
•

Hitachi

SH Series Cross Assembler

User's Manual

•
PN: H009-A

February 18, 1994

SH Series Cross Assembler

User's Manual

HS0700ASCUISE

Preface

This manual describes the SH Series Cross Assembler.

This manual is organized as follows:

Overview:
Programmer's Guide:

User's Guide:
Appendix:

Gives an overview of the functions of the assembler.
Describes the assembler language syntax and programming
techniques.
Describes the use (invocation) of the assembler program itself.
Describes assembler limitations and error messages.

The related manuals are listed below.

For information concerning the SH miclupiui..essor hardware:

"SH7000 Series Hardware Manual"

For information concerning the SH microprocessor executable instructions:

"SH Series Programming Manual"

For information concerning software development support tools:

"SH Series C Compiler User's Manual"
"H Series Linkage Editor User's Manual"
"H Series Librarian User's Manual"
"SH Series Simulator/Debugger User's Manual"

Notes:

The following symbols have special meanings in this manual.

<item>: <specification item>
A: Blank space(s) or tab(s)
>: The OS prompt (indicates the input waiting state)
(REI): Press the Return (Enter) key.

The preceding item can be repeated.
[]: The enclosed item is optional (i.e.. can be omitted.)

Numbers are written as follows in this manuaL

Binary: A prefix of " B'" is used.
Octal: A prefix of " Q'" is used.
Decimal: A prefix of "D" is used.
Hexadecimal: A prefix of "H" is used.

However, when there is no specification, the number without a prefix is decimal.

UNIX is an operating system administrated by the UNIX System Laboratories (United States).

MS-DOS is an operating system administrated by the Microsoft Corporation (United States). •

Contents

Overview

Section 1 Overview 3

Section 2 Relationships between the Software Development
Support Tools 5

Programmer's Guide

Section 1 Program Elements 11
1.1 Source Statements 11

1.1.1 Source Statement Structure 11
1.12 Coding of Sow= Statements 13
1.13 Coding of Source Statements across Multiple Lines 15

1.2 Reserved Words 16

1.3 Symbols 16
1.3.1 Functions of Symbols 16
1.3.2 Coding of Symbols 18

1.4 Constants . 19

1.4.1 Integer Constants 19
1.4.2 Character Constants 20

1.5 Location Counter 21

1.6 Expressions 23

1.6.1 Elements of Expression 23
1.6.2 Operation Priority 25

1.6.3 Notes on Expressions 28

1.7 Character Strings 29

Section 2 Basic Programming Knowledge 31

2.1 Sections 31

2.1.1 Section 'Pipes by Usage 31

2.1.2 Absolute Address Sections and Relative Address Sections 36

2.2 Absolute and Relative Values 38

2.2.1 Absolute Values 38

2.2.2 Relative Values 38

2.3 Symbol Definition and Reference 39

2.3.1 Symbol Definition 39

2.3.2 Symbol Reference 41

2.4 Separate Assembly 43
2.4.1 Separate Assembly 43
2.4.2 Declaration of Export Symbols and Import Symbols 44

Section 3 Executable Instructions 47

3.1 Overview of Executable Instructions 47

3.2 Notes on Executable Instructions 52
3.2.1 Notes on the Operation Size 52
3.2.2 Notes on Delayed Branch Instructions 58
3.2.3 Notes on Address Calculations 59

Section 4 Assembler Directives 63
4.1 Overview of the Assembler Directives 63
4.2 Assembler Directive Reference 65

4.2.1 Section and Location Counter Assembler Directives 65
.SECTION - Section Declaration . 66
.ORG Location-Counter-Value Setting 71
.ALIGN Location-Counter-Value Correction 73

4.2.2 Symbol Handling Assembler Directives 75
.EQU Symbol Value Setting (resetting not allowed) 76
.ASSIGN Symbol Value Setting (resetting allowed) 78
.REG Alias of a Register Name Definition 80

4.2.3 Data and Data Area Reservation Assembler Directives 82
.DATA Integer Data Reservation 83
.DATAB Integer Data Block Reservation 85
.SDATA Character String Data Reservation 88
.SDATAB Character String Data Blocks Reservation 90
.SDATAC Character String Data Reservation (with length) 93
.SDATAZ Character String Data Reservation (with zero

terminator) 95
.RES Data Area Reservation 97
.SRES Character String Data Area Reservation 100
.SRESC Character String Data Area Reservation (with length) 102
.SRESZ Character String Data Area Reservation (with zero

terminator) .. 104
4.2.4 Export and Import Assembler Directives 106

.EXPORT - Export Symbols Declaration 107
IMPORT - Import Symbols Declaration 109
.GLOBAL - Export and Import Symbols Declaration 111

4.2.5 Object Module Assembler Directives 113
.OUTPUT Object Module Output Control 114
.DEBUG Symbolic Debug Information Output Control 117

4.2.6 Assemble Listing Assembler Directives 119
.PRINT Assemble Listing Output Control 120
.LIST Source Program Listing Output Control 122
.FORM Assemble Listing Line Count and Column

Count Setting 126
.HEADING - Source Program Listing Header Setting 128
.PAGE Source Program Listing New Page Insertion 130
.SPACE Source Program Listing Blank Line Output 132

4.2.7 Other Assembler Directives 134
.PROGRAM - Object Module Name Setting 135
.RADIX Default Integer Constant Radix Setting 137
.END -Source Program End Declaration 139

Section 5 File Inclusion Function 141

.INCLUDE - File Inclusion 142

Section 6 Conditional Assembly Function
6.1 Overview of the Conditional Assembly Function

6.1.1 Preprocessor Variables
6.1.2 Conditional Assembly
6.13 Iterated Expansion
6.1.4 Conditional Iterated Expansion

6.2 Conditional Assembly Directives
.ASSIGNA Integer Preprocessor Variable

Definition (redefinition is possible) 150
.ASSIGNC Character Preprocessor Variable

Definition (redefinition is possible) 153
.AIF .AELSE .AENDI Conditional Assembly 155
.AREPEAT .AENDR Iterated Expansion 157
.AWHILE AENDW Conditional Iterated Expansion 159
.EXIT'M Expansion Termination 161

Section 7 Macro Function 163

7.1 Overview of the Macro Function 163

7.2 Macro Function Directives 165
.MACRO .ENDM Macro Definition 166

.EXITM Expansion Termination 169

7.3 Macro Body 171

 145
145
145
146
147
148
149

7.4 Macro Call 175
7.5 Character String Manipulation Functions 177

.LEN Character String Length Count 178

.INSTR Character String Search 180

.SUBSTR Character Substring Extracuon 182

Section 8 Automatic Literal Pool Generation Function 185

8.1 Overview of Automatic Literal Pool Generation 185
8.2 Extended Instructions Related to Automatic Literal Pool Generation 186
8.3 Literal Pool Output 186

8.3.1 Literal Pool Output after Unconditional Branch (BRA. JMP, RTS. RTE) 187
8.3.2 Literal Pool Output to the .POOL Location . 188

8.4 Literal Sharing 189
8.5 Literal Pool Output Suppression 190
8.6 Notes on Automatic Literal Pool Output 191

User's Guide

Section 1 Executing the Assembler 195
1.1 Command Line Format 195
1.2 File Specification Format 196

Section 2 Command Line Options 197

2.1 Overview of the Command Line Options 197
2.2 Command Line Option Reference 198

2.2.1 Object Module Command Line Options 198
OBJECT NOOBJECT - Object Module Output Control 199
DEBUG NODEBUG Debug Information Output Control 201

2.2.2 Assemble Listing Command Line Options 203
LIST NOLIST Assemble Listing Output Control 204
SOURCE NOSOURCE
CROSS_REPERENCE --r—
NOCROSS_REFERENCE
SECTION NOSECTION

Source Program Listing Output Control 206
Cross-Reference Listing Output Control ... 208

Section Information Listing Output
Control 210
Source Program Listing Output Control 212
Sets the Number of Lines in
the Assemble Listing 214
Sets the Number of Columns in
the Assemble Listing 215

SHOW NOSHOW
LINES

COLUMNS

Appendix

Appendix A Limitations and Notes on Programming 219

Appendix B Sample Program 220

Appendix C Assemble Listing Output Example 223
C.I Source Program Listing .. 224
C2 Cross-Reference Listing 225
C.3 Section Information Listing 226

Appendix D Error Messages 227
D.1 Error Types 227
D2 Error Message Tables 229

Appendix E ASCII Code Table 241

Figures

Overview
Figure 1-1 Function of the Assembler . 3
Figure 2-1 Relationships between the Software Development Support Tools 6

Programmer's Guide
Figure 2-1 Memory Resesvation of Common Section 33
Figure 2-2 Data Structure Example Using Dummy Section.. 35
Figure 2-3 Meaning of the Terms Forward and Backward......------ 41
Figure 2-4 Meaning of the Term External 41
Figure 2-5 Relationship between the Changed Range of the Program and

the Range of the Program that must be Reassembled 43
Figure 3-1 Address Calculation Example (normal case) 59
Figure 3-2 Address Calculation Example

(when the value of PC differs due to a branch) 60
Figure 3-3 Address Calculation Example

(when SH microprOcessor corrects the value of PC) 61
Figure 3-4 Address Calculation Example

(when SH microprocessor does not correct the value of PC) 61

Appendix
Figure C-1 Source Program Listing Output Example 224
Figure C-2 Cross-Reference Listing Output Example 225
Figure C-3 Section Information Listing Output Example 226

Tables

Programmer's Guide
Table 1-1 Operators 23
Table 1-2 Operator Priccity and Association Rules 25
Table 3-1 Addressing Modes- 48
Table 3-2 Allowed Displacement Values 50
Table 3-3 Allowed Immediate Values 51
Table 3-4 Executable Instruction and Operation Size Combinations 52
Table 3-5 Relationship between Delayed Branch Instruction and Delay Slot Instructions 58
Table 4-1 Assembler Directives. 63
Table 8-1 Extended Instructions and Expanded Results 186

User's Guide
Table 2-1 Command Line Options 197

Appendix
Table A-1 Limitations and Notes on Programming 219
Table D-1 Command Error Messages 229
Table D-2 Source Program Error Messages 230
Table D-3 Fatal Error Messages 240
Table E-1 ASCII Code Table 241

Overview

•

(This page intentionally left blank.)

•

File inclusion Included file Assembly-language
source program

Assembler directives

Conditional assembly
Macro
Automatic literal pool generation

Assembler

Section 1 Overview

The "SH Series Cross Assembler" (referred to below as the (or this) assembler) converts source

programs written in assembly-language into a format that can be handled by SH microprocessors,

and outputs the result as an object module. Also, the results of the assembly processing are output

as an assemble listing.

This assembler provides the following functions to support efficient program development:

Assembler directives
Give the assembler various instructions.

File inclusion function
Includes files into a source file.

Conditional assembly function
Selects source statements to be assembled or repeats assembly according to a specified

condition.

Macro function
Gives a ame to a sequence of statements and defines it as one instruction.

Automatic literal pool generation function
Interpretes data transfer insttuctions MOV.W #imm, MOV.L #imm, and MOVA #imm that are

no provided by the SH microprocessor as extended instructions and expands them into SH

microprocessor executable instructions and constant data (literals).

Figure 1-1 shows the function of the assembler.

Object module Assemble us ing

Figure 1-1 Function of the Assembler

•

(This page intentionally left blank.)

•

•

•

Section 2 Relationships between the Software
Development Support Tools

The following software development support tools are available for the SH microprocessors.

SH Series C Compiler (Referred to below as the C compiler.)
H Series Linkage Editor (Referred to below as the linkage editor.)
H Series Librarian (Referred to below as the librarian.)
H Series Object Converter (Referred to below as the object converter.)
SH Series Simulator/Debugger (Referred to below as the simulator/debugger.)

Note: The linkage editor refers to version 5.0 or later.

These tools assist in the efficient development of application software.

Figure 2-1 shows the relationships between the software development support tools.

5

•

Assemble; ,

Editor

C-language
source program

Assembly-language
source program

C compiler

11,

Librarian
Object
module

CPU information analyzer

CPU
Information
Ill.

Linkage editor Library
file

Load
module

Simulator/debugger

•

Object converter

S-type-format
 load module

•

Figure 2-1 Relationships between the Software Development Support Tools

6

•

410

Supplement

Use a general purpose editor (a text editor) to edit source programs.

The C compiler converts programs written in the C-language into either object modules or

assembly-language source programs.

The librarian converts object modules and relocatable load modules into library files. We

recommend handling processing that is common to multiple programs as a library file. (This has

several advantages, including allowing modules to be easily managed.)

The linkage editor links together object modules and library files to produce load modules. (Load

modules are programs in a format that a computer can execute.)

The object convener converts load modules into the S-type format. (The S-type format is a

standard load module format.)

The simulator/debugger assists debugging miclopiokessor software.

Load modules created by this development support system can be input to several types of

emulator. (Emulators are systems for debugging microprocessor system hardware and software.)

Also, S-type-format load modules can be input into most EPROM writers. •

(This page intentionally left blank.)

•

•

Programmer's Guide

(This page intentionally left blank.)

•

e

•••••.•

EaEt? og-i7r,,EI

; This is an example of a source statement.

Comment

•

•

Section 1 Program Elements

If source programs are compared to natural language writing, a source statement will correspond
to "a sentence." The "words" that make up a source statement are reserved words and symbols.
This section describes these basic program elements.

1.1 Source Statements

1.1.1 Source Statement Structure

The figure below shows the structure of a source statement.

Klabel>] (A<operation>[d<operand(s)>]] Kcoment>)

Example:

Operands
Operation

Label

11

Label

A symbol that is a tag attached to a source statement is written as a label.

A symbol is a name defined by the programmer.

Operation

The mnemonic of an executable instruction, an extended instruction, an assembler directive, or a
directive statement is written as the operation.

Executable instructions must be SH microprocessor instructions.

Extended instructions are instructions that are expanded into executable instructions and constant
data (literals). For details. refer to Programmer's Guide. 8. "Automatic Literal Pool Generation
Function".

