DBG Debug information is output.
OUTPUT NODBG Debug information is not
output.
(no speciication) Debug information is not
output.

201

[DEBUG NODEBUG |

Supplement:

Debug information is information required when debugging a program using the
simulator/debugger or the emulator, and is parn of the object moduie. Debug information includes
information about source statement lines and information about symbols.

202

. 2.22 Assemble Listing Command Line Options

This assembler provides the following command line options concerned with the assemble listing.

LIST] | NOLIST]

These command line options control output of an assemble lisﬁng.

| SOURCE | | Nosource

These command line options control output of a source program listing.

| CROSS_REFERENCE | | NOCROSS_REFERENCE

These command line options controi output of a cross-reference listng.

SECTION | | NOSECTION .

These command line options control output of a section information listing.

SHOW 11 NOSHOW

These command line options control output of the source program listing.

| LINES

This command line option sets the number of lines in the assemble listing.

coLumNs |

This command line option sets the number of columns in the assemble listing.

203

[

LIST | NOLIST]

Assemble Listing Output Control

Syntax

ETXET [=<listing output file>]
ENGEXST

The abbreviated forms are indicated by shading.

Description

1.

The LIST option specifies output of an assembile listing.
The NOLIST option specifies no output of an assemble listing.
The listing output file specifies the output destination file for the assembie lisung.

When the listing output file parameter is omitted, the assembler takes the following actions:

+ If the file format is omited:
The file format lis is supplied.

« If the specification is completely omiued:
The file format lis is appended to the name of the input source file (the first specified
source file).

Do not specify the same file for the input source file and the listing output file.

204

LIST | NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Resuit
LIST (regardlass of any specification) An assembile listing is output.
NOLIST (regardiess of any specification) An assembie listing is not
output.
(no specification) PRINT LIST An assemble listing is output.
.PRINT NOLIST An assemble listing is not
output.
(no spacification) An assembie listing is not
output.

205

1

SOURCE NOSOURCE |

Source Program Listing Output Control

Syntax

ESQURCE
ENOSGURCE

The abbreviated forms are indicated by shading.

Description

L.

The SOURCE option specifies output of a source program listing to the assemble listing.

The NOSOURCE option specifies no output of a source program listing to the assembie
listing.

The SOURCE and NOSOURCE options are only valid in cases where an assembly listing is
being output.

References: Assemble listing output

— Programmer’s Guide, 4.2.6, “Assemble Listing Assembler Directives”,
PRINT

— User’s Guide, 2.2.2, “Assemble Listing Command Line Options”,
LIST NOLIST

206

SOURCE

NOSOURCE T

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option

Assembier Directive

Resuit (when an assemble
listing is output)

SOURCE

(regardiess of any speciiication)

A source program listing is
output.

NOSOURCE

(regardless of any specification)

A source program listing is not
output.

(no specification)

PRINT SRC

A source program listing is
output. '

.PRINT NOSRC

A source program listing is not
output.

{no speciication)

A source program listing is
output.

207

CROSS_REFERENCE NOCROSS_REFERENCE

Cross-Reference Listing Output Control

Syntax

ELB0SS_REFERENCE
ENGCROSS_REFERENCE
The abbreviated forms are indicated by shading.

Description

1. The CROSS_REFERENCE option specifies output of a cross-reference listing 1o the
assemble listing.

The NOCROSS_REFERENCE option specifies no output of a cross-reference listing to the
assemble listing.

2. ’I‘he CROSS_REFERENCE and /NOCROSS_REFERENCE options are only valid in cases
where an assemble listing is being output.

References: Assemble listing output
— Programmer’s Guide, 4.2.6, “Assemble Listing Assembier Directives”,
PRINT
—» User’s Guide, 2.2.2, “Assemble Listing Command Line Options”,
LIST NOLIST

208

[cross_rererence

NOCROSS_REFERENCE

Relationship with Assembler Directives

The assembier gives priority to specifications made with command line opuions.

Command Line Option

Assembler Directive

Resuilt (when an assembie
iisting is output)

CROSS_REFERENCE

(regardless of any specification)

A cross-referenca listing is
output.

NOCROSS_REFERENCE

(regardless of any specification)

A cross-reference listing is not
output.

(no specification)

PRINT CREF

A cross-referenca listing is
output.

PRINT NOCREF

A cross-reference listing is not
output.

(no specification)

A cross-referenca listing is

output.

209

| secTioN NOSECTION

Section Information Listing Output Control

Syntax

ESECTION
EXOTECTION

The abbreviated forms are indicated by shading.

Description
1. The SECTION option specifies output of a section information listing to the assemble listing.

The NOSECTION option specifies no output of a section information listing to the assemble
listing.

2. The SECTION and NOSECTION options are only valid in cases where an assembie listing is
being output.

References: Assemble listing output
— Programmer’s Guide, 4.2.6, ** Assemble Listing Assembler Directives”,
.PRINT '
— User's Guide. 2.2.2, “Assemble Listing Command Line Options”,
LIST NOLIST

210

SECTION

NOSECTION j

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option

Assembier Directive

Resuit (when an assemble
listing is output)

SECTION

(regardiess of any specification)

A section information listing is
output.

NOSECTION

(regardiess of any specification)

A section information listing is
not output.

(no specification)

.PRINT SCT A section information listing is
output.

PRINT NOSCT A section information listing Is
not output.

(no spacification) A section information listing s

output.

211

SHOW NOSHEOW j

Source Program Listing Output Control

Syntax

<UNIX> .
ESHOW (= <output type>(,<output type> ...]]
ENOSEOW [= <output type>{,<output type> ...)]

<MS-DOS>
ISHOW [=(<output type>(,<output type> ...])]
I[NOSHOW [=(<output type>(,<output type> ...])}

When oniy one output type is spacified, the parentheses can be omitted.

Output type: {CONDITIONALS|DEFINITIONS |CALLS|EXPANSIONS ICODE}

The abbreviated forms are indicated by shading.

Description

1. The SHOW option specifies output of preprocessor function source statements and object
code lines in the source program listing.

The NOSHOW option suppresses output of specified preprocessor function source statements
and object code display lines in the source program listing.