Assembler directives are instructions that give directions to the assembler.

Directive statements are used for file inclusion, conditional assembly, and macro functions. For
details on each of these functions, refer to Programmer's Guide. 5, "File Inclusion Function", 6.
"Conditional Assembly Function", or 7, "Macro Function".

Operand

The object(s) of the operation's execution are written as the operand.

The number of operands and their types are determined by the operation. There are also
operations which do not require any operands.

Comment

Notes or explanations that make the program easier to understand are written as the comment.

12

•

•

1.1.2 Coding of Source Statements

Source statements are written using ASCII characters.

In principle, a single statement must be written on a single line. The maximum length of a line is
255 bytes.

(1) Coding of Label

The label is written as follows:

Written starting in the first column,
Or:
Written with a colon (:) appended to the end of the label.

Examples:

Mg= ; This label is written starting in the first column.
; This label is terminated with a colon.

112. 411.•

PillEXT; ; This label is regarded as an error by the assembler.
; since it is neither written starting in the first column
; nor terminated with a colon.

(2) Coding of Operation

The operation is written as follows:

When there is no label:
Written starting in the second or later column.

When there is a label:
Written after the label, separated by one or more spaces or tabs.

Examples:

Xirf RO R1
LABEL1 : DD R1, R2

; An example with no label.
; An example with a label.

13

CAUTION!

Since white spaces and tabs are ASCII characters, each space or tab requires a byte of storage.

Coding of Operand

The operand is written following the operation field, separated by one or more spaces or tabs.

Examples:

ADD MOM ; The ADD instruction takes 2 arguments.
SHAL ; The SHAL instruction takes 1 argument.

Coding of Comment

The comment is written following a semicolon (:).

The assembler regards all characters from the semicolon to the end of the line as the comment.

Examples:

ADD RO, R1 McifairElOio-IW

14

•

• 1.13 Coding of Source Statements across Multiple Lines

We recommend writing a single source statement across several lines in the following situations:

When the source statement is too long as a single statement.
When it is desirable to attach a comment to each operand.

Write source statements across multiple lines using the following procedure.

Insert a new line writing a comma that separates operands as the point to break the line.
Insert a plus sign (+) in the first column of the next line.
Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

Examples:

.DATA.L H'FFFF0000;:.
H'FFOOFFOOtt,
frkertrrir

; In this example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

Examples:

. DATA. I. H'FFFF0000, Tiaitni I .
H'FFOOFF00, Initial value 2.
trkixtrrn Initial value 3.

; This is an example of attaching a comment to each operand.

15

1.2 Reserved Words

Reserved words are names that the assembler reserves as symbols with special meanings.

This assembler uses the following reserved words.

Register names

—R0 RI R2 R3 R4 R.5
R6 R7 128 R9 RIO Rh1
R12 R13 R14 R15 SP*
SR GBR VBR MACH MACL PR
PC

Note: * R15 and SP indicate the same register.

Operators (STARTOF, STZEOF)

The location counter symbol, the dollar sign (a single character symbol)

Reserved words cannot be used as user-defined symbols.

Reference:

Operators -4 Programmer's Guide. 1.6.1. -Expression Elements"
Location counter —) Programmer's Guide. 1.5. "Location Counter"
Symbols -4 Programmer's Guide. 1.3, "Symbols"

1.3 Symbols

1.3.1 Functions of Symbols

Symbols are names defined by the programmer, and perform the following functions.

Address symbols--- Express data storage and destination addresses.
Constant symbols Express constants.
Aliases of register name Express general registers.
Section names Express section names. •

Note: * A section is a part of program, and the linkage editor regards it as a unit of processing.

The following show examples of symbol usages.

16

•

•

•

; BRA is a branch instruction.
; SUB1 is the address of the destination.

ISIZZ

.EQ0 100 ; -ECU is an assembler directive that sets a value to a
symbol.

MOV ?En, RD ; MAX expresses the constant value 100.

••••••••••••

. REG (R0) ; .REG is an assembler directive that defines a register
name.

NOV $100,1Cat : Here. MIN is a name for RO.

••••••••••

.SECTION rq, CODE. ALIGN...4

.SECTION is an assembler directive that declares a section.
: CD is the name of the current section.

di/arm..

Examples:

17

1.3.2 Coding of Symbols

(1) Available Characters

The following members of the ASCII character can be used.

Upper-c.ase and lower-case leuers (A to 1 a to z)
Ntunbers (0 to 9)
The underscore character U
The dollar sign character (S)

The assembler distinguishes upper-case and lower-case in symbols.

(2) First Character in a Symbol

The first character in a symbol must be one of the following.

Upper-case and lower-case letters (A to Z., a to z)
The underscore character U
The dollar sign character (5)

Maximum Length of a Symbol

A symbol may contain up to 32 characters. •

The assembler ignores any characters after the first 32.

Names that Cannot Be Used as Symbols

Reserved words cannot be used as symbols. The following names must not be used because they
are used as internal symbols by the assembler.

_SSnimnn (n is a number from 0 to 9.)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are not
output to assemble listings or object modules.

CAUTION!

The dollar sign character used alone is a reserved word that expresses the location counter.

References:

Reserved wordt Programmer's Guide. 1.2, "Reserved Words"

18

•

1.4 Constants

1.4.1 Integer Constants

Integer constants are expressed with a prefix that indicates the radix.

The radix indicator prefix is a notation that indicates the base of the constant.

Binary numbers The radix indicator "B'" plus a binary constant.
Octal numbers The radix indicator "Q'" plus an octal constant.
Decimal numbers The radix indicator "D'" plus a decimal constant.
Hexadecimal numbers The radix indicator "Fr" plus a hexadecimal constant..

The assemble: does not distinguish upper-case and lower-case letters in the radix indicator.

The radix indicator and the constant value must be written with no intervening space.

Examples:

.DATA.B 13'10001000

. DATA . B 70-1-230

. DATA . B :D'136

.DATA . B !H '.8 8.

These source statements all the same
numerical value.

The radix indicator can be omitted. Integer constants with no radix indicator are normally decimal
constants, although the radix for such constants can be changed with the .RADIX assembler
directive.

References:

Interpretation of integer constants without a radix specified
—o Programmer's Guide. 4.2.7, "Other Assembler Directives", .RADIX

Supplement

"Q" is used instead of "0" to avoid confusion with the digit 0.

19

1.4.2 Character Constants

Character constants are considered to be constants that represent ASCII codes.

Character constants are written by enclosing up to 4 ASCII characters in double quotation marks.

The following ASCII characters can be used in character constants.

ASCII codes t H.09 (tab)
H'20 (space) to H'7E (tilde)

Examples:

.DAM.L Van

.DATA.W la%

.DATA.B tia

; This is the same as .DATA.I. H'00414243.
; This is the same as .DATA.1N H*4142.
; This is the same as .DATA.B if41.

; The ASCII code for A is: H41
; The ASCII code for B is: H'42
; The ASCII code for C is: H*43

Use two double quotation marks in succession to indicate a single double quotation mark in a

character constant.

Example:

.DATA.B ; This is a character constant consisting of a single
double quotation mark.

20

1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object

code (the result of converting executable instructions and data into codes the microprocessor can

regard) is stored.

The value of the location counter is automwirilly adjusted according to the object code output.

The value of the location counter can be changed intentionally using assembler directives.

Examples:

H' 00001000 ; This assembler directive sets the location counter to
; H00001000.

.DATA.W H'FF ; The object code generated by this assembler directive has

; a length of 2 bytes.
; The location counter changes to H'00001002.

. DATA . W H FO ; The object code generated by this assembler directive Was
; a length of 2 bytes.
; The location counter Changes to H00001004.

.DATA.w H 10 ; The object code generated by this assembler directive has
; a length of 2 bytes.
; The location counter changes to H00001006.

LIppir 4

.DATA.L H'ktkrtrtt

; The value of the location counter is corrected to be a multiple
; of 4.
; The location counter changes to H00001008.

; The object code generated by this assembler directive has

; a length of 4 bytes.
; The location counter changes to H0000100C.

.ORG is an assembler directive that sets the value of the location counter.

ALIGN is an assembler directive that adjusts the value of the location counter.

DATA is an assembler directive that reserves data in memory.
.W is a specifier that indicates that data is handled in word (2 byte) size.
.L is a specifier that indicates that data is handled in long word (4 byte) size.

401mmin•

21

References:

Setting the value of the location counter
—• Programmer's Guide, 4.2.1. "Section and Location Counter Assembler Directives" .ORG

Correcting the value of the location counter
--+ Programmer's Guide, 4.2.1. "Section and Location Counter Assembler Directives"

.ALIGN

The location counter is referenced using the dollar sign symbol.

Examples:

LABELl: .EQU I ; This assembler directive sets the value of the
; location counter to the symbol LABELl.

; .EOU is an assembler directive that sets the value to a symbol.

22

•

•

1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value, and are

used as the operands of executable instructions and assembler directives.

1.6.1 Elements of Expression

An expression consists of terms, operators, and parentheses.

(1) Terms

The terms are the followings:

A constant
The location counter reference ($)
A symbol (excluding aliases of the register name)
The result of a calculation specified by a combination of the above terms and an operator.

An independent term is also a type of expression.

(2) Operators

Table 1-1 shows the operators supported by the assembler.

Table 1-1 Operators

Operator Typo Operator Operation Coding

Arithmetic Unary plus <terT>

operations Unary minus — <term>

Addition <termt> + <term2>

Subtraction <termt> — <term2>

• Multiplication <term 1 > • <term2>

Division <termt> <term2>

Logic Unary negation <terIT1>

operations Logical AND <termt> & <term2>

Logical OR <termt> I <term2>

Exclusive OR <term1> <term2>

Section set
operations*

STARTOF Derives the starting address STARTOF <section name>

of a section sot.

SIZEOF Derives the size in bytes SIZEOF <section name>
of a section set.

Note: • See the supplement on the following page.

23

(3) Parentheses

Parentheses modify the operation priority.

See the next section, section 1.6.2. "Operation Order", for a description of the use of parentheses.

Supplement:

In this assembly-language, programs are divided into units called section. Sections are the units in

which linkage processing is performed.

When there are multiple sections of the same type and same name within a given program, the

linkage editor links them into a single "section set".

STARTOF is an operator that determines the starting address of the section set.

SII2OF is an operator that determines the size of the section set in byte units.

References:

Sections --o Programmer's Guide. 2.1, "Sections"

24

•

1.6.2 Operation Priority

When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator priority and by the use of parentheses. The assembler
processes operations according to the following rules.

<Rule 1>
Processing starts from operations enclosed in parentheses.
When there are multiple parentheses, processing starts with the operations =rounded by the
innermost parentheses.

<Rule 2>
Processing starts with the operator with the highest priority.

<Rule 3>
Processing proceeds in the direction of the operator association rule when operators have the same
priority.

Table 1-2 shows the operator priority and the association rule.

Table 1-2 Operator Priority and Association Rules

Priority Operator Association Rule

I (high)

2

3

4

5(10w)

— STARTOF SIZEOP Operators are processed from right to left.

/ Operators are processed from left to right.

—

I

Operators are processed from left to right.

Operators are processed from left to right.

I — Operators are processed from left to right.

Note: • Unary operators have the first priority.

25

The figures below show examples of expressions.

Example 1:

1 + (2 - (3 + (- 5)))
1 (a) 1

(b)

I (
I (d)

The assembler calculates this expression in the order (a) to (d).

The result of (a) is —1
The result of (b) is 2 I The final result of this calculation is 1.
The result of (c) is 0
The result of (d) is 1

Example 2:

- li'ttrtrt1 + H000000F0 * H'00000010 1 H000000F0 & H'0000FFFF

(a) I 40

0*
(3)

The assembler calculates this expression in the order (a) to (e).

The result of (a) is H0000000F
The result of (b) is 1-100000F00
The result of (c) is H'00000FOF • The final result of this calculation is 1-100000FFF.
The result of (d) is H000000F0
The result of (a) is H'00000FFF

26

•

•

Example 3:

27

- - H0000000F

I (s)

I (b)
(c)

los)

The assembler calculates this expression in the order (a) to (d).

The result of (a) is H'FFFFFFF0
The result of (b) is H00000010
The result of (c) is H'FFFFFFEF
The result of (d) is H.00000011

The final result of this calculation is H'00000011.

1.6.3 Notes on Expressions

(1) Internal Processing

The assembler regards expression values as 32-bit signed values.

Example:

-FPF0

The assembler regards H'FO as H'000000F0.
Therefore, the value of -HFO is H'FFFFFFOF. (Note that this is not HO000000F.)

Arithmetic Operators

The multiplication and division operators cannot take terms that contain relative values (values
which are not determined until the end of the linkage process) as their operands.

Also. a divisor of 0 cannot be used with the division operator.

Logic Operators

The logic operators cannot take terms that contain relative values as their operands.

References:

Relative values —o Programmer's Guide. 2.2. "Absolute and Relative Values". •

28

•

1.7 Character Strings

Character strings are sequences of character data.

The following ASCII characters can be used in character strings.

ASCII codes { 1-1'09 (tab)
H'20 (space) to H"7E (tilde)

A single character in a character suing has as its value the ASCII code for that character and is
represented as a byte sized data object.

Character strings are written enclosed in double quotation marks.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character string.

Examples:

.SDATA ; This statement reserves the character string data
; Hello!

.SDATA : This statement reserves the character string data
; "Hello r

.SDATA is an assembler directive that reserves character string data in memory.

Supplement:

The difference between character constants and character strings is as follows.

Character constants are numeric values. They have a data size of either 1 byte. 2 bytes, or 4 bytes.

Character strings cannot be handled as numeric values. A character string has a data size of
between I byte and 255 bytes.

29

(This page intentionally left blank.)

•

•

Section 2 Basic Programming. Knowledge

This section presents the basic knowledge required for programming in assembly-language.

2.1 Sections

If source programs are compared to natural language writing, a section will correspond to a

"chapter." The section is the processing unit used when the linkage editor links an object module.

2.1.1 Section Types by Usage

Sections are classified by usage into the following types.

Code section
Data section
Common section
Stack section
Dummy section

(1) Code Section

The following can be written in a code section:

Executable instructions
Extended instructions
Assembler directives that reserve initialized data.

Examples:

.SECTION CD , CODE. ALIGN-4 ; This assembler directive declares a
; code section with the name CD.

MOV.L X, R1 This is an executable instruction.
MOV R1,R2

•••••••

.ALIGN 4

X: . DATA. L H'keettrtt : This assembler directive reserves
: initialized data.

31

•

(2) Data Section

The following can be written in a data section:

Assembler directives that reserve initialized data.
Assembler directives that reserve uninitialized data.

Examples:

. SECTION DT1,bATA.ALIGN..4 ; This assembler directive declares
; a data section with the name DTI.

.DATA.W H'FFOO : These assembler directives reserve

.DATA.B H'FF ; initialized data.

. SECTION 0T2 , UFA, ALIGN-4 ; This assembler directive declares
; a data section with the name DT2.

.RES.W 10 ; These assembler directives reserve

.RES .B 10 ; data areas that do not have initial
: values.

••••••••••

a,.

•

32

•

•

(3) Common Section

A common section is used as a section to hold data that is shared between files when a source
program consists of multiple source files.

The following can be written in a common section:

Assembler directives that reserve initialized data.
Assembler directives that reserve uninitialized data.

Supplement:

The linkage editor reserves common sections with the same name to the same area in memory. In
the example shown in figure 2-1. the common section CM declared in file A and the common
section CM declared in file B are reserved to the same area in memory.

Program Memory

A Fiat B

COMmon section bm Common sedan CM 1710f1 swoon CM

Figure 2-1 Memory Reservation of Common Section

33

•

(4) Stack Section

The section that SH microprocessors use as a stack area (an area for temporary data storage) is
called the stack section.

The following can be written in the stack section:

Assembler directives that reserve uninitialized data.

Examples:

sr.crioN ST, OM ALIGN-4 ; This assembler directive declares a stack
; section with the name ST.

.RES.B 1024 ; This assembler directive reserves a stack
; area of 1024 bytes.

(S) Dummy Section

A dummy section is a hypothetical section for representing data structures. The assembler does
not output dummy sections to the object module.

The following can be written in a dummy section:

Assembler directives that reserve uninitialized data.

Examples:

SECTION DM, DM-4Z ; This assembler directive declares
; a dummy section with the name DM.

.RES.B 1 ; The assembler does not output the

.RES.B 1 ; section OM to the object module.

. RES . B 2

Specific methods for specifying data structures are described in the supplement on the next page.

•

34

Item A

Item 8

Dats structure Memory

Reference
pant r•

The man al
1 area

Address The mart al area
symbol A

Adam
symbol ;

hem A

Item

Dummy
seams

1 plus A
The man of area --•
1 plus

Item: A

Item 8
1. Area 1

The mart at
ants 2

The start al area —...
2 plus A
The start al area —•
2 plus

Area 2

•

Supplement:

As shown in figure 2-2, it is possible to access areas in memory by using address symbols from a
dummy section.

Figure 2-2 Data Structure Example Using Dummy Section

Coding Example:

; In the example above,
; assume that R1 holds the starting address of area 1 and R2 holds the starting address of
; area 2.

NOV. L (B. R1) RO ; Moves the contents of item B in area 1 to RO.
MOV .L RO. e (B. R2) ; Moves the contents of RO to item B in area 2.

CAUTION!

1. The following cannot be used in stack and dummy sections:

Executable instructions
Extended instructions
Assembler directives that reserve initialized data
(.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC. and .SDATAZ)

2. When using a data or common section, be sure to keep in mind whether that section is
reserved to ROM or RAM.

2.1.2 Absolute Address Sections and Relative Address Sections

A section can be classified as either an absolute address section or as a relative address section
depending on whether absolute start addresses are given to the sections at assembly.

(1) Absolute Address Sections

The memory location of absolute address sections is specified in the source program, and cannot
be changed by the linkage editor. In this assembly language, locations in an absolute address
section are expressed as absolute addresses, which are addresses that express the position in
memory itself.

Examples:

.SECTION Arts,nATA,Lqc4TErwoopppoocli ; ABS is an absolute-address section.
; The starting address of section ABS is
; the absolute address 11'0000F000.

.DATA.W H' 1111 ; The cxmstant H'1111 is reserved at
; the absolute address 11'0000F000.

. DATA. W H ' 2222 ; The constant 112222 is reserved at
; the absolute address K0000F002.

36

•

•

(2) Relative Address Section

The location in memory of relative sections is not specified in the source program, but rather is
determined when the sections are linked by the linkage editor. In this assembly-language,
locations in a relative address section are expressed as relative addresses, which are addresses that
express the position relative to the start of the section itself.

Examples:

.SECTION REL. DATA.)1./..IGN41 ; REL is a relative address section.
; The starting address of section REL is
; determined after linkage.

.DATA.W W1111 ; The constant 1-11111 is reserved at the
; relative address H00000000.

IP 2222 ; The constant H'2222 is reserved at the
; relative address H'00000002.

Supplement

Dummy sections correspond neither to relative nor to absolute sections.

•

37

2.2 Absolute and Relative Values

Absolute values are determined when assembly completes. Relative values are not determined

until the linkage editor completes.

2.2.1 Absolute Values

The following are the absolute values handled by the assembler.

(1) Constants

Integer constants
Character constants
Symbols that have a value that is one of the above (referred to below as constant symbols).

(2) Absolute Address Values

The location counter referenced in an absolute address section
The location counter referenced in a dummy section
Symbols that have a value that is one of the above (referred to below as absolute address

symbols).

(3) Other Absolute Values

Expressions whose value is determined when assembly completes.

2.2.2 Relative Values

The following are the relative values handled by the assembler.

(1) Relative Address Values

The location counter referenced in a relative address segment
Symbols that have the above as a value. (Such symbols are referred to as relative address

symbols.)

External Reference Values

Symbols that reference another file (referred to below as import symbols).

Other Relative Values

Expressions whose value is not determined until the linkage editor completes.

38

•

•

2.3 Symbol Definition and Reference

2.3.1 Symbol Definition

(1) Normal Definition

The normal method for defining a symbol consists of writing that symbol in the label field of a
source statement. The value of that symbol will then be the value of the location counter at that
point in the program.

Examples

.SECTION DT1,DATA,LOCATE-14 1 0000F000 ; This statement declares an
; absolute address section.

KZ .DATA.W H'1111 ; The value of X1 becomes H'0000F000.

EF: . DATA. w H'2222 ; The value of X2 becomes H0000F002.

aMlImm•

.SECTION DT2.DATA,ALIGN.4

.0ATA.W H'1111

.DATA.W R'2222

; This statement declares a relative address
; section.

; The value of Yf is determined when the
; linkage editor completes, and its value is
; the start address of the section.

; The value of Y2 is determined when the
; linkage editor completes, and its value is

the start address of the section pius 2.

39

(2) Definition by Assembler Directive

Symbols can be defined by using assembler directives to set an arbitrary value or a special
meaning.

Examples:

•

•

. SECTION ea, DATA, ALIGN-4 ; DTI is the section name.
; A section name is also a type of symbol,
; a symbol that expresses the start
; address of a section.
; However, the syntactic handling of address
; symbols and section names is different.

.ECU 100 ; The value of X is 100.
; X cannot be redefined.

r: .ASSIGN 10 ; The value of Y is 10.
;V can be redefined.

.REG (E1) ; Z becomes an alias of the general
; register Al.
; Z cannot be redefined.

40

•

2_3.2 Symbol Reference

There are three forms of symbol reference as follows:

Forward reference
Backward reference
External reference

Supplement:

Figure 2-3 shows the meaning of the terms forward and backward as used in this manual.

—File

Backward

Reference position

Program start

Forward

Program end

Figure 2-3 Meaning of the Terms Forward and Backward

Figure 2-4 shows the meaning of the term external as used in this manual.

—File

—File

[Reference position
External

Figure 2-4 Meaning of the Term External

41

Forward Reference

Forward reference means referencing a symbol that is defined forward from the point of reference.
i.e., is defined later in the program.

Examples:

40.1ilmE.

BRA 122MP ; BRA is a branch instruction.
; This is a forward reference to the symbol FORWARD.

•••••••••

Backward Reference

Backward reference means referring to a symbol that is defined backward from the point of
reference. i.e.. is defined earlier in the program.

Examples:

••••••••

BRA NEI ; BRA is a branch instruction.
; This is a backward reference to the symbol BACK.

External Reference

When a source program consists of multiple source files, a reference to a symbol defined in
another file is called an external reference. External reference is described in the next
section. 2.4, "Separate Assembly".

•

•

42

If a source program is =fleeted
together in a single file...

If a source program is partitioned
into several files...

: Part of the source program that
requires changes.

: Range of the program that must
be reassembled.

r File

Processing 2

[P
File
rocessing 6

—File

Processing 1

[-
File

Processing 3

File

Processing 5

—File

Processing I

Processing 2

'Processing 3

Processing 4

Processing 5

Processing 6

—File

Processing 4

2.4 Separate Assembly

2.4.1 Separate Assembly

Separate assembly refers to the technique of creating a source program in multiple separate source

files, and finally creating a single load module by linking together those source files' object

modules using the linkage editor.

The process of developing software often consists of repeatedly correcting and reassembling the

program. In such cases, if the source program is partitioned. it will be only necessary to

reassemble the source file that was changed. As a result, the time required to construct the

complete program will be significantly reduced.

Figure 2-5 Relationship between the Changed Range of the Program and

the Range of the Program that must be Reassembled

43

•

The procedure involved in separate assembly consists of steps (a) to (d).

Investigate methods for partitioning the program.

Normally, programs are partitioned by function.

Note that the memory reservation of the section must also be considered at this point.

Divide the source program into separate files and edit those files accordingly.

Assemble the individual files.

Link the individual object modules into a single load module.

2.4.2 Declaration of Export Symbols and Import Symbols

When a source program consists of multiple files, referencing a symbol defined in one file from
another file is called "external reference" or "import." When referencing a symbol externally (this
declaration is called "external definition" or "export"), it is necessary to declare to the assembler
that "this symbol is shared between multiple files."

(1) Export Symbol Declaration

This declaration is used to declare that the definition of the symbol is valid in other files. .
EXPORT or .GLOBAL assembler directive is used to make this declaration.

•

44

•

•

(2) Import Symbol Declaration

This declaration is used to declare that a symbol is defined in another file. .IMPORT or.

GLOBAL assembler directive is used to make this declaration.

Examples:

In this example the symbol MAX is defined in file A and referenced in file B.

File A:

tEXPORTI, !WC ; Declares MAX to be an export symbol
.EQU 100 ; Defines MAX.

File B:

••••••=0

MEW—PR MAX Declares MAX to be an import symbol.
mov ft9,X.RO References MAX.

References:

Symbol Export and Import
Programmer's Guide. 4.2.4, "Export and Import Assembler Directives". .EXPORT.

.IMPORT, .GLOBAL

45

•

(This page intentionally left blank.)

•

•

•

Section 3 Executable Instructions

This section describes the points that must be kept in mind when using executable instructions in
this assembler.

3.1 Overview of Executable Instructions

The executable instructions are the instructions of SH microprocessor. SH microprocessor
interprets and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

[4symbol>0 8ammamonic>1.<09eration size>1 Waddressing mode,f,<acaressinq mode)] (:<comment,)
4

LAMM COMOKM 00WWW CONIMOM

This section describes the mnemonic, operation size, and addressing mode. The other elements
are described in detail in section I. "Program Elements", in the Programmer's Guide.

Mnemonic

The mnemonic expresses the type of executable instruction. Abbreviations that indicate the type
of processing are provided as mnemonics for SH microprocessor instructions.

The assembler does not distinguish upper-case and lower-case letters in mnemonics.

Operation Size

The operation size is the unit for processing data. The operation sizes vary with the executable
instruction. The assembler does not distinguish upper-case and lower-case letters in the operation
size.

Specifier Data Stu

Byte

Word (2 bytes)

Long word (4 bytes)

47

(3) Addressing Mode

The addressing mode specifies the data area accessed, and the destination address. The addressing
modes vary with the executable instniction. Table 3-1 shows the addressing mode.

Table 3-1 Addressing Modes

Addressing Mods Name Description

Rn Register direct The contents of the general register Rn.

SR SR direct The contents of the status register (SR).

GBR GBR direct The contents of the global base register (GBR).

VBR VBR direct The contents of the vector base register (VBR).

MACH MACH direct The contents of the accumulator register (MACH).

MACL MACL direct The contents of the accumulator register (MACL).

PR PR direct The contents of the procedure register (PR).

@Rn Register indirect A memory location. The value in Rn gives the
start address of the memory accessed.

@Rn+ Register indirect
with post-increment

A memory location. The value in Rn (before being
incremented") gives the start address of the
memory accessed.
SH microprocessor first uses the value in Rn
for the memory reference, and increments Rn
afterwards.

0—Rn Register indirect
with pre-decrement

A memory location. The value in Rn (after being
decremented.2) gives the start address
of the memory accessed.
SH microprocessor first decrements Rn, and then
uses that value for the memory reference.

0(disp.lin) Register indirect
with displacement.3

A memory location. The start address of the
memory access is given by: the value of Rn plus
the displacement (disp).
The value of Rn is not changed.

0(RO,Rn) Register indirect A memory location. The start address of the
with index memory access is given by: the value of RO plus

the value of Rn.
The values of RO and Rn are not changed.

@(disp,GBR) GBR indirect with A memory location. The start address of the
displacement memory access is given by: the value of GBR plus

the displacement (disp).
The value of GBR is not changed.

Notes 1 to 3: See next page.