2. The items specified by output types will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

-SHOW: Output
-NOSHOW: Not output (suppress)

212

SHOW 1 NOSHOW W

3. The following output types can be specified:

Output Type Object Description
CONDITIONALS Failed condition Condition-failed .AlF statements
DEFINITIONS Definition Macro definition parts,
.AREPEAT and .AWHILE definition parts,
INCLUODE directive statements
ASSIGNA and .ASSSIGNC directive
statements
CALLS Call Macro call statements,
.AIF and .AENDI directive statements
EXPANSIONS Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion
statements 7
CODE Obiject code lines The object code lines exceeding the source

statement lines

References: Assemble listing output

—» Programmer’s Guide, 4.2.6, “Assemble Listing Assembler Directives”,

PRINT

— User's Guide, 2.2.2, “Assembie Listing Command Line Options”,
LIST NOLIST SOURCE NOSOURCE

Relationship with Assembler Directives

The asscmblci gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

SHOWas<output type> (regardiess of any specification) The object code is output.
NOSHOW-<outbut type> (regardless of any specification) The object code is not output.
(no specilication) LIST <output type> (output) The object code is output.

LIST <output type> (suppress) The object code is not output.

(no specification)

The object code is output.

213

| LINES

Sets the Number of Lines in the Assemble Listing

Syntax

ElX¥es=<line count>
The abbreviated form is indicated by shading.

Description

1. LINES is the command line option that sets the number of lines on a single page of the
assemble listing. The range of valid values for the line count is from 20 to0 255.

2. The LINES specification is only valid in cases where an assemble listing is being output.

References: Assemble listing output
— Programmer’s Guide, 4.2.6, “Assemble Listing Assembler Directives”,
JPRINT
— User’s Guide, 2.2.2, “Assemble Listing Command Line Options”,
LIST NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Asssmbler Directive . Result

LINESe=dine count> (regardiess of any specification) The number of lines on a page
is given by the LINES
) specification.
(no specification) .FORM LINacline count> The number of lines on a page
is given by the .FORM
spaecification.

{no spacification) The number of lines on a page
is 60 lines.

214

[COLUMNS

Sets the Number of Columns in the Assemble Listing

Syntax

EZBLUMNS=<column count>
The abbreviated form is indicated by shading.

Description

1. COLUMNS is the command line option that sets the number of columns in a single line of
the assembie listing. The range of valid values for the column count is from 79 to 255.

2. The COLUMNS specification is only valid in cases where an assemble lisung is being
output.

References: Assemble listing output
— Programmer’s Guide, 4.2.6, “Assemble Listing Assembler Directives”,
PRINT
— User's Guide, 2.2.2, “Assemble Listing Command Line Options”,
LIST NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assombler Directive 7 Resuit

COLUMNS= (regardless of any specification) The number of columns in a line

<column count> is given by the COLUMNS
spectfication.

{no specification) .FORM COL=<coiumn count> The number of columns in a line
is given by the .FORM
specification.

{no specification) The number of columns in a line

is 132 columns.

215

(This page intentionaily left blank.)

Appendix

(This page intentionaily left blank.) '

Appendix A Limitations and Notes on Programming

Table A-1 Limitations and Notes on Programming

No. Item Limitation

1 Character types ASCII characters

2 Upperslower-case letter Symbols (including section names) e

distinction Object module names } Distinguished

Reserved words
Executable instruction mnemonics
Assembler directive mnemonics Not
Operation sizes distinguished
Integer constant radixes

3 Line length Up to 255 bytes

4 Program length (in linas) Up to 65,535 lines

5 Character constants Up to 4 characters

6 Symbol length Up to 32 characters

7 Number of symbols Up to 65,535 symbols

8 Number of import symbols Up to 65,535 symbols

9 Number of export symbols Up to 65,535 symbols

10 Section size Up to HFFFFFFFF bytes

1 Number of sections Up to 65,535 sections

12 Number of macro generation Up 10 100,000 numbers

numbers
13 Number of literals Up 10 100,000 literals

219

Appendix B Sample Program

This appendix presents a sample program written for this assembler.

Sample Program Specifications:

Functional Specification

Macros and subroutines for addition, subtraction, multiplication, and division of fixed-point data
in the following format:

<parameter 1> OP <parameter 2> — resuit

OP: +,—-, X%, +
Note: Operation results are rounded off. Neither underflow nor overflow is checked.
Data Format
Register | 3 Integer part Fraction pan
¥
Sign bit ,A .
Decimal point .

The location of the decimal point is set in preprocessor variable POINT as the number of bits
from the MSB.

Inputs and Outputs

Inputs: Set parameter 1 in register Parm1.
Set parameter 2 in register Parm2.
For addition and subtraction, parameters 1 and 2 can be specified as macro parameters.

Output: The result is stored in register Parm 1.

Macro and Subroutine Usage

Addition (+): Macro call FIX_ADD [parameter 1], [parameter 2]
Subtraction (-): Macro call FIX_SUB [parameter 1], [parameter 2)
Multiplication (x): Subroutine call FIX_MUL

Division(+): Subroutine call FIX_DIV

Registers to be Used

Define the following registers with the .REG directive:
Parml, Parm 2, WORK 1, WORK2, WORK3, WORK4

Suppiement

An example of using this sample program is shown in appendix C.

220

Coding Example:

FIX_MUL:

DIVOS
MOVT
P /P2
BT

NEG
CMP /P2
BT

NEG
MULU
SWAP .W
STS
MULU
SWAP .W
SWAP .W
STS
MULU
SWAP .W
STS

MULO1

MUL02

SHLL
ROTCL

FIX_ADD Rs=Parm2, Rd=Parml
\Rs, \Rd

FIX_SUB Rs=Parm2,Rd=Parml
\Rs, \Rd

Parml,Parm2
WORK1

Parml

MULO1
Parmli,Parml
Parm?

MULO2

Parm2, Parm2
Parml,Parm2
Parml,Parml
MACL, WORK2
Parml,Parm2
Parml,Parml
Parm2,Parm2
MACL, WORK3
Parml,Parme
Parml,Parml
MACL, WORK4
Parml,Parmz

MACL,Parml
WORK3, Parm2
WORK3

Parm2
Parm2, WORK2
WORK3, Parml
WORK{, Parmz
WORK4

Parm2
WORK2, Parm2
WORK4, Parml

.AREPEAT \&POINT

Parm2
Parml

WORK1
MULO3
Parml,Parml

Stores the sign of the resuit in WORK1.