•

•

Table 3-1 Addressing Modes (cant)

Addressing Mode Name Description

O(RO,GBR) GBR indirect A memory location. The start address of the
with index memory access is given by: the value of GBR plus

the value of RO.
The values of GBR and RO are not changed.

O(disp,PC) PC relative with A memory location. The start address of the
displacement memory access is given by: the value of the PC

plus the displacement (disp).

symbol PC relative specified
with symbol

[When used as the operand of a branch
instruction]
The symbol directly indicates the destination
address. •
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp . symbol - PC.

[When used as the operand of a data move
instruction]
A memory location. The symbol expresses the
starting address of the memory accessed.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp . symbol - PC.

limm Immediate Expresses a constant.

Note: Rn --.. A general register (RO to R15)"
SR The status register
VBR -.-.. The vector base register
PR The procedure register
RO The general register RO (when only RO can be specified)
GBR ... The global base register
MACH. MACL---.. The accumulator register
PC The program counter

Notes: 1. Increment
The amount of the increment is 1 when the operation size is a byte, 2 when the
operation size is a word, and 4 when the operation size is a long word.

Decrement
The amount of the decrement is 1 when the operation size is a byte. 2 when the
operation size is a word, and 4 when the operation size is a long word.

Displacement
A displacement is the distance between 2 points. In this assembly-language, the unit of
displacement values is in bytes.

Concerning R15
R15 can also be specified by the symbol SP. SP is an abbreviation for stack pointer, a
pointer to the stack area.

49

•

The values that can be used for the displacement vary with the addressing mode and the operation

size.

Table 3-2 Allowed Displacement Values

Addressing Mode Displacement'

0(disp.Rn) When the operation size is byte (B):
H00000000 to H0000000F (0 to 15)

When the operation size is word (W):
H'00000000 to H'0000001F (0 to 31)

When the operation size is long word (L):
H'00000000 to H'0000003F (0 to 63)

0(disp,G8R) When the operation size is byte (B):
H00000000 to H'00000OFF (0 to 255)

When the operation size is word (W):
H'00000000 to H'000001FF (0 to 511)

When the operation size is long word (L):
H'00000000 to H'000003FF (0 to 1023)

0(disp.PC) When the operation size is word (W):
H'00000000 to H'000001FF (0 to 511)

When the operation size is long word (L):
H00000000 to H000003FF (0 to 1023)

symbol [When used as a branch instruction operand]

When used as an operand for a conditional branch instruction (BT or BF):
H00000000 to H'000000FF (0 to 255)
HI-Fi-t-i-t-00 to 111-FFFP-i-r-t- (-256 to -1)

When used as an operand for an unconditional branch instruction
(BRA, BSR, JMP. JSR, or RTS)

H'00000000 to 1-1'00000FFF (0 to 4095)
H'FFFFF000 to (-4096 to -1)

[When used as the operand of a data move instruction]

When the operation size is word (W):
PrOC1000000 to H000001FF (0 to 511)

When the operation size is long word (L):
K00000000 to H'000003FF (0 to 1023)

Note: • Units are bytes, numbers in parentheses are decimal.

50

The values that can be used for immediate values vary with the executable instruction.

Table 3-3 Allowed Immediate Values

Executable instruction Immediate Value

TST, AND, OR. XOR H'00000000 to H'00000OFF (0 to 255)

MOV
{

W00000000 to H'00000OFF (0 to 255)
H'FFFFFF80 to H'FFFFFFFF (-128 to -1) •

ADD. DMPJEO H'00000000 to H'000000FF (0 to 255)
to H'FFFFFFFF (-128 to -1) •

TRAPA H'00000000 to H-000000FF (0 to 255)

Note: • Values in the range H'FFI-i-t-1-80 to H'FFFFFFFF can be written as positive decimal
values.

CAUTION!

The assembler corrects the value of displacements under certain conditions.

•

•
Condition

When the operation size is a word and the
displacement is not a multiple of 2

When the operation size is a long word and
the displacement is not a multiple of 4

When a displacement of the branch
instruction is not a multiple of 2

Type of Correction

The lower bit of the displacement is
discarded, resulting in the value being
a multiple of 2.

The lower 2 bits of the displacement are
discarded, resulting in the value being
a multiple of 4.

The lower bit of the displacement is
discarded, resulting in the value being
a multiple of 2.

-0

-4

Be sure to take this correction into consideration when using operands of the mode
@(disp.Rn). @(disp.GBR). and @(disp,PC).

Example: mOV . (63, RO)

. The assembler corrects the 63 to be 60. and generates object code identical to that for the
statement MOV.L @(60,R0), and warning number 870 occurs.

51

3.2 Notes on Executable Instructions

3.2.1 Notes on the Operation Size

The operation sizes that can be specified vary with the mnemonic and the addressing mode
combination. Table 34 shows the allowable executable instruction and operation size
combinations.

Table 3-4 Executable Instruction and Operation Size Combinations (part 1)

1. Data Move Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

MOV eimm,Rn 0 A A

MOV @(disp,PC).fin x 0 0 L

MOV symbol.Rn x 0 0

MOV Rn,Rm x x 0 L

MOV Rn,(PRrn 0 0 0 L

MOV @Rn,Rm 0 0 0 L

MOV Rnao—Rm 0 0 3 L

MOV @Rn+.Rm 0 0 0 L

MOV R046(disp.Rn) 0 0 0 L

MOV Rri,e(disp,Rm) x x 3 L

MOV @i(disp,Rn),R0 0 0 0 1.
MOV e(disp.lin),Rm x x 0 L '2

MOV Rn,e(RO,Rm) 0 0 0 L

MOV @(RO.Rn).Rm 0 0 3 L

MOV RO.0(disp,GBR) 0 0 0 L

MOV @(disp,GBR).R0 0 0 0 L

MOVA @(disp,PC),R0 X x 0 L

MOVA symbol,R0 x x 0 L

MOVT Rn x x 0 L

SWAP Rn,Rm 0 0
XTRCT Rn,Rm x x 3 L

Notes: 1. In this case Rn must be one of R1 to R15.
2. ln this case Rm must be one of R1 to R15.

52

•

•

•

Table 3-4 Executable Instruction and Operation Size Combinations (part I) (cont)

Symbol meanings:

Rrt. Rm A general register (RO to R15)
SR —.—-- The status register
VBR The vector base register
PR The procedure register
RO The general register RO (when only RO can be specified)
GBR The global base register
MACH, MACL - The accumulator register
PC The program counter

imm An immediate value
symbol A symbol
disp A displacement value

B Byte
L Long word (4 bytes)
W Word (2 bytes) '

0 Valid specification

x Invalid specification:
The assembler regards instructions with this combination as the specification
being omitted.

A The assembler regards them as extended instructions.

References:

Extended Instnactions
-+ Programmer's Guide, 8.2. "Extended Instructions Related to Automatic Literal Pool

Generation"

•

53

•

Table 3-4 Executable Instruction and Operation Size Combinations (part 2)

2. Arithmetic Operation instructions Operation Sizes

Mnemonic Addressing Mode B W L
DeWitt when
Omitted

ADD Rn,Rm x x 0

ADD eimm,Rn x x 0

ADDC Rn,Rm x x 0

ADDV Rn.Rm x x 0

CMP/EO Simm,R0 x x 0

CMP/EO Rn 0

CMP/HS Rn,Rm x x 0

CMP/GE Rn,Rm x x 0

CMP/H1 Rn,Rm x x0

CMP/GT Rn.Rm x x 0

CMP/PZ Rn x x 3 L

CMP/PL Rn x x 3 L

CMP/STR Rn,Rm x x 3. L

DIV1 Rn,Rm x x 0

DIVOS Rn,Rm

DIVOU (no operands) x x x

EXTS Rn,Rm 0 0

EXTU Rn,Rm 0 0

MAC @Rn+,@Rrn+ x 0

MULS Rn,Rm x x 3 L

MULU Rn,Rm x x 3 L

NEG Rn,Rm x x 3 L

NEGC Rn,Rm x x 0

SUB Rn,Rm x x

SUBC Rn,Rm x x

SUBV Rn.Rm x x 0

54

•

•

Table 3-4 Executable Instruction and Operation Size Combinations (part 3)

3. Logic Operation Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

AND Rn.Rm 0

AND itimm,R0 0 L

AND Nimm,O(RO,GBR) 0 x

NOT Rn,Rm x x 0 L

OR Rn,Rm x x 0

OR

OR

iimm,R0

iimm.0(RO.GBR)

x

0

x

TAS ORn 0

TST Rn,Rm L

TST

TST

Itimm,R0

itimm,0(RO,GBR) 0

0

XOR Rn,Rm x x 0 L

XOR simm,R0 x x 0 L

XOR ftimm,@(RO.GBR) 0 x

•

Table 3-4 Executable Instruction and Operation Size Combinations (part 4)

Shift Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

ROIL Rn x x 0 L

ROTA Rn x x 0 L

ROTCL Rn x x 0 L

ROTCR Rn x x 0 L

SHAL Rn x x0 L

SHAR Rn x x 0 L

SHLL Rn x x 0 L

SHLR Rn x x0 L

HU.2 Rn x x 3 L

SHLR2 Rn x x 3 L

SHU-8 Rn x x 0 L

SHLR8 Rn x x 0 L

SHU.16 Rn x x 0 L

SHLR16 Rn x x 0 L

Table 3-4 Executable Instruction and Operation Size Combinations (part 5)

Branch Instructions Operation Sizes

Default when
Mnemonic Addressing Mode B • W L Omitted

BF symbol

BT symbol

BRA

BSR

symbol

symbol

JMP ORn x x x

JSR ORn x x

RTS (no operands) x x

56

•

Table 3-4 Executable Instruction and Operation Size Combinations (part 6) .

6. System Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

CLFIT (no operands)

CLRMAC (no operands) x x

LDC Rn.SR 0

LDC Rn,GBR 0

LDC Rn.VBR x x 0 L

LDC @Rn+SR x x 0 L

LDC @Rn+.GBR x x 3 L

LDC @Rn+,VBR x x 0 L

LDS Rn.MACH 0

LDS Rn,MACL

LDS Rn.PR 0
LDS @Rn+MACH 0

LDS @Rn+,MACL 0

LDS @Rn+,PR x x 3 L

NOP (no operands)

RTE (no operands)

SETT (no operands)

SLEEP (no operands)

STC SR.Rn x x 0 L

STC GBR,Rn x x 0 L

STC VBR.Fin x x 0 L

STC SR.@—Rn x x 0 L

STC GBR,@—Rn 0

STC VBR,@—Rn 0

STS MACH.Rn 0

STS MACL.Rn 0 L

STS PR,Rn x x 0 L

STS MACH.@—Rn x x o L

STS MACL.@—Rh x x 0 L

STS PR,@—Fin x x0 L

TRAPA iimm x x 0 L

•

57

410
3.2.2 Notes on Delayed Branch Instructions

The unconditional branch instructions (BRA. BSR, JMP. JSR, RTS, and RTE) are delayed branch
instructions. SH microprocessors execute the delay slot instruction (the instruction directly
following a branch instruction in memory) before executing the delayed branch instruction.

If an instruction inappropriate for a delay slot is specified, the assembler issues error number 150.

Table 3-5 shows the relationship between the delayed branch instruction and the delay slot
instructions.

Table 3-5 Relationship between Delayed Branch Instruction and Delay Slot Instructions

Delayed Branch

Delay Slot BRA BSR JMP JSR RTS RTE

BF

BT

BRA

BSR

JMP

JSR

RTS • RTE

TRAPA

MOV @(disp,PC).Rn a a A A A A

symbol.Rn A

MOVA @(disp,PC),R0 A A A A A A

symbol.R0 A A

Extended MOV.L aimm.Rn

instructions M0V.W aimm.Rn

MOVA aimm.R0

Any other instruction

Symbol meanings:

o Normal, i.e., the assembler generates the specified object code.

A Warning 871
Note on the value of PC: PC . <destination address for the delayed branch instruction> + 2
The assembler generates the specified object code.

 Error 150 or 151
The instruction specified is inappropriate as a delay slot instruction.
The assembler generates object code with a NOP instruction (-10009) in the object code.

58

Absolute addresses
H'00001000 MOV.L @(8,PC).R0

H*00001004

140000100C Area being
accessed

Memory

2 bytes

PC

8 bytes

•

CAUTION!

If the delayed branch instruction and the following instruction are coded in different sections. the
assembler does not check the delay slot instruction.

References:

Extended Instructions
Programmer's Guide, 8.2. "Extended Instructions Related to Automatic Literal Pool
Generation"

3.23 Notes on Address Calculations

When the operand addressing mode is PC relative with displacement. i.e.. @(disp.PC), the value
of PC must be taken into account in coding. The value of PC can vary depending on certain
conditions.

(1) Normal Case

The value of PC is the rust address in the currently executing instruction plus 4 bytes.

Example=
(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Figure 3-1 Address Calculation Example (normal case)

59

•

Memory

Absolute addresses

BRA L1
H*00001000 MOVA. 0(8.PC),130

LI -H00001006 Branch destriaten for the
clamed branch

PC I W00001008

— disp 8 bytes

H00001010 Area being
accessed

2 bytes

(2) During the Delay Slot Instruction

The value of PC is destination address for the delayed branch instruction plus 2 bytes.

Examples:
(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Figure 3-2 Address Calculation Example (when the value of PC differs due to a branch)

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

60

PC •••

Address
H00001002

H00001004
MOV.L @(8.PC).R0

H0000100C — Area being accessed The value of the PC
is corrected to be
a multiple of 4.

Memory

2 bytes

disp = 8 bytes

Memory

Address
K00001000

MOVI P(8.PC) RO

PC I H'00001004

The value of the PC
is not changed.

H'0000100C — Area being accessed

2 bytes

— disc* • 8 bytes

•

(3) During the Execution of Either a MOV.L q(disp.PC),Rn or a MOVA @(disp.PC).R0

When the value of PC is not a multiple of 4 SH microprocessors correct the value by discarding
the lower 2 bits when calculating addresses.

Examples: 1. When SH microprocessor corrects the value of PC.
(Consider the state when a MOV instruction is being executed at absolute
address H'00001002.)

Figure 3-3 Address Calculation Example
(when SH microprocessor corrects the value of PC)

2. When SH microprocessor does not correct the value of PC.
(Consider the state when a MOV instruction is being executed at absolute
address H'00001000.)

Figure 3-4 Address Calculation Example
(when SH microprocessor does not correct the value of PC)

61

•

•

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

•

•

62

•

Section 4 Assembler Directives

4.1 Overview of the Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. Table 4-1

Lists the assembler directives provided by this assembler.

Table 4-1 Assembler Directives

Typo Mnemonic Function

Section and the location .SECTION Declares a section.
counter .ORG Sets the value of the location counter.

.AUGN Corrects the value of the location counter.

Symbols .EOU Sets a symbol value (reset not allowed).

.ASSIGN Sets a symbol value (reset allowed).

.REG Defines the alias of a register name.

Data and data area
reservation

.DATA Reserves integer data.

.DATAB Reserves integer data blocks.

.SDATA Reserves character string data.

.SDATAB Reserves character string data blocks.

.SDATAC Reserves character string data (with length).

.SDATAZ Reserves character string data (with zero
terminator).

.RES Reserves data area.

.SRES Reserves character string data area.

.SRESC Reserves character string data area (with length).

.SRESZ Reserves character string data area (with zero
terminator).

Export and import symbol .EXPORT Declares export symbols.

.IMPORT Declares import symbols.

.GLOBAL Declares export and import symbols.

Object modules .OUTPUT Controls object module output.

.DEBUG Controls the output of symbolic debug information.

•

Table 4-1 * Assembler Directives (cont)

1VP• Mnemonic Function

Assemble listing .PRINT Controls assemble listing output.

.LIST Controls the output of the source program listing.

.FORM Sets the number of lines and columns in the
assemble listing.

.HEADING Sets the header for the source program listing.

.PAGE Inserts a new page in the source program listing.

.SPACE Outputs blank lines to the source program listing.

Other directives .PROGRAM Sets the name of the object module.

.RADIX Sets the radix in which integer constants with no
radix specifier are interpreted.

.END Declares the end of the source program.

•

64

•

4.2 Assembler Directive Reference

4.2.1 Section and Location Counter Assembler Directives

This assembler provides the following assembler directives concerned with sections and the
location counter.

. SECTION

Declares a section.

. ORG

Sets the value of the location counter.

.ALIGN

Adjusts the value of the location counter to a multiple of the boundary alignment value. •

SECTION

Section Declaration

Syntax

.SECTIONA<section name> (,<section attribute> (,(LOCATE=
<start address>,ALIGN•<boundary alignment value>))]

Statement Elements

Label

The label field is not used.

Operation

Enter the .SECTION mnemonic in the operation field.

Operands

First operand: the section name

The rules for section names are the same as the rules for symbols.

References: Naming sections
—) Programmer's Guide, 1.3.2, "Coding of Symbols"

Second operand: the section aaribute

Attribute Section Type

poDE Code section

DATA Data section

STACK Stack section

COMMON Common section

DUMMY Dummy sectizn

The shaded section indicates the default value when the specifier is omitted.

The section usage type is determined by the attribute specification.
When the specification is omitted, the section will be a code section.

66

•

taC.U.Q1LIGLAPDE.ALIGN,•4

Source statement set 1*

f..SECTION ..__DTTDATA, ALIGN-4

Source statement set 2

1.4.ECTIo.N.L.:,7:11:4DPENT

Source statement set 3

. END

.SECTION

•
c. Third operand: start address or boundary alignment value

Specification Section Type

LOCATE <start address> Absolute address section

ALIGN • <boundary alignment value> Rotative address section

The specification determines whether the section type will be an absolute address section

or a relative address section. When the specification is omitted, the section will be a

relative address section with boundary alignment value of 4.

Description

1. .SECTION is the section declaration assembler directive.

A section is a part of a program, and the linkage editor regards it as a unit of processing. The

following describes section declaration using the simple examples shown below.

.---••• SOLI= program

...-- This statement declares the start of
section CD.

..---This part of the source program
belongs to section CD.

- This statement declares the start
of section DT.

This pan of the source program
belongs to section DT.

This statement declares the start of
section DM.

_ This pan of the source program
belongs to section DM.

This statement declares the end of the
source program.

Note: • This example assumes that the .SECTION
assembler directive does not appear in any
of the source statement sets 1 to 3.

67

. SECTION

2. It is possible to redeclare (and thus restart, i.e., re-enter) a section that was previously
declared in the same file. The following is a simple example of section restart.

— Source program

This statement declares the start of
section CD.

This part of the source program
belongs to section CD.

.SECTION CD,CODE,ALIGN4

Source statement set la

.SECTION DT,DATA.ALIGN4

Source statement set 2

ta;graToN:tlfzcgl

Source statement set 3

. END

This statement declares the restart
of section CD.

This part of the source program
also belongs to section CD.
(This part of the program is a
continuation of source statement set 1.)

Note: • This example assumes that the .SECTION
assembler directive does not appear in any
of the source statement sets 1 to 3.

CAUTION!

When using the .SECTION assembler directive to restart a section. the second and third operands
must be omitted. (The original specifications when first declaring the section remain valid.)

3. Use LOCATE = <start address> as the third operand when starting an absolute address
section. The start address is the absolute address of the start of that section.

The start address must be specified as follows:

The specification must be an absolute value.
and.
Forward reference symbols must not appear in the specification.

68

. SECTION

The values allowed for the start address are from H'00000000 to H 1-1-H-H-11-. (From

—2,147.483,648 to 4.294.967.295 in decimal.)

4. Use ALIGN = <boundary alignment value> to start a relative address section. The linkage

editor will adjust the start address of the section to be a multiple of the boundary alignment

value.

The boundary alignment value must be specified as follows:

The specification must be an absolute value. .

and.
Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 2°. 21 . 22, 231 .

For code sections, the values must be 4 or larger powers of 2, e.g. 22, 23, 24, ..., 231 .

5. The assembler provides a default section for the following cases.

The use of executable instructions when no section has been declared.

The use of data reservation assembler directives when no section has been declared.

The use of the -ALIGN assembler directive when no section has been declared.

The use of the .ORG assembler directive when no section has been declared.

Reference to the location counter when no section has been declared.

The use of statements consisting of only the label field when no section has been

declared.

The default section is the following section.

Section name: P
Section type: Code section

Relative address section (with a boundary alignment value of 4)

69

•

•

This secoon of the program belongs to the default section P.

; The default seam P is a code section. and is a relative
; address section with a boundary alignment value of 4.

.ALIGN 4

.DATA.L H11111111

t.

thatrIgg:CD,CODE.ALIGN4

M3V RO,R1
MOV RO,R2

ragILIMDT,DATA.LOCATE.W00001000

This section of the program belongs to the section CD.
The section CD is a code section. and is a Mauve address
saaion With a boundary asgnment yaws of 4.

Xl: .DATA.L H22222222 ;

.DATA.L H'33333333 ;

;
I.

.END

This section of the program belongs to the section DT.
The section DT is a data 'sawn. and is an absolute address
section with a Start address of H*00001000.

. SECTION

Coding Example

Note: This example assumes the .SECTION assembler directive does not appear in the parts
indicated by—.

70

•

. ORG

Location-Counter-Value Setting

Syntax

.ORGA<location —counter —value>

Statement Elements

Label

The label field is not used.

Operation

Enter the .ORG mnemonic in the operation field.

Operands

Enter the new value for the location counter in the operand field.

Description

.ORG is an assembler directive that sets the value of the location counter. The .ORG
assembler directive is used to place executable instructions or data at a specific address.

The location-counter-value must be specified as follows:

The specification must be an absolute value or an address within the section.

and.
Forward reference symbols must not appear in the specification.

The values allowed for the location-counter-value are from H00000000 to H

(From —2.147,483,648 to 4,294,967295 in decimal.)

When the location-counter-value is specified with an absolute value, the following condition

must hold:

<location-counter-value> a <section start address> (when compared as unsigned values)

71

Explanatory Figure for the Coding Example

Memory

Absolute address
HTFFF0000 Ar•-• H11111111

1

 Locations from H'FFFF0004
to H'FFFFOOOF are not
changed due to the use of
the .ORG assembler directive. Absolute address

HTFFF0010 rA H72922722

4 bytes

11.1

H11111111

H'FFFF0010 ;

H'22222222 ;
;

This statement sets the value of the location
counter.
The integer data H27,22222 is stored at
absolute address H'FFFF0010.

.SECTION DT,DATA.LOCATE...H'FFFF0000

.DATA.L

EE!)

. DATA. L

. oRG

3. The assembler handles the value of the location counter as follows.

The value is regarded as an absolute address value within an absolute address section.
The value is regarded as a relative address value within a relative address section.

Coding Example

72

.ALIGN

Location-Counter-Value Correction

Syntax

.ALIGNA<boundary alignment value>

Statement Elements

Label

The label field is not used.

Operation

Enter the .ALIGN mnemonic in the operation field.

Operands

Enter the boundary alignment value (the basis for adjusting the location-counter-value) in the

operand field.

Description

.ALIGN is an assembler directive that corrects the location-counter-value to be a multiple of

the boundary alignment value. Executable instructions and data can be allocated on specific

boundary values (address multiples) by using the .ALIGN assembler directive.

The boundary alignment value must be specified as follows:

The specification must be an absolute value.

and.
Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 20, 21. 22...., 231.

The boundary alignment value specified by .ALIGN directive must be less than or equal to

the boundary alignment value specified by _SECTION directive.

3. When ALIGN is used in a code section, data section. or dummy section. the assembler

inserts NOP instructions in the object codes to adjust the value of the location counter. Odd

byte size areas are filled with H'09.

73

.DATA.B H'11

.DATA.B H'22
DATA.B H'33

MEM 2
.DATA.W H'4444

; This statement adjusts the value of the location
; counter to be a multiple of 2.

Memory
4e
boundary

41.1.0.•

iZETCP.:3 4 ; This statement adjusts the value of the location
DATA.L H' 55555555 ; counter to be a multiple of 4.

411••••.••

Explanatory Figure for the Coding Example

This example assumes that the byte sized integer data H'11 is originally located at the
4-byte boundary address. The assembler will insert the filler data as shown in the figure
below.

HI 1-122 j H'33 H'09
H'4444 -.Hvoog

H'555555.55

V.

4 bytes

: Codes filled in by
the assembler.

.ALIGN

When .ALIGN is used in a dummy or stack section, the assembler only adjusts the value of
the location counter, and does not fill in any object code in memory.

Note: • This object code is not displayed in the assemble listing.

Coding Example

74

•

4.2.2 Symbol Handling Assembler Directives

This assembler provides the following assembler directives concerned with symbols.

.EQ17

Sets a symbol value.

. ASSIGN

Sets and resets a symbol value.

. REG

Defines the alias of a register name.

S

. EQ17

Symbol Value Setting (resetting not allowed)

Syntax

<symbol>[:311.EQUA<symbol value>

Statement Elements

Label

Enter the symbol that is to be set a value in the label field.

Operation

Enter the .EQU mnemonic in the operation field.

Operands

Enter the value to be set to the symbol in the operand field.

Description

.EQU is an assembler directive that sets a value to a symbol.

Symbols defined with the .EQU directive cannot be redefined.

The symbol value must be specified as follows:

The specification must be an absolute value or an address value.
and.
Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from if00000000 to WH-t-t-erg-e. (From
—2.147,483;648 to 4.294.967295 in decimal.)

76

•

•

. EQU

Coding Example

Xl: 10 : The value 10 is set to X1.
X2: EQ 20 ; The value 20 is set to X2.

CM /EC? #X1.O ; This is the same as CMP/E0 #10.RO.

BT LABEL1
CMP/EQ 11X2,R0 ; This is the same as CMP/EO #20,RO.

BT LABEL2

77

•

. ASSIGN

Symbol Value Setting (resetting allowed)

Syntax

<eymbol>(:)A.ASSIGNA<symbol value>

Statement Elements

Label

Enter the symbol that is to be set a value in the label field.

Operation

Enter the .ASSIGN mnemonic in the operation field.

Operands

Enter the value to be set to the symbol in the operand field.

Description

.ASSIGN is an assembler directive that sets a value to a symbol.

Symbols defined with the ASSIGN directive can be redefined with the .ASSIGN directive.

The symbol value must be specified as follows:

The specification must be an absolute value or an address value.
and.
Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from Ff00000030 to HI-rt-t-trri-. (From
—2.147,483.648 to 4.294.967295 in decimal.)

3. Definitions with the ASSIGN directive are valid from the point of the definition forward in
the program.

78

•

•

. ASSIGN

4. Symbols defined with .ASSIGN have the following limitations:

They cannot be used as export or import symbols.
They cannot be referenced from the simulator/debugger.

Coding Example

X1: Pairdif. 1
X2: ,ASSIGN 2

c24P/EQ tx1,R0 ; This is the same as CMP/ECT #1,RO.

BT LABEL'
CNP/EQ SX2. RO ; This is the same as CMP/E0 #2.RO.
BT LABEL2

: =Tee 3

12: .._ASSIGN-.1 4
C24P/EQ IX1,1t0 ; This is the same as CMP/E0 #3,RO.
BT LABEL3
crie /EQ SX2,R0 ; This is the same as CMP/EQ #4,RO.
BF LAMA

•

•

Alias of a Register Name Definition

Syntax

<eymbol>(:)A.REGA(<regieter name>)

Statement Elements

Label

Enter the symbol to be defined as the alias of a register name in the label field.

Operation

Enter the .REG mnemonic in the operation field.

Operands

Enter the register name for which the alias of a register name is being defined in the operand
field.

Description

.REG is the assembler directive that defines the alias of a register name.

The alias of a register name defined with .REG can be used in exactly the same manner as the
original register name.

The alias of a register name defined with .REG cannot be redefined.