—

‘i (Parm1 < 0), Parmt = -Parm1

—

—_—

1t (Parm2 < 0), Parm2 = —~Parm2

Parm1 (low) * Parm2 (low)

Parm1 (hugh) * Parm2 (low)

Parm1 (low) * Parm2 (high)

Parm1 (high) * Parm2(high)

© Sums 16-bit multiplication results.

Corrects decimal point location.

(N -

: Adds the sign.

221

(Continued on foliowing page.)

FIX_DIV:

MOV #0, WORK1
DIVOS WORK]1,Parml
SUBC WORK1,Parml
.AREPEAT \&POINT
SHAR Parml

ROTCR WORK1

-AENDR
DIVOS Parmz2,Parml
+AREPEAT 32

ROTCL WORK1
DIVl Parm2,Parml
.AENDR

ROTCL WORK1

MOV #0,Parml
ADDC Parml, WORK1
MOV WORK1, Parmi
RTS

NOP

LT P T TR YRR W

LT O TR TR TR T TR TR

——
| 1f dividend is a negative value.
— converts to 1's compiement.

t Cormects decimai point location.
|
—

Parm1:WORK 1/Parm2 —> WORK1

Lo}

Converts to 2's compiement.

-

Appendix C Assemble Listing Output Example

The assemble listing shows the result of the assemble processing. The assembie lisung consists of
a source program listing, a cross-reference listing, and a section information listing.

This appendix describes the content and output format of the assembie listing using the assembiy
of the source program shown below as an exampie. This uses the sample program shown in
appendix B 1o calculate the following:

1.5%x225+3+5

POINT .ASSIGNA 1€

Parml .REG (RO)
Sarm2 .REG (]1)
WORK1 .REG (R2)
WORK2 .REG (R3)
WORK3 .REG (R4)
WORK4 .336 (}R3)
LSECTION SAMPLE,I32I,nlICN=<

.INCLUCEZ "appenc:x 2

a .REG (RB)
o} .REG {R9)
< .REG (R10}
a .REG’ (R11)
start
STS °R,@-5°

MOV.L ¥4'00C282C38,0
MOV.L sH'00C242C2C, ¢
MOV.L #H'02C3C2CC8. ¢
MOV.L #4°C3C32220,

MOV a,Parmi
MoV z,Parm2
B8SR TIX VUL
NOP

MOV Parm.,a
MOV c,Parr.
MOV <, Parmz
asRk TIX ZIV
NOP

FIX_ADD a

MOV Parml,a
oS isp., PR
RTS '
NOP

.END

223

C.1 Source Program Listing

The source program listing lists information related to the source statements, including the line
number and the corresponding object code.

Figure C-1 shows an example of a source program listing.

e SH SERIES ASSEMBLER Ver. 1.2 *
PROGRAM NAME =

07/09/93 19:52:40
~ SAMPLE ~ 17)

1 1 -HEADING ~~~"SAMELZI~~~ §
2 2 POINT -ASSIGNA 16
3 3 Parml -RES (RCY
q 4 Parm2 .RES (£ 9]
S S WORK1 -REG (R2)
€ 6 WORK2 .RES {]3)
7 7 WORK3 .}EG (R4)
8 8 WORK4 .RES {}3)
20 00000000 9 I1 FIX MUL:
21 00000000 2107 10 11 D1Vos Parm.,?arTe
22 00000002 0229 un MCVT ~ORKZ :
23 00000004 4011 2 n IMP/PZ Farm. r=- ;
24 00000006 8900 13n aT MULSL : LI iTarml 3
—<24 QDeQooooe sgoB 0 2413 e S3r=i Do L g
4}) 3 4) (S) (6)
237 eeeee BEGIN-POOL voe*- ——
238 00000180 AQOB BRA TO END-POOL
239 00000182 0009 NOP
240 00000184 00018000 DATA FOR SCURCE-LINZ 217
241 00000188 00024000 DATA FOR SCURCE-LINE Zl.E {8)
242 0000018C 000310000 CATA FOR SCURCE=-LINZ Z.%
243 00000190 00050000 DATA FOR SCSURCE-LINI 220
244 eeees IND-POCL *=°cc*
2435 39 ENT
****TOTAL ERRORS 0
*+**TOTAL WARNINGS 0

9

Figure C-1 Source Program Listing Output Example

(1) Line numbers (in decimal)

(2) The value of the location counter (in hexadecimal)

(3) The object code (in hexadecimal). The size of the reserved arca in bytcs is listed for arcas
reserved with the .RES, .SRES, .SRESC, and .SRESZ assembicr dirccuves.

(4) Source line numbers (in decimal)

(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function is listed.
In: File inclusion (n indicates the nest level).
C: Satisfied conditional assembly, performed iteratcd cxpansion. or satisficd conditional

iterated expansion '

M: Macro expansion

224

(6) The source statements

(7) The header setup with the HEADING assembler direcuve.

(8) The literal pool

(9) The total number of errors and wamings. Error messages are listed on the line following the
source statement that caused the error.

C.2 Cross-Reference Listing

The cross-reference listing lists information relating to symbols, including the auribute and the
value.

Figure C-2 shows an example of a cross-reference listing.

wss SH SERIES ASSEMBLER Ver. 1.2 *°** 07/09/93 19:52:40

e*e CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE
FIX_DIV SAMPLE 00000088 34 II9
FIX_MUL SAMPLE 00000000 20 224
MANO3 UDEF 00000000 g9
MULOL SAMPLE 0060000A 24 26°
MULO2 : SAMPLE 00000010 27 29*
Parml REG 3. 22 23 2%
37 37 39 a1
69 ETUE X B T
96 97 102 104
122 1264 126 128
150 152 154 156
174 176 178 180
198 200 202 204
Parm2 REG 4 21 26 28
. 44 45 47 49
70 72 14 6
144 146 148 150
. : 168 70 172 374
m @ @ (@ 5

Figure C-2 Cross-Reference Listing Output Example

(1) The symbol name
(2) The name of the section that includes the symbol (first eight characters)
(3) The symbol attribute

EXPT Expon symbol

IMPT Impon symbol

SCT Section name

REG Symbol defined with the .REG assembier directive
ASGN Symbol defined with the .ASSIGN assembler directive
EQU Symbol defined with the .EQU assembler directive
MDEF Symbol defined two or more times

UDEF Undefined symbol

225

No symbol attribute (blank)....A symbol other than those listed above

(4) The value of symbol (in hexadecimal)

(5) The list line numbers (in decimal) of the source statements where the symbol is dcfined or
referenced. The line number marked with an asterisk is the line where the symbol is defined.