The alias of a register name can only be defined for the general registers (RO to R15. and SP).

Definitions with the REG directive are valid from the point of the definition forward in the
Program-

4. Symbols defined with .REG have the following limitations:

They cannot be used as export or import symbols.
They cannot be referenced from the simulator/debugger.

80

. REG

Coding Example

•••••••••

KEN: MEM (1110)

(R11)

MOV #0, MIN ; This is the same as MOV #0,R10.

Nov #99,MAX ; This is the same as MOV 199,R11.

CMP/HS MIN,R1

BF LABEL

CMP/HS R1,MAX

BF LABEL

•••••••••••

•

•

4.2.3 Data and Data Area Reservation Assembler Directives

This assembler provides the following assembler directives that are concerned with data and data
area reservation.

•
.DATA

.DATAB

. SDATA

. SDATAB

. SDATAC

.SDATAZ

.RZS

. SRZS

. SRZSC

SRZSZ

Reserves integer data.

Reserves integer data blocks.

Reserves character suing data.

Reserves character suing data blocks.

Reserves character suing data (with length).

Reserves character string data (with zero terminator).

Reserves data area.

Reserves character string data area.

Reserves character suing data area (with length).

Reserves character suing data area (with zero terminator).

•

82

•

DATA

_Integer Data Reservation

Syntax

I<sYmbol>f:11A.DATA(.<operation size>la<integer data>(,<integer cata>...

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Mnemonic
Enter .DATA mnemonic in the operation field.

Operation size

Specifier Data Size

Byte

Word (2 bytes)

L: Long Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

The specifier determines the size of the reserved data.

The long word size is used when the specifier is omitted.

Operands

Enter the values to be reserved as data in the operand field.

Description

.DATA is the assembler directive that reserves integer data in memory.

Arbitrary values, including relative values and forward reference symbols, can be used to

specify the integer data.

83

X:

.ALIGN

NROEK:17

rzgAziv,74.1

H'11111111
H'2222,H'3333
H'44,H'55

4 ; (This statement adjusts the value of the
location counter.)

; These statements reserve integer data.

••••••••1

Explanatory Figure for the Coding Example

Address symbol
X

Memory

11 11 11 11
22 22 33 33
44 l 55

Note: The data in this figure
is hexadecimal.

4 bytes

DATA

3. The range of values that can be specified as integer data varies with the operation size.

Operation Stu Nagar Data Range

It00300000 to H'00000OFF (0 to 255)
H7FFFFF80 to H (-128 to-1)

H*00000000 to H*0000FFFF (0 to 65.535)
H FFFF8000 to H'FFFFFFFF (-32.768 to -1)

H'00000000 to H7FFFFFFF (0 to 4,294.967,295)
H10000000 to H'FFFFFFFF (-2.147,483.648 to -1)

Note: • Numbers in parentheses are decimal.

Coding Example

84

•

.DATAB

Integer Data Block Reservation

Syntax

f<symbol>[:11A.DATAB(.<operation size>)A<Jolock count>,<integer data>

Statement Elements

1. Label

Enter a reference symbol in the label field if required.

2. Operation

Mnemonic
Enter .DATAB mnemonic in the operation field.

Operation size

Specifier Data Size

Byte

Word (2 bytes)

L --1F77”-.""cr•-'!1:3g, Long word (4 bytes)

'The shaded section indicates the default value when the specifier is omitted.

The specifier determines the size of the reserved data.
The long word size is used when the specifier is omitted.

3. Operands

First operand: block count
Eater the number of times the data value is repeated as the first operand.

Second operand: integer data
Enter the value to be reserved as the second operand.

85

•

DATAB

Description

.DATAB is the assembler directive that reserves the specified number of integer data
consecutively in memory.

The block count must be specified as follows:

The specification must be an absolute value,
and,
Forward reference symbols must not appear in the specification.

Arbitrary values, including relative values and forward reference symbols, can be used to
specify the integer data.

3. The range of values that can be specified as the block size and as the integer data varies with
the operation size.

Operation Size Block Size Range*

H00300001 to HI-FR-H.1-P- (1 to 4294.967295)

W00000001 to H7FFFFFFF (1 to 2.147.483.647)

H*00000001 to H3FFFFFFF (1 to 1.073.741.823)

Operation Size Integer Data Range*

14.00000000 to H'000000FF (0 to 255)
141-Fi-m-1-80 to H1-1-t-i-t-t-FF (-128 to -1)

H*00000000 to HDOOOFFFF (0 to 65.535)
HTFFF8000 to tfl-t-i-r1I-r-t- (-32.768 to -1)

H00000000 to H tt-t-t-t-t- (0 to 4.294.967.295)
H10000000 to HI-i-t-t-Pt-t-t- (-2.147.483.648 to -1)

Note: • Numbers in parentheses are decimal.

86

•

11 11 11 11
22 22 22 22
33 I 33 33 I

Explanatory Figure for the Coding Example

Memory
Address symbol
X

Note: The data in this figure
is hexadecimal.

4 bytes

. DATAB

Coding Example

4••••••01.

.ALIGN 4 ; (This statement adjusts the value of the
; location counter.)

X: riOnag7i7 1,H'11111111
PDATNBJW.1 2,H'2222 ; This statement reserves two blocks of integer

PATAB:B7 3,H33 ; data.

•

. SDATA

Character String Data Reservation

Syntax

(<symbol>NIA.SDATAA"Xcharacter string>"[,"<character etring>"...]

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SDATA mnemonic in the operation field.

Operands

Enter the character string(s) to be reserved in the operand field.

Description

I. .SDATA is the assembler directive that reserves character suing data in memory.

References: Character strings -4 Programmer's Guide, 1.7, "Character Strings"

2. A control character can be appended to a character string.

The syntax for this notation is as follows.

'<character string>"<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

The specification must be an absolute value,
and.
Forward reference symbols must not appear in the specification.

88

•

•

Explanatory Figure for the Coding Example

Address
Memory

symbol
X 41 41 41 41

41 1 22 42 42
42 22 1 41 42
41 42 07) Notes: 1. The data in this figure is

hexadecimal.

2. The ASCII code for "A" is: H'41.
The ASCII code for "8" is: H42.
The ASCII code for "" is: H22.

4 bytes

; (This statement adjusts the value of
; the location counter.)
; This statement reserves character string data.
; The character string in this example includes
; double quotation marks.
; The character string in this example has
; a control character appended.

....••=11•

.ALIGN 4

X: MITA!
rop .1.k: LA.2

rgtigrA's "ABAB"<H'07>

"AAAAA"
".opEcurfooe

. SDATA

Coding Example

89

SDATAB

Character String Data Blocks Reservation

Syntax

1<symbol>kna.SDATABA<block count>,"<character string>"

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SDATAB mnemonic in the operation field.

Operands

First operand <block count>
Enter the number of character strings as the first operand.

Second operand: <character suing>
Enter the character string to be reserved as the second operand.

Description

.SDATAB is the assembler directive that reserves the specified number of character strings
consecutively in memory.

References: Character strings -4 Programmer's Guide, 1.7, "Character Strings"

The <block count> must be specified as follows:

The specification must be an absolute value,
and,
Forward reference symbols must not appear in the specification.

A value of 1 or larger must be specified as the block count.

The maximum value of the block count depends on the length of the character string data.

90

•

•

.SDATAB

(The length of the character string data multiplied by the block count must be less than or
equal to Fri-ri-H•t•t•t• (4,294,967.295) bytes.)

3. A control character can be appended to a character string.

The syntax for this notation is as follows.

"<character string>"<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

The specification must be an absolute value,
and,
Forward reference symbols must not appear in the specification.

•

•

91

•

Explanatory Figure for the Coding Example

Address

Memory

symbol 41 41 41 41
X 41 1 41 41 41

41 41 1 22 42
42 42 22 1 22
42 42 42 22
41 42 41 42
07 1 41 42 41
42 07 1 Notes: 1. The data in this figure is

hexadecimal.

2. The ASCII code for "A is: H'41.
The ASCII code for 13" is: H'42.
The ASCII code for is: H22.

4 bytes

. SDATAB

Coding Example

•••••••••

.ALIGN 4 ; (This statement adjusts the value of the
; location counter.)

2, "AAAAA" ; This statement reserves two character string
; data blocks.

Iff= 2, """BEB""" ; The character string in this example includes
; double quotation marks.

I.TIMEIStErj 2, "ABAB-e-H • 07> ; The character string in this example has
: a control character appended.

••••••.10

1..

92

•

•

. SDATAC

Character String Data Reservation (with length)

Syntax

(<symbo1>(:]1A.SDATh="<character string>"[,"<character strIng>"...]

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SDATAC mnemonic in the operation field.

Operands

Enter the character string(s) to be reserved in the operand field.

Description

.SDATAC is the assembler directive that reserves character string data (with length) in
memory.

A character string with length is a character string with an inserted leading byte that indicates

the length of the string.

The length indicates the size of the character string (not including the length) in bytes.

References: Character strings —+ Programmer's Guide. 1.7, "Character Strings".

A control character can be appended to a character string.

The syntax for this notation is as follows.

"<character string>"<<ASCII code for a control character»

The ASCII code for a control character must be specified as follows.

93

•

Explanatory Figure for the Coding Example

Memory
Address
symbol

X 05 41 41 41
41 41 1 05 22
42 42 42 22
05 41 42 41
42 07 Notes: 1. The data in this figure is

hexadecimal.

2. The ASCII code for "A" is: FV41.
The ASCII code for "Er is: H*42.
The ASCII code for "" is: H22.

4 bytes

SDATAC

The specification must be an absolute value.
and.
Forward reference symbols must not appear in the specification.

Coding Example

•••••••••

.ALIGN 4 ; (This statement adjusts the value of the
; location counter.)
; This statement reserves character string data
; (with length).
; The character string in this example includes
; double quotation marks.
; The character string in this example has
; a control character appended.

X: STK-Tie'

niraKEI

Bri=14
"A9AB"<w07>

•••=.1...0

•

•

•

•

. SDATAZ

Character String Data Reservation (with zero terminator)

Syntax

(<systibol> (: JA.SDATAZA"<character strIng>" (,"<character strIng>" ...

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SDATAZ mnemonic in the operation field.

Operands

Enter the character string(s) to be reserved in the operand field.

Description

.SDATAZ is the assembler directive that reserves character string data (with zero terminator)

in memory.

A character string with zero terminator is a character string with an appended trailing byte

(with the value H'00) that indicates the end of the string.

References: Character strings -4 Programmer's Guide. 1.7. "Character Strings"

A control character can be appended to a character string.

The syntax for this notation is as follows.

"<character string>"<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

95

•

Explanatory Figure for the Coding Example

Address
Memory

symbol
41 41 41 41 X
41 00 1 22 42
42 42 22 00
41 42 41 42
07 00 1 Notes: 1. The data in this figure is

hexadecimal.

2. The ASCII code for 'A* is: H41.
The ASCII code for 13'' is: H42.
The ASCII code for is: H22.

4 bytes

. SDATAZ

The specification must be an absolute value.
and,
Forward reference symbols must not appear in the specification.

Coding Example

.ALIGN 4 ; (This statement adjusts the value of the
; location counter.)

X: 11 3MMAr: "AAAAA" ; This statement reserves character string :
; data (with zero terminator).

!Mr= —13128""" ; The character string in this example includes
; double quotation marks.

IIPATX27 "ABAS-<H'07> ; The character string in this example has
; a control character appended.

.,•••••••

•

•

96

RES

Data Area Reservation

Syntax

[<symbol>(:))A.RES[.<operation size>]L<area count>

Statement Elements

1. Label

Enter a reference symbol in the label field if required.

2. Operation

Mnemonic
Enter .RES mnemonic in the operation field.

Operation size

Specifier Data Size

Byte

Word (2 bytes)

1..f.0443 Long word (4 bytes)

The shaded section indicates the default value when the specifier is Omitted.

The specifier determines the size of one area.

The long word size is used when the specifier is omitted.

3. Operands

Enter the number of areas to be reserved in the operand field.

97

RZS

Description

.RES is the assembler directive that reserves data areas in memory.

The area count must be specified as follows:

The specification must be an absolute value.
and,
Forward reference symbols must not appear in the specification.

3. The range of values that can be specified as the area count varies with the operation size.

Operation Sin Area Count Range'

NV0000001 to 111+i-H-FFF (1 to 4.294,967.295)

W00000001 to H'iFt-r-i-r-r-F (1 to 2,147,483.647)

H*00000001 to 1-1'3FFFFFFF (Ito 1,073,741.823)

Note: • Numbers in parentheses are decimal.

•

•

98

•

. RES

Coding Example

07.•iy••

.ALIGN 4 ; (This statement adjusts the value of the location
; counter.)

x: pONTI 2 ; This statement reserves 2 long word size areas.
ERECYi 3 ; This statement reserves 3 word size areas.
am= 5 ; This statement reserves 5 byte size areas.

....••••••••

Explanatory Figure for the Coding Example

Memory

Address symbol
X

•

11111111111111111•11

4 bytes

•

•

. SRZS

Character String Data Area Reservation

Syntax

1<symbe1,(:)JA.SRESA<character string area size>G<character string area sizes...]

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SRFS mnemonic in the operation field.

Operands

Enter the sizes of the areas to be reserved in the operand field.

Description

.SRES is the assembler directive that reserves character string data areas.

The character string area size must be specified as follows:

The specification must be an absolute value.
and.
Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000001 to
1411-ret-rer (from 1 to 4.294.967295 in decimal).

100

•

•

Explanatory Figure for the Coding Example

Memory

4 bytes

Address symbol
X

.SRES

Coding Example

.ALIGN 4 ; (This statement adjusts the value of the location
; counter.)

X: 7 ; This statement reserves a 7-byte area.
6 ; This statement reserves a 6-byte area.

SRESC

Character String Data Area Reservation (with length)

Syntax

(<sylabol>W)I.SRESCa<charactor 'trim' area size>G<character strIng area slze,...,

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SRESC mnemonic in the operation field.