C.3 Section Information Listing

The section information listing lists information related to the sections in a program, inciuding the
section type and section size.

Figure C-3 shows an example of a section information listing.

eee SH SERIES ASSEMBLER Ver. 1.2 *°° 07/09/93 19:52:42
e+ SECTION DATA LIST
SECTION ATTRIBUTE SIE START

SAMPLE REL-CODE 2C20CT19¢s
m @ 3 (8}

Figure C-3 Section Information Listing Output Example

(1) The section name
(2) The section type

REL................... Relative address section

ABS...eeiineens Absolute address section
CODE....coeveeeeee Code section

| 97, V. Data section

COMMON Common section
STACK.....ccceeueee Stack section
DUMMY......... Dummy section

(3) The scction size (in hexadecimal. byte units)
(4) The stan address of absolute address sections

226

Appendix D Error Messages

D.1 Error Types
(1) Command Errors

These are errors related 10 the command line that starts the assembler. These errors can occur, for
example, in cases where there are errors in the source file or command line opton specifications.

The assembler outputs the error message to standard error output (usually the display). The
format of these messages is as follows:

<error number><message>

Exampie:

10 NO INPUT FILE SPECIFIED

(2) Source Program Errors

These are syniax errors in the source program.

The assembler outputs the error message to standard output (usually the display) or the source
program listing. (If a source program listing is ougput during assembly, these messages are not

. output to standard output.)

The format of these messages is as follows:

n¢aource file name>",line <line number>: ERROR <error number>
n¢source file name>",line <line number>: WARNING <error number>

Example:

"PROG.SRC", line 25: ERROR 300
"PROG.SRC", line 33: WARNING 811

227

The source program error numbers are classified as follows:

JOO'S ...oneoeeeeereceeneenese. G€NETAl SOUTCE Program syntax errors

200°Scoremecssemsessasessane Errors in symbols
300'S ...coeeerscessmecasesnnsee. EITOTS it OpeErations and/or operands
400'S ...cccoemrramsronsesnrenss Errors in expressions

500'S ...cvesromessrssansessess.s EITOTS in assembler directives
600'S ..cerereaeceeseseesecneeeee EITOTS iN file inclusion, conditional assembly, or macro function
800'S ...coeermemssacossssasas General source program wamings

(3) Fatal Errors

These are errors related to the assembler operating environment, and can occur, for example, if the
available memory is insufficient.

The assembler outputs a message to standard error output. The format of these messages is as
follows:

FATAL ERROR (<error number>)

Example:

FATAL ERROR (902)

Assembly processing is interrupted when a fatal error occurs.

228

D.2 Error Message Tables

Table D-1 Command Error Messages

10 Moessage: NO INPUT FiLE SPECIFIED
Meaning: Thera is no input source file specified.
Recovery procedure: Specify an input source file.
20 Maessage: CANNOT OPEN FILE <file name>
Meaning: The specified file cannot be opened.
Recovary procedure: Check and correct the file name and directory.
30 Message: INVALID COMMAND PARAMETER
Maaning: The command line options are not correct.
Recovery procedure: Chack and correct the command line options.
40 Message: CANNOT ALLOCATE MEMORY

Meaning: All available memory is used up during processing.

Recovery procedure: This error only occurs when the amount of available user memory is
extremely small. If there is other processing occurring at the same
time as assembly, interrupt that processing and restart the
assembiler. If the error still accurs, check and correct the memory
management employed on the host system.

50 Message: COMPLETED FILE NAME TOO LONG <file name>

Meaning: The file name including the directory is too long.

Recovery procedure: Shorten the total length of the file name and directory path.

Supplement: it is possible that the object module output by the assembiler after

this error has occurred wili not be usable with the
simuiator/debugger. -

229

N

Table D-2 Source Program Error Messages

General Source Program Syntax Errors

100 Error description: Too complex operation.
Recovery procedure: Simplify the expression for the operation.
101 Error description: Syntax error in executable instruction source statement.
Racovery procedurae: Check and correct the whole source statement.
102 Error dascription: Syntax error in assembiler directive source statement.
Recovery procedura: Check and correct the whoie source statement.
103 Error description: Program does not end with .END directive.
Recovery procedure: Add .END directive.
104 Error description: The value of location counter exceeded its maximum value.
Recovery procedure: Reduce the size of the program.
105 Error description: Executabie instruction or assembier directive that reserves data in
stack section.
Recovery procedure: Remove the instruction or directive in the stack section.
106 Error dascription: Error dispiay terminated due to 100 many errors.
Recovery procedure: Check and correct the whole source statement.
108 Error description: lilegal continuation line.
Recovery procedure: Check and correct continuation line.
109 Error description: The number of lines being assembied exceeged 65.535 lines.
Recovery procedure: Subdivide the program into muttiple fiies.
150 Error description: !llogal qxec_utable instruction placed following delayed branch
instruction in memory.
Recovery procedure: Change the order of the instruction so that the instruction does not
immediately follow a delayed branch instruction.
151 Error description: Extended instruction placed tollowing a delayed branch instruction in
memory.
Recovery procedure: Place an executable instruction foliowing the delayed branch
instruction.
152 Error description: lllegal boundary alignment value specified for a section inciuding
extended instructions.
Recovery procedure: Specity 2 or a larger muitiple of 2 as a boundary alignment value.
153 Error description: Executable or extended instruction placed at an odd address.

Recovery procedure:

Place executable and extended instructions at even addresses.

230

Table D-2 Source Program Error Messages (cont)

Symbol Errors aanl

200 Error description: Undefined symbol reference.
Recovery procedure: Define the symbol.

201 Error description: Reserved word specified as symbol (or section name):
Recovery procedure: Corract the symbol or section name.