Operands

Enter the sizes of the areas (not including the length) to be reserved in the operand field.

Description

.SRESC is the assembler directive that reserves character string data areas (with length) in
memory.

A character string with length is a character string with an inserted leading byte that indicates
the length of the string.

The length indicates the size of the character swing (not including the length) in bytes.

References: Character strings —* Programmer's Guide. 1.7, "Character Strings"

The character string area size must be specified as follows:

The specification must be an absolute value.
and.
Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000000 to
H'000000FF (in decimal. from 0 to 255).

102

•

•

Explanatory Figure for the Coding Example

Memory
Address symbol
X

4 bytes

•

. SRESC

3. The size of the area reserved in memory is the size of the character suing area itself plus 1
byte for the count.

Coding Example

••••••••

X:

.ALIGN 4 ; (This statement adjusts the value of the location
;

PRM
counter.)

7 ; This statement reserves 7 bytes plus 1 byte for I
; the count.

ES1ES11 6 ; This statement reserves 6 bytes plus 1 byte for
; the count.

•

103

SRESZ

Character String Data Area Reservation (with zero terminator)

Syntax

t<sralso1>(:11A.SRESZa<eharactar string area sixe>G<character string area size...

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the .SRESZ mnemonic in the operation field.

Operands

Enter the sizes of the areas (not including the terminating zero) to be reserved in the operand
field.

Description

.SRESZ is the assembler directive that allocates character suing data areas (with zero
termination).

A character string with length is a character swing with an appended trailing byte (with the
value H'03) that indirihm the end of the string.

References: Character strings —) Programmer's Guide. 1.7, "Character Strings"

The character string area size must be specified as follows:

The specification must be an absolute value,
and.
Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H'00000000 to
H'0000OOFF (in decimal, from 0 to 255).

104

•

•

.• {.

Explanatory Figure for the Coding Example

Memory
Address symbol
X

V

4 bytes

•

.SFtESZ

3. The size of the area reserved in memory is the size of the character string area itself plus 1
byte for the terminating zero.

Coding Example

a0.10=M•

.ALIGN 4 ; (This statement adjusts the value of the location counter.)

X: Mani 7 ; This statement reserves 7 bytes plus 1 byte for
; the terminating byte.

31P 6 ; This statement reserves 6 bytes plus 1 byte for ..J1
; the terminating byte.

all•••••

105

4.2.4 Export and Import Assembler Directives

This assembler provides the following assembler directives concerned with export and import.

. EXPORT

Declares export symbols.

This declaration allows symbols defined in the current file to be referenced in other files.

. IMPORT

Declares import symbols.

This declaration allows symbols defined in other files to be referenced in the current file.

. GLOBAL

Declares export and import symbols.

This declaration allows symbols defined in the current file to be referenced in other files, and
allows symbols defined in other files to be referenced in the current file.

•

•

106

. E3CPORT

Export Symbols Declaration

Syntax

.EXPORTA<symbol>[,<symbol>...]

Statement Elements

label

The label field is not used.

Operation

Enter the .EXPORT mnemonic in the operation field.

Operands

Enter the symbols to be declared as export symbols in the operand field.

Description

.EXPORT is the assembler directive that declares export symbols.

An export symbol declaration is required to reference symbols defined in the current file from

other files.

The following can be declared to be export symbols.

Constant symbols (other than those defined with the .ASSIGN assembler directive)

Absolute address symbols (other than address symbols in a dummy section)

Relative address symbols

3. To reference a symbol as an import symbol, it is necessary to declare it to be an export

symbol, and also to declare it to be an import symbol.

Import symbols are declared in the file in which they are referenced using either the.

IMPORT or the .GLOBAL assembler directive.

107

. EXPORT

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:

MAX ; This statement declares X to be an export
; symbol.

4n••••••••

X: .EQC H' 10000000 ; This statement defines X.

File B:

. IMPORT X ;
;

This statement declares X to be an import
symbol.

.10.•••••••

.ALIGN 4

.DATA.L X ; This statement references X.

108

•

•

•

•

.IMPORT

Import Symbols Declaration

Syntax

.IMPORTA<symbol>[,<symbol>...]

Statement Elements

Label

The label field is not used.

Operation

Enter the .IMPORT mnemonic in the operation field.

Operands

Enter the symbols to be declared as import symbols in the operand field.

Description

I. IMPORT is the assembler directive that declares import symbols.

An import symbol declaration is required to reference symbols defined in another file.

Symbols defined in the current file cannot be declared to be import symbols.

To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the .EXPORT
or the .GLOBAL assembler directive.

109

•

•

.11IPORT

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:

.EXPORT X ; This statement declares X to be an export
; symbol.

••••••••

X: .E00 H ' 10000000 ; This statement defines X.

File B:

1010.W.2 x ;
;

This statement declares X to be an import
symbol.

•••••=0

.ALIGN 4

.D/iTh.L X ; This statement references X.

•••••••

•

•

110

. GLOBAL

Export and Import Symbols Declaration

Syntax

.GLOBALA<symbol> [, <symbol> .. .)
.1110,

Statement Elements

Label

The label field is not used.

Operation

Enter the .GLOBAL mnemonic in the operation field.

Operands

Enter the symbols to be declared as export symbols or as import symbols in the operand field.

Description

.GLOBAL is the assemble: directive that declares symbols to be either export symbols or

import symbols.

An export symbol declaration is required to reference symbols defined in the current file from

other files. An import symbol declaration is required to reference symbols defined in another

file.

A symbol defined within the current file is declared to be an export symbol by a *GLOBAL

declaration.

A symbol that is not defined within the current file is declared to be an import symbol by a.

GLOBAL declaration.

The following can be declared to be export symbols.

Constant symbols (other than those defined with the .ASSIGN assembler directive)

111

•

. GLOBAL

Absolute address symbols (other than address symbols in a dummy section)
Relative address symbols

4. To reference a symbol as an import symbol, it is ner-Pcsary to declare it to be an export
symbol. and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the .EXPORT
or the -GLOBAL assembler directive.

Import symbols are declared in the file in which they are referenced using either the.
IMPORT or the .GLOBAL assembler directive.

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

Re A:

MP= x ; This statement declares X to be an export
; symbol.

aMygge

X: •EO3 H10000000 : This statement defines X.

File B:

X

.ALIGN 4

. DATA L X

; This statement declares X to be an import
: symbol.

; This statement references X.

112

•

•

4.2.5 Object Module Assembler Directives

This assembler provides the following assembler directives concerned with object modules.

. OUTPUT

Controls object module and debug information output

.DEBUG

Controls the output of symbolic debug information.

113

•

.013TP17T

Object Module Output Control

Syntax

.OUTPUTa<output specifier>(,<output specifier>)

Statement Elements

Label

The label field is not used.

Operation

Enter the .OUTPUT mnemonic in the operation field.

Operands: <output specifier>

Output Specifier Output Control

pa; An object module is output.

NOOBJ No object module is 01ApUL

OBG Debug information is output in the object module.

4ODEIG No debug information is output in the object module.

The shaded section indicates the default value when the specifier is omitted.

The output specifiers control object module and debug information output.

Description

.OUTPUT is the assembler directive that controls object module and debug information
output.

If the .OUTPUT directive is used two or more times in a program with inconsistent output
specifiers, an error occurs.

•

•

Example:
.OUTPUT OBJ
. OUTPUT NODBG 4—OK

. OUTPUT OBJ

.OUTPUT NCOBJ 4-- Error

114

•

•

. OUTPUT

Specifications concerning debug information output are only valid when an object module is
output.

The assembler gives priority to command line option specifications concerning object module
and debug information output

References: Object module output
-4 User's Guide. 2.2.1. "Object Module Command Line Options" OBJECT

NOOBJECT

Debug information output
User's Guide. 2.2.1. "Object Module Command Line Options" DEBUG

NODEBUG

Coding Example

Note: This example and its description assume that no command line options concerning object
module or debug information output were specified.

.OUTPUT OBJ ; An object module is output.
; No debug information is output.

••••••••••

.OUTPUT OBJ,DBG ; Both an object module and debug information
; is output.

•••••1...•

.OUTPUT OBJ,NODBG ; An object module is output.
; No debug information is output.

••••••••••

115

. OUTPUT

Supplement:

Debug information is required when debugging a program using the simulator/debugger, and is
pan of the object module.

Debug information includes information about source statements and information about symbols.

•

•

116

•

. DEBUG

Symbolic Debug Information Output Control

Syntax

.DEBUGA<output specifier>

Statement Elements

Label

The label field is not used.

Operation

Enter the .DEBUG mnemonic in the operation field.

Op:rands: output specifier

Output Specifier Output Control

Symbolic debug information is output starting with the next source

statement.

OFF Symbolic debug information is not output starting with the next

source statement

The shaded section indicates the default value when the specifier is omitted.

The output specifier controls symbolic debug information output.

Description

.DEBUG is the assembler directive that controls the output of symbolic debug information.

This directive allows assembly time to be reduced by restricting the output of symbolic debug

information to only those symbols required in debugging.

The specification of the .DEBUG directive is only valid when both an object module and

debug information are output.

117

. DEBUG

References: Object module output
—) Programmer's Guide, 4.2.5, "Object Module Assembler Directives",

.OUTPUT
—) User's Guide, 2.2.1 "Object Module Command Line Options"

OBJECT NOOBJECT

Debug information output
—) Programmer's Guide 4.2.5, "Object Module Assembler Directives".

.OUTPUT
—) User's Guide. 2.2.1. "Object Module Command Line Options"

DEBUG NODEBUG

Coding Example

••••••••••

MEM OFF ; Starting with the next statement, the assembler
; does not output symbolic debug information.

••••••=1

MP-V1.1 ; Starting with the next statement, the assembler
; outputs symbolic debug information.

•••••••••

Supplement:

The term "symbolic debug information" ref= to the parts of debug information concerned with
symbols.

118

•

•

•

4.2.6 Assemble Listing Assembler Directives

This assembler provides the following assembler directives for controlling the assemble listing.

•

I

.PRINT

. LIST

. FORM

. HEADING

. PAGE

. SPACE

Controls assemble listing output.

Controls the output of the source program listing.

Sets the number of lines and columns in the assemble listing.

Sets the header for the source program listing.

Insens a new page in the source program listing.

Outputs blank lines to the source program listing.

Supplement:

The assemble listing is a listing to which the results of the assembly are output, and includes a
source program listing, a cross-reference listing, and a section information listing.

References: For a detailed description of the assemble listing, see appendix C, "Assemble
Listing Output Example".

119

•

Assemble Listing Output Control

Syntax

.PRINTA<output specifier>(,<output specifier>...]

Statement Elements

Label

The label field is not used.

Operation

Enter the .PRINT mnemonic in the operation field.

Operands: output specifier

Output Specifier Assembler Action

LIST An assemble listing is output.

NOLIST:Zia,4111 No assemble listing is output.

•

•
SRC;IPJAPPrz-1-41.i A source program listing is output in the assemble listing.

NOSRC No source program listing is output in the assemble listing.

PRERitiA6A0ust

NOCREF

A cross-reference listing is output in the assemble listing.

No cross-reference listing is output in the assemble listing.

A section information listing is output in the assemble listing.

NOSCT No section information listing is output in the assemble listing.

The shaded sections indicate the default settings when the specifier is omitted.

The output specifier controls assemble listing output.

120

_PRINT

Description

I. .PRINT is the assembler directive that controls assemble listing output.

2. If the .PRINT directive is used two or more times in a program with inconsistent output

specifiers, an error occurs.

Example:
.PRINT LIST
.PRINT NOSRC .—OK

.PRINT LIST

.PRINT NOLIST 4— Error

The output specifiers concerned with the source program listing, the cross-reference listing,

and the section information listing are only valid when an assemble listing is output.

The assembler gives priority to command line option specifications concerning assemble

listing output.

References: Assemble listing output
--o User's Guide. 2.2.2, "Assemble Listing Command Line Options"

LIST NOLIST
SOURCE NOSOURCE
CROSS_REPERENCE NOCROSS_REFERENCE
SECTION NOSECTION

Coding Example

Note: This example and its description assume that no command line options concerning

assemble listing output are specified.

izottn usr ; All types of assemble listing are output.

/MO.0

CliNffe, LIST, NOSRC,NOCREF
; Only a section information listing is output.

•••••••••.

121

.LIST

Source Program Listing Output Control

Syntax

.LISTA<output specifier>G<output specifier>...]

Output type:(ONIOFFICONDINOCONDIDEFINODEFICALLINOCALLIEXPI
NOEXPICODEINOCODEI

Statement Elements

Label

The label field is not used.

Operation

Enter the .LIST mnemonic in the operation field.

Operands

Enter the output specifiers in the operand filed.

Description

1. LIST is the assembler directive that controls output of the source program listing in the
following three ways:

I Selects whether or not to output source statements.
II Selects whether or not to output source statements related to the conditional assembly and

macro functions.
HI Selects whether or not to output object code lines.

122

•

•

.LIST

2. Output is controlled by output specifiers as follows:

Output Specifier

Typo Output Not output Object Description

I IONliON OFF Source statements The source statements following this directive

II COND NOCOND Failed condition Condition-failed .AIF directive statements

F -. NODEF Definition Macro definition statements

:6M .AREPEAT and .AWHILE definition statements
.INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive
statements

iCALL-: • NOCALI. Call Macro call statements.
.AIF and .AENDI directive statements

tEXP7r, NOEXP Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion
statements

III •Ci41:4 NOCODE Object code lines The object code lines exceeding the source . ,
statement lines

The shaded sections indicate the default settings when the specifier is omitted.

3. The specification of the .LIST directive is only valid when an assemble listing is output.

References: Source program listing output
Programmer's Guide, 4.2.6, "Assemble Listing Assembler Directives",
.PRINT
User's Guide, 2.2.2, "Assemble Listing Command Line Options",
LIST NOLIST SOURCE NOSOURCE

The assembler gives priority to command line option specifications concerning source
program listing output.