202 Error description: llegal symbol (or section name).

Recovary procedure:

Correct the symbol or section name.

Operation and Operand Errors

300 Error description: lilegal operation.
Recovery procedure: Correct the operation.
301 Error description: Too many operands of executable instruction. or iliegal comment
format.
Recovery procedura: Check and correct the operands and comment.
304 Error description: Too few operands.
Recovery procedure: Correct the operands.
307 Error description: illegal addressing mode in operand.
Recovery procedura: Correct the operand.
308 Error description: Syntax error in operand.

Recovery procedure:

Correct the operand.

Expression and Operation Errors

400 Error description: Character constant is longer than 4 characters.
Recovery procedure: Correct the character constant.
402 Error description: Operand value out of range for this instruction.
Recovery procedure: Change the value.
403' Error description: Attempt 10 perform muitiplication. division. or togic operation on
relative value.
Recovery procedure: Correct the expression.
407 Error description: Memory overliow during expression calculation.
Recovery procedure: Simplity the expression.
408 Error description: Attempt to divide by 0.

Recovery procedure:

Correct the expression.

23

Table D-2 Source Program Error Messages (cont)

409 Error daescription: Register name in @xprassion.
Recovery procedure: Correct the expression.
411 Error description: STARTOF or SIZOF specifias illagal section name.
Recovery procedure: Correct the section name.
450 Error description: lllegal displacement vatue. (Negative vaiue is specified.)
Recovery procedure: Carrect the displacement value.
452 Error description: PC-relative data move instruction specifies illegal address for data
area.
Recovery procedure: Access a correct address according to the instruction operation size.
(4-byte boundary for MOV.L and MOVA, and 2-byte boundary for
MOV.W.)
453 Error description: More than 510 extended instructions exist that have not output

Recovery procedure:

literals.

OQutput literal pools using .POOL.

Assomblar DIrective Errors ~ =-Fymewem v == - oo

500 Error description: Label not defined in directive that requires label.
Recovery procedure: Insert a label.
501 Error description: llegal sgeciﬁchion of the start address or the vaiue of location
counter in section.
Recovery procedure: Correct the start address or vaiue location counter.
502 Error description: fllegal vaiue (forward reference symbol, impon symbol, or relative
address symbol) specified in operand.
Recovery procedure: Correct the operand.
503 Error dosctiptioq: Symbol declared for export symbol not defined in the file.
Recovery procedure: Daetine the symbol. Alternatively, remove the export symbol
declaration. :
504 Error description: llegal value (forward reference symbol or impor symbol) specified in
operand.
Recovery procedure: Correct the operand.
505 Error description: Misspaelied operand.
. Recovery procedure: Correct the operand.
506 Error description: liiegal element specified in operand.

Recovery procedure:

Correct the operand.

232

Table D-2 Source Program Error Messages (cont)

508 Error dascription: Operand value out of range for this directive.
Recovery procaedure: Correct the operand.
510 Error description: llegal boundary alignment value.
Recovery procedura: Correct the boundary alignment value.
512 Error description: liegal execution start address.
Recovery procedure: Correct the execution start address.
513 Error description: liegal register name.
Recovery procedure: Corract the register name.
514 Error description: Symbol deciared for export symbol that cannot be exported.
Recovery procedure: Remove the declaration for the export symbol.
516 Error description: Inconsistent directive specification.
Recovery procedure: Check and correct all related directives.
517 Error description: llegal value (forward reterence symbol, an import symbol, or
relative-address symbol) specified in operand.
Recovery procedure: Correct the operand.
518 Error description: Symbol declared for import defined in the file.
Recovery procedure: Remove the declaration for the import symbol.
§21 Error description: .NOPOOL piaced at illegal position.
Recovery procedure: Place .NOPOOL following a delayed branch instruction.
5§22 Error description: .POOL placed following a delayed branch instruction.
Recovery procedure: Place an executable instruction following the delayed branch

instruction.

?li:'l;‘é'fﬁlamﬁdRﬁa‘l’iz‘iiiﬁﬁly, and Macro Errors

600 Error description: fllegal character.
Recovery procedure: Correct it.

601 Error description: llegal delimiter character.
Recovery procedure: Correct it.

602 Error description: Character string error.
Recovary procedura: Correct it.

603 Error description: Source statement.Syntax ernor.
Recovery procedure: Reexamine the entire source statement.

233

Table D-2 Source Program Error Messages (cont)

604 Error description: lllegal operand specified in a directive.

Recovery procedure: No symbol or location counter ($) can be specified as an operand of
this diractive.

610 Error description: Macro name freused in macro definition ((MACRO directive).

Recovery procedure: Correct the macro name.

611 Error description: Macro name not specified (.MACRO directive).

Recovery procedure: Specify a macro name in the name field of the .MACRO directive.

612 Error description: Macro name error (.MACRO directive).

Recovery procedure: Correct the macro name.

613 Error description: .MACRO directive appears in macro body (between .MACRO and
.ENDM directives), between .AREPEAT and .AENDR directives, or
between .AWHILE and .AENDW directives.

Recovery procedure: Remove the .MACRO directive.

614 Error description: Identical formal parameters repeated in formai parameter declaration

in macro definition (.MACRO directive).
Recovery procedure: Correct the formal parameters.

615 Error description: .END directive appears in macro body (between .MACRO and

[ENDM directives).
Recovery procedure: Remove the .END directive.

616 Error description: An .ENDM directive appears without a preceding .MACRO directive,
or an .EXITM directive appears outside of a macro body (between
.MACRO and .ENDM directives), outside of AREPEAT and .AENDR
directives, or outside of . AWHILE and .AENDW directives.

Recovery procedure: Remove the .ENDM or .EXITM directive.

618 Error description: Line with over 255 characters generated by macro expansion.

. Recovery procedure: Correct the definition or call so that the line is less than or equal to
255 characters.

619 Error description: Macro parameter name error in macro cail, or error in formai
parameter in a macro body (between .MACRO and .ENDM
directives).

Recovery procedure: Correct the formal parameter.
Suppiement: When thare is an error in a formal parameter in a macro body, the
error will be detected and flagged during macro expansion.

620 Error description: Reference to an undefined preprocessor variable.

Recovery procedure:

Define the preprocessor variable.

234

Table D-2 Source Program Error Messages (cont)

621 Error description: .END directive in macro expansion.
Recovery procedure: Remove the .END directive.
622 Error description: Matching parenthasis missing in macro processing exclusion.
Recovery procedure: Add the missing macro processing exciusion parenthesis.
623 Error description: Syntax error in character string manipuiation function.
Recovery procedure: Correct the character string manipuiation function.
624 Ermor description: Too many macro parameters for positional specification in macro call.
Recovery procedure: Correct the number of macro parameters.
630 Error description: Syntax error in structured assembly directive operand.
Recovery procedure: Reexamine the directive.
631 Error description: Terminating preprocessor directive does not agree with matching
directive.
Recovery procedure: Reexamine the preprocessor directives.
640 Error description: Syntax error in conditional assembly diractive operand.
Recovery procedure: Reexamine the entier source statement.
641 Error description: Error in conditional assembly directive relational operator.
Recovery procedure: Correct the relational operator.
642 Error description: .END directive appears between .AREPEAT and .AENDR directives
or between .AWHILE and .AENDW directives.
Recovery procedure: Remove the .END directive.
643 Error description: .AENDR or .AENDW directive does not form a proper pair with
, AREPEAT or .AWHILE directive.
‘Roeovory procedure: Re-examine the preprocessor directives.
644 Error description: AENDW or .AENDR directive appears between .AIF and .AENDI
directives.
Recovery procedure: Remove the .AENDW or .AENDR directive.
645 Eror description: Line w@ over 255 characters generated by .AREPEAT or .AWHILE
expansion.
Recovery procedure: Correct the AREPEAT or .AWHILE to generate lines of less than or
equal to 255 characters.
650 Error description: Error in .INCLUDE file name.
Recovery procedure: Correct the file name.
651 Error description: Could not open .INCLUDE file.

Recovery procedure:

Correct the file name.

235

Table D-2 Source Program Error Messages (cont)

652 Error description: File inclusion nesting exceeded 8 ieveis.
Recovery procedura: Limit the nesting to 8 or fewer levels.
653 Error description: Syntax error in .INCLUDE operand.
Recovery procedure: Cotrect the operand.
660 Error description: Missing .ENDM directive following .MACRO.
Recovery procedure: insert an .ENDM directive.
662 Error description: .END directive appears between .AlF and .AENDI directives.
Recovery procedure: Remove the .END directive.
663 Error description: .END directive appears in inciuded file.
Recovery procedure: Remove the .END directive.
664 Error description: .END directive appears between .AlIF and .AENDI directives.

Recovery procedurae:

Remove the .END directive.

General Sourcs Program Warnings ;- sgesns v

800 Error description: A symbol exceeded 32 characters.
Recovery procedure: Correct the symbol.
Supplement: The assembler ignores the characters starting at the 33rd character.
801 Error description: Symbol aiready defined.
Recovery procedure: Remove the symbol redefinition.
Supplement: The assembier ignores the second and later definitions.
~ 807 Error description: lllegal operation size.
Recovery procedure: Correct the operation size.
Supplement: The assembler ignores the incorrect cperation size specification.
808 Error description: llegai notation of integer constant.
Recovery procedure: Correct the notation. ‘
Supplement: The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmar.
810 Error description: Too many operands or illegai comment format.
Recovery procedure: Corract the operand or the comment.
Supplement: The assembler ignoras the extra operands.
811 Error description: Specitied label in assembler directive that cannot have a iabel.
Recovery procedure: Remove the label specification.
Supplement: The assembler ignores the label.

236

Table D-2 Source Program Error Messages (cont)

812 Error dascription: Section or object module name exceeded 32 characters.
Recovery procedure: Correct the section or object module name.

Supplement: The assembler ignores the 33rd and later characters.

813 Error description: A different section type is specified on section restart (reentry), or,
a section start address is respecified at the restart of absoiute
section.

Recovery procadure: Do not respecify the section type or start address on section reentry.
Suppiement: The spacification of starting section remains valid.
815 Error description: Respecification of object module name.
Recovery procedure: Specify the object medule name once in a program.
Supplement: The assembler ignores the second and later object module name
specifications.
816 Error description: lllegal allocation of data or data area.
Recovery procedura: Locate the word data or data area on the even address. Locate the
long word data or data area on an address of a multiple of 4.
Supplement: The assembier corrects the location of the data or data area
’ according to the size of il.

817 Error description: A boundary alignment value less than 4 specified for a code section.

Recovery procedure: The spaecification is valid, but if an executable instruction or extended
instruction is located at an odd address, error 153 occurs.

Supplemaent: Special care must be taken when spacifying 1 for code section
boundary alignment vaiue.

825 Errordescription: ' Executable instruction or assembier diractive that reserves data or

’ data area in dummy section.
Recovery procedure: Remove the instruction or directive.
Suppiement: The assemblar ignores the instruction or directive.

832 Error description: Symboi P already detfined before a defautlt section is used.
Recovery procedure: Do not define P as a symbol if a default section is used.
Supplement: The assembler regards P as the name of the default section, and

ignores other definitions of the symbol P.
835 Error description: Operand value out of range for this instruction.
Recovery procedure: Correct the value.
Supplement: The assembler generates object code with a value corrected to be

within range.

237

Table D-2 Source Program Error Messages (cont)

836 Error description: lilegal notation of integer constant.

Recovery procedura: Correct the notation.

Supplement: The assembler may misinterpret the integer constant, i.e., interpret it
as a vaiue not intended by the programmer.

837 Error description: The length of a source statement exceeded 255 bytes.

Recovery procedure: Rewrite the source statement to be within 255 bytes by, for example,
rewriting the comment. Alternatively, rewrite the statement as a
multi-line statement.

Supplement: The assembler ignores byte number 256, and regards the characters
starting at byte 257 as the naxt statement.

850 Error description: Symbol specified in iabel field.
Recovery procedure: Remove the symbol.
851 Error description: Macro generation counter exceedaed 99999.
Recovery procedure: Reduce the number of macro calls.
852 Error description: Characters appear after the operands.
Recovery procedure: Correct the operand(s).
870 Error description: liiegal displacement vaiue.
(Either the displacement value is not an even number when the
operation size is word, or the displacement value is not a muitiple of
4 when the operation size is long word.)

Recovery procedure: Take account of the fact that the assembler corrects the
displacement value.

Supplement: The assembler generates object code with the displacement
cotrected according 1o the operation size.

(For a word size operation the assembler discards the low order bit
of the displacement to create an even number, and for a iong word
size operation the assembler discards the two low order bits of the
displacement to create a multiple of 4.)

871 Error description: Executable instruction with PC relative addressing mode operand is

Recovery procedure:

Supplement:

located following delayed branch instruction.

Take account of the fact that the value of PC is changed by a
delayed branch instruction.

The assembler generates object code exactly as spaecified in the
program.

238

Table D-2 Source Program Error Messages (cont)

872 Error description: Executable instruction is iocated on the odd address iﬁ absolute
address section.
Recovery procaedure: Locate the instruction on the even address.
Supplement: The assembier only outputs this message for the first illegal
instruction in the section.
874 Error description: Cannot check data area boundary for PC-relative data move
instructions.
Recovery procedure: Note carefully the data area boundary at linkage process.
Suppiement: The assembier only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.
875 Error description: Cannot check displacement size for PC-relative data move
instructions.
Recovery procedure: Note carefully the distance between data move instructions and data
area
Supplement: The assembier oniy outputs this message for the first illegal
instruction in the section.
876 Error description: The assembier automatically outputs a BRA instruction.
Recovery procedura: Specify a literal pool output position using .POOL. or check that the
program to which a BRA instruction is added can run normally.
Supplement: When a literal pool output location is not available, the assembier

automatically outputs literal pool and a BRA instruction to jump over
the literal pool.

239

Table D-3 Fatal Error Messages

901 Error description: Source file input error.
Recovery procedure: Chack the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.
902 Error description: Insutficient memory. (Unable to process the temporary information.)
Recovery procedure: Subdivide the program.
903 Error description: Output error on the list fiie. .
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecassary files.
904 Error description: Output error on the object file.
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by delaeting unnecessary fites.
905 Error description: Insufficient memory. (Unable to process the line information.)
Recovery procedure: Subdivide the program.
906 Error description: Insutficient memory. (Unable to process the symbol information.)
Recovery procedure: Subdivide the program.
907 Error description: Insufficient memory. (Unable to process the section information.)
Recovery procedure: Subdivide the program.
908 Error description: The number of sactions exceeded 65,535.
Recovery procedure: Subdivide the program.
909 Error description: The numbaer of symbols exceeded 65,535.
Recovery procedure: Subdivide the program.
910 Error description: The number of source program lines exceeded 65,535.
Recovery procedure: Subdivide the program.
911 Error description: The number of import symbols exceeded 65,535.
Recovery procedure: Reduce the number of import symboils.
912 Error description: The number of exporn symbols exceeded 65,535.
Recovery procedure: Reduce the number of export symbols.
950 Error description: Insufficient memory.
Recovery procedure: Separate the source program.
951 Error description: More than 16 sections exist that have not output literal poois.
Recovery procedure: Output literal pools using .POOL before terminating section

processing.

Please contact your Hitachi, Ltd., sales representative if a problem cannot be resolved using the
indicated recovery procedure, or if an error message that does not appear in the manual is
displayed.

240

Appendix E ASCII Code Table

Table E-1 ASCIH Code Table

Upper 4 Bits

0

Lower 4 Bits

SP

DLE
DC1
DC2
DC3
DC4
NAK
SYN

NUL
SOH
STX
ETX

EOT

%

ENQ
ACK
BEL
BS

CAN
EM
suB

LF

ESC
FS
GS

FF
CR
e)
s

RS

DEL

uUs

24

(This page intentionally ieft blank.)

242

Index

A
absolute address 36
absolute address section 36
absolute address section declaration 66
absolute address symbol 38
absolute address value 38, 76
absolute path 142, 143
absolute value 38
ADD 51,54
ADDC 54
address calculation 59
address symbol 16
absolute address symbol 38
relative address symbol 38
addressing mode 48
instruction and operation size
combination 52
ADDV 54
AELSE 155
.AENDI 155
.AENDR 157
AENDW 159
AIF 155
ALIGN 73
AND 51,55
AREPEAT 157
arithmetic operation instruction 54
ASCII code table 241
assembier 3,6
assembler directive 12,63
- assembly-language source program
assemble listing 3 :
assemble listing assembler directive 119
assemble listing column count
seiing 126, 215
assemble listing command line
option 203
assemble listing line count
setting 126,214
assemble listing output control 122, 204
assemble listing output example 223
ASSIGN 78

3,6

243

ASSIGNA 150

ASSIGNC 153

automatic literal generation 185
extended instruction related to

autornatic literal generation
AWHILE 159

186

B
B' 19
backward 41
backward reference 41,42
BF 56,58
boundary alignment value
(adjust the value of the location
counter) 21,73
section boundary alignment 66
BRA 56,58
branch instruction 56
delayed branch instruction 58
BSR 56,58
BT 56,58

C
character constant
character string 29
character string data area reservation
character string data area reservation
(with length) 102
character string data area reservation
(with zero terminator) 106
character string data blocks
reservation 90
character string data reservation 88
character string data reservation
(with length) 93
character string data reservation
. (with zero ierminator) 95
character string manipulation
function 178
CLRMAC 57
CLRT 57
CMPEQ 51,54

20

100

CMP/GE
CMP/GT
CMP/HI
CMP/HS
CMP/PL
CMP/PZ
CMP/STR 54
code section 31

code section declaration 66
COLUMNS 215
command line 195
command line option
comment 11,12,14

comment for multiple line source

statement 15

common section 33

common section declaration 66
conditional assembly 146, 155
conditional assembly directive 149
conditional iterated expansion 148, 159
compiler 6,7
constant 19,20, 38
constant symbol 38
control character (appended to a

character string) 88, 91,93, 95
CROSS_REFERENCE 208
cross-reference listing 225

cross-reference listing output

control 120, 208

LLERpy

195, 197

D
D19
.DATA 83
data area reservation 97
datwa section 32 '
data section declaration 66
data structure 35
data move instruction 52
.DATAB 385
.DEBUG 117
DEBUG 201
debug information 115, 116
debug informaton output control
symbolic debug information output
control 117

114

244

decrement 49
delay slot instruction 58
delayed branch instruction 58
disp 48,49, 50
displaced GBR indirect 48
displaced register indirect 48
displacement 49, 50, 62
correction of displacement 51
divisorof 0 28
DIVOS 54
DIVOU 54
DIVl 54
dummy section 34
data structure using a dummy section 35
caution and supplement on dummy
section 36, 37

E
editor 6,7
emulator 7
END 139
ENDM 166
error message
EQU 76
executable instruction 47
executable instruction table 52
executing the assembler 195
EXITM 161,169
export 44
export assembler directive
export symbol 44
export symbol declaration 44, 107, 111
EXPORT 107
expression 23
clements of expression 23
operator prionity 25
internal processing 28
notes on expressions 28
extended instruction 53, 186
external 41
external definition 44
external reference 42,44
external reference value 38
EXTS 54
EXTU 54

227

106

F

file format 196

file inciusion 141

file name 196

file specification format 196

FORM 126

formal parameter 164, 166, 171
formal parameter default 166

forward 41

forward reference 41,42

G

GBR 48,49

GBR indirect with displacement 48
GLOBAL 111

H
H 19
header (for source program listing) 128
HEADING 128
I
#imm 49
immediate 49, 51
imponn 44
import assembler directive 106

import symbol 38, 45
import symbol declaration 45, 109, 111
IMPORT 109
INCLUDE 142
included file 141,142
inclusion nest 142
increment 49
INSTR 180
integer constant 19
integer constant with no radix
specification 137
integer data reservation 83
integer data block reservation 85
internal symbol 18
iterated expansion 147, 157

J
JMP 56,58
JSR 56,58

K
keyword specification 175
L
label 12,13
LDC 57
LDS 57
LEN 178
librarian 6,7
library file 6,7
line

line length 13,219

source statements across muitiple

lines 15

program length in lines 219
LINES 214
linkage editor
LIST 122
LIST 204
listing file 196

listing output file 204
load module 6,7

S-type format load module 6, 7
location 21,37
location counter 16, 21
logic operation instruction 55

6.7

M

MAC 54

MACH 48.49

MACL 48,49

macro 163
comments in macro 174
macro body 163, 166, 171
macrocall 175
macro definition
macro directive 165
macro function 163
macro generation number
macro name 163, 166
macro parameter 164, 175
macro replacement processing

exclusion 173
.MACRO 166
mnemonic 12,47, 219

163, 166

172

245

assembler directive mnemonic 63
executable instruction
mnemonic 52, 54, 55, 56, 57
MOV 51,52,61
MOVA 52,61
MOVT 52
MULS 54
MULU 54

N

NEG $4

NEGC 54

new page (source program listing) 130
NOCROSS_REFERENCE 208
NODEBUG 201

NOLIST 204

NOOBJECT 199

NOP 57

NOSECTION 210
NOSHOW 212
NOSOURCE 206

NOT 55

)
OBJECT 199
objectcode 21
object code for delay slot insruction 58
object converter 6,7
object file 196
object output file 199
object module 3,6
object module assembler directive 113
object module command line option 198
object module output control 114, 199
object module name 135
operand 11, 12, 14,47
operation 11,12, 14,47
operation (expression) 23
internal processing 28
operation priority 25
operation size 47
instruction and addressing form
combination 52
operator 23

246

operator association rule 25
operator of reserved word 16
operator priority 25
OR 51,55
ORG T1
OUTPUT 114
P
PAGE 130
parentheses 24, 25
PC 49,59,62
positional specification
PR 48,49
preprocessor variable
priority
operation priority 25
operator priority 25
PRINT 120
PROGRAM 135
program counter (PC)
value of PC 59

Q
Q

R
radix 19
integer constant with no radix
specification 137
RADIX 137
reassemble 43
REG 82
register direct 48
register indirect 48
register indirect with index 48
register indirect with post-increment 48
register indirect with pre-decrement 48
register name (reserved word) 16
register name definition 80
relative address 37 v
relative address section 37
relative address section declaration 66
relative address symbol 38
relative address value 38, 72

175

145, 150, 153

16, 49

19

i

relative path 142, 143
relative value 38
RES 97

reserved word 16, 219
return code 195

Rn 48,49

ROTCL 56
ROTCR 56

ROTL 56

ROTR 56

RTE 57,58

RTS 56,58

RO 48,49

R15 49

S

sample program 220

SDATA 88

SDATAB 90

SDATAC 93

SDATAZ 95

SECTION 66

SECTION 210

section 24, 31,66
section attribute (type by usage) 31,66
section placement in memory 36, 66
start and restart of section 67, 68

section information listing 226
section information listing

output congol 120, 210

section name 16, 40, 66

section set 24

section set operation 23,24

separate assembly 43

SETT 57

SHAL 56

SHAR 56

shift instruction 56

SHLL 56

SHL12 56

. SHLL8 56

SHLL16 56
SHLR 56
SHLR2 56

SHLR8 56
SHLR16 56
SHOW 212
simulator/debugger 6.7
SLEEP 57
SOURCE 206
source file 195, 196
input source file 195
multiple source file assembly 195
source program 3,6
.. source program listing 224
source program listing blank line
output 132
source program listing header setting
source program listing new page
insertion 130
source program listing
output control 120, 122,206, 212
source statement 11
source statement structure 11
coding of source statement 13
coding of source statement across
multiple lines 15
SP 34,49
SPACE 132
SR 48,49
.SRES 100
SRESC 102
SRESZ 104
stack pointer (SP) 34,49
stack section 34
caution on stack section 36
stack section declaration 66
start address for simulation 139
STC 57
STS 57
SUB 54
SUBC 54
SUBSTR 182
SUBV 54
SWAP 52
symbol (addressing mode) 49, 60, 62
symbol 12
functions of symbol 16

247

symbol definition 39
coding of symbol 18
symbol reference 41

symbol debug informatgon 118
symbolic debug information output

conmol 117

system control instruction . 57

T

TAS S5 .)

term 23 -

TRAPA 51,57,58

TST - 51,55

-248

U
upper/lower case letter distinction 219

A%

value of location counter 21, 39
location counter value setting 71
location counter value correction 73

VBR 48,49

X
XOR 51,55
XTRCT 52