References: Output on the source program listing
--• User's Guide. 2.2.2, "Assemble Listing Command Line Options"

SHOW NOSHOW

.LIST directive statements themselves are not output on the source program listing.

123

.LIST

Coding Example

112$7=10;12SQ.aigPEn This statement controls source program
.HACRO SHLRN COUNToRd listing output

SHIFT .ASSIGNA \COUNT

.AIF USHIFT GE 16
SHLR16 \Rd

SHIFT .ASSIGNA \6SHIFT -16
.AENDI

.AIF \&SHIFT GE 8
SHLR8 \Rd

SHIFT .ASSIGNA \fiSHIFT-8
.AENDI

\&SHIFT GE 4. These statements define a general-
SHLR2 \Rd purpose multiple-bit shift proedure as a
SHIM \Rd macro instruction.

SHIFT .ASSIGNA \6SHIFT-4
.AENDI

.AIF USHIFT GE 2
SHLR2 \Rd

SHIFT .ASSIGNA \6SHIFT-2
-AENDI

.AIF USHIFT GE 1
SHLR \Rd
.AENDI
.ENDt4

SHLRN 23.R0 Macro call
.END

Note: This example and its description assume that no command line options concerning source
program listing output are specified.

124

•

•

*** SH SERIES ASSEMBLER Ver. 1.2

PFtOGRAM NAME

*** 07/09/93 16:33:49
PAGE 1

31 31
32 32 SHLRN 23,120
33
35
36 M .AIF 23 GE 16
37 00000000 4029 C SHLR16 RO
39 M .AENDI
40
41 M .AIF 7 GE 8
45
46 N .AIF 7 GE 4
47 00000002 4009 C SHIM RO
48 00000004 4009 C SH1R2 RO
50 M .AENDI
51
52 N .AIF 3 GE 2
53 00000006 4009 C SHLR2 RO
55 N .AENDI
56
57 H .AIF 1 GE 1
58 00000008 4001 C SHLR RO
59 H .AENDI
60 33 -END

TOTAL ERRORS 0
TOTAL WARNINGS 0

am•ap•

•

.LIST

Source Listing Output of Coding Example

The LIST assembler directive suppresses the output of the macro definition, .ASSIGNA directive
statement, and AlF condition-failed statements.

125

. FORM

Assemble Listing Line Count and Column Count Setting

Syntax

.FORMA<size specifier>G<nize npecifier>...]

Statement Elements

I. Label

The label field is not used.

Operation

Enter the FORM mnemonic in the operation field.

Operands: size specifier

Size Specifier Listing Size
UN-dine counb. The specified value is set to the number of lines per page.
COL.:column count> The specified value is set to the number of columns per line.

These specifications determine the number of lines and columns in the assemble listing.

Description

FORM is the assembler directive that sets the number of lines per page and columns per line
in the assemble listing.

The line count and column count must be specified as follows:

The specifications must be absolute values.
and.
Forward reference symbols must not appear in the specifications.

The values allowed for the line count are from 20 to 255.

The values allowed for the column count are from 79 to 255.

3. The FORM directive can be used any number of times in a given source program.

126

•

. FORM

The assembler gives priority to command line option specifications concerning the number of
lines and columns in the assemble listing.

References: Setting the line count in assemble listing
—) User's Guide. 2.2.2. "Assemble Listing Command Line Options"

LINES

Setting the column count in assemble listing
—) User's Guide. 2.2.2. "Assemble Listing Command Line Options"

COLUMNS

When there is no specification of command line option or .FORM assembler directive
specification for the line count or the column count, the following values are used:

Line count 60 lines
Column count 132 columns

Coding Example

Note: This example and its description assume that no command line options concerning the
assemble listing line count and/or column count are specified.

•••••..

MAO LIN-60, COL-200 ; Starting with this page. the number of lines
; per page in the assemble listing is 60 lines.
; Also, starting with this line, the number of
; columns per line in the assemble listing is
; 200 columns.

••••••••=0.

MEI LIN-55, COL-150 ; Starting with this page, the number of lines
; per page in the assemble listing is 55 lines.
; Also. starting with this line, the number of
; columns per line in the assemble listing is
; 150 columns.

0•••••mw

127

•

. HICADING

Source Program Listing Header Setting

Syntax

.HEADING41<character string>"

Statement Elements

Label

The label field is not used.

Operation

Enter the .HEADING mnemonic in the operation field.

Operands: character string

Enter the header for the source program listing in the operand field.

Description

.HEADING is the assembler directive that sets the header for the source program listing.

A character string of up to 60 characters can be specified as the header.

Reference= Character strings
--o Programmer's Guide. 1.7, "Character Strings"

The .HEADING directive can be used any number of times in a given source program.

The range of validity for a given use of the .HEADING directive is as follows:

When the .HEADING directive is on the first line of a page, it is valid starting with that

When the .HEADING directive appears on the second or later line of a page, it is valid
starting with the next page.

128

•

•

Explanatory Figure for the Coding Example

Source program listing

— Page boundary

.—Seoondline

•,,,I

__Header

"SAMPLE.SRC" WRITTEN BY YAMADA

14•0%/16,WWW411^.M.M .1.101•911.•

•

. HEADING

Coding Example

.41.:2311401 "SAMPLE.SRC"" WRITTEN BY YAMADA"

•••••••••••

•

PAGZ
I

Source Program Listing New Page Insertion

Syntax

. PAGE

Statement Elements

Label

The label field is not used.

Operation

Enter the .PAGE mnemonic in the operation field.

Operands

The operand field is not used.

Description

.PAGE is the assembler directive that inserts a new page in the source program listing at an
arbitrary point.

The PAGE directive is ignored if it is used on the first line of a page.

PAGE directive statements themselves are not output to the source program listing.

•

•

130

•

Explanatory Figure for the Coding Example

Source program listing

18 00000022 6103 18 MOV RO,R1

19 00000024 0008 19 RTS

20 00000026 6203 20 moV RO.R2

SH SERIES ASSEMBLER ver. 1.2 10/10/93 13:23:30

PROGRAM NAME .

22 00000000 22 .SECTICN DT,DATA,ALICN

23 00000000 11111111 23 .0ATA.L H'11111111

24 00000004 22222222 24 .DATA.L H'22222222

25 00000008 33333333 25 .CATA.L H'33333333

Nato: Sas appends C. "Assemble Listing Output Example'. tor an explanation ot the contents of the

source program listing.

New
page

. PAGE

Coding Example

ailm••••

NOV RO.R1
RTS
MOV RO,R2

SIP4
.SECTION DT,DATA.ALIGN4
.DATA.L H'11111111
.DATA.L H'22222222
.DATA.L H'33333333

; A new page is specified here since the

; section changes at this point.

131

•

.SPACE

Source Program Listing Blank Line Output

Syntax

.SPACErti<line count>)

Statement Elements

Label

The label field is not used.

Operation

Enter the .SPACE mnemonic in the operation field.

Operands: line count

Enter the number of blank lines in the operand field.

A single blank line is output if this operand is omitted.

Description

.SPACE is the assembler directive that outputs the specified number of blank lines IO the
source program listing. Nothing is output for the lines output by the .SPACE directive; in
particular line numbers are not output for these lines.

The line count must be specified as follows:

The specification must be an absolute value,
and.
Forward reference symbols must not appear in the specification.

Values from 1 to 50 can be specified as the line count.

When a new page occurs as the result of blank lines output by the .SPACE directive, any
remaining blank lines are not output on the new page.

.SPACE directive statements themselves are not output to the source program listing.

132

•

•

•

Explanatory Figure for the Coding Example

Source program listing

SH SERIES ASSEMBLER Var. 1.2
PROGRAM NAME .

." 10/10/93 IC:23:30

1 00000000 1 .SECTION 071,DATA,ALION-4
2 00000000 11111111 2 .DATA.L 4'1111111:
3 00000004 22222222 3 .0ATA.L 4'22222222
4 00000008 33333333 4 .DATA. . 4'33333333
5 0000000C 44444444 5 !4'44444444

6 00000000 6 .SECTION 072,DATA.ALICN.4

Note: Se* appendix C. lisaatrible Listing OtiptA Example', tor an or:pianism° of the contents of the source
program Wang.

•

. SPACE

Coding Example

SECTION DT1,DATA.ALIGN-4
.DATA.L H'11111111

H'22222222
.DATh.L H'33333333
.DATA.L H'44444444

PEPTC4 5
.SECTION DT2,DATA.ALIGN-4

; Inserts five blank lines at the point
; where the section changes.

133

•

•

4.2.7 Other Assembler Directives

This assembler provides the following additional assembler directives.

.PROGRAM

Sets the name of the object module.

.RADIX I

Sets the radix in which integer constants with no radix specifier are interpreted.

. END

Declares the end of the source program.

•

•

•

.PROGRAM

Object Module Name Setting

Syntax

.PROGRAMA<object module name>

Statement Elements

Label

The label field is not used.

Operauon

Enter the .PROGRAM mnemonic in the operation field.

Operands: <object module name>

Enter a name that identifies the object module in the operand field.

Description

.PROGRAM is the assembler directive that sets the object module name.

The object module name is a name that is required by the H Series Linkage Editor or the

H Series Librarian to identify the object module.

Object module naming conventions are the same as symbol naming conventions.

The assemble/ distinguishes upper-case and lower-case letter in object module names.

References: Coding of symbols
--• Programmer's Guide, 1.3.2. "Coding of Symbols"

Setting the object module name with the .PROGRAM directive is valid only once in a given

program. (The assembler ignores the second and later specifications of the .PROGRAM

directive.)

135

•

•

. PROGRAM

If there is no .PROGRAM specification of the object module name, the assembler will set a
default (implicit) object module name.

The default object module name is the file name of the object file (the object module output
destination).

Example: Object file name

r PRO& r OBJ 1 J • L J
II II

File name File format

Object module name PROG

References: User's Guide, 1.2, "File Specification Format"

The object module name can be the same as a symbol used in the program.

Coding Example

mama! PROM ; This statement sets the object module name to be
; PROG1.

•••••••••

136

•

•

.RADIX

Default Integer Constant Radix Setting

Syntax

.RADIX4<radix specifier>

Statement Elements

I. Label

The label field is not used.

Operation

Enter the _RADIX mnemonic in the operation field.

Operands: radix specifier

Radix Specifier Radix of integer Constants with No Radix Specification

8 Binary

0 Octal

ISW,Sarata Decimal

Hexadecimal

The shaded section indicates the default setting when the specifier is omitted.

This specifier sets the radix (base) for integer constants with no radix specification.

Description

.RADIX is the assembler directive that sets the radix (base) for integer constants with no

radix specification.

When there is no radix specification with the .RADIX directive in a program, integer

constants with no radix specification are interpreted as decimal numbers.

If hexadecimal (radix specifier H) is specified as the radix for integer constants with no radix

specification, integer constants whose first digit is A through F must be prefixed with a 0

(zero). (The assembler interprets expressions that begin with A through F to be symbols.)

137

•

.RADIX

4. Specifications with the RADIX directive are valid from the point of specification forward in
the program.

Coding Example

••••••••

1302=
X: .EQU 100 ; This 100 is decimal.

H
Y : EQU 64 ; This 64 is hexadecimal.

CR= H
Z: .E OF ; A zero is prefixed to this constant or since it would

; be interpreted as a symbol if it were written as simply

••••••...11.

138

.END

Source Program End Declaration

Syntax

.END (41<3tart address>]

Statement Elements

Label

The label field is not used.

Operation

Enter the .END mnemonic in the operation field.

Operands: start address

Enter the start address for simulation in the operand field if required.

Description

I. .END is the assembler directive that declares the end of the source program.

Assembly processing terminates at the point that the .END directive appears.

If a start address is specified with the .END directive in the operand field, the
simulator/debugger starts simulation from that address.

The start address must be specified with either an absolute value or an address value.

The value of the start address must be an address in a code section.

139

•

•

.END

Coding Exampk

. SECI'I ON CD CODE , ALI GN.•4
ST= :

•••••••111.

START ; This statement declares the end of the source
; program.

; The simulator/debugger starts simulation from the address indicated by the value of the
; symbol START.

140

•

. - -

.INCLUDE "FILE.H"

.SECTION CD1,CODE,ALIGN=4
-MOV #0N,R0

14,1111J.
File included result (source list)

.INCLUDE 'FILE .H"
oiri"—..EQU 2.
OFF: .EQU 0

.SECTION CD1,CODE,ALIGN=4
MOV #0N,R0

Example:

Source program

Included file FILE.H

ON: .EQU
OFF: .EQU 0

I.

Section 5 File Inclusion Function

The file inclusion function allows source files to be inserted into other source files at assembly
time. The file inserted into another file is called an included file.

This assembler provides the _INCLUDE directive to perform file inclusion. The file specified
with the _INCLUDE directive is inserted at the location of the .INCLUDE directive.

141

•

. INCLUDZ

File Inclusion

Syntax

.INCLUDEA"<file name>"

Statement Elements

Label

The label field is not used.

Operation

Enter the .INCLUDE mnemonic in the operation field.

Operands

Enter the file to be included.

Description

.INCLUDE is the file inclusion assembler directive.

If no file format is specified, only the file name is used as specified (the assembler does not
asstune any default file format).

Reference: User's Guide. 1.2. "File Specification Format"

The file name can include the directory. The directory can be specified either by the absolute
path (path from the route directory) or by the relative path (path from the current directory).

Note: The current directory for the INCLUDE directive in a source file is the directory where the
assembler is initiated. The current directory for the .INCLUDE directive in an included
file is the directory where the included file exits.

Included files can include other files. The nesting depth for file inclusion is limited to eight
levels (multiplex state).

142

•

•

•

Starts the assembler from the route ri
directory (/)

Inputs source file /dirl/filel.src

Inserts fi1e2.h in filel.src

Inserts fi1e3.h in fi1e2.h

file3.h

/—•
dir2

file2.h

dirl

•

. INCLUDE

Coding Example

This example assumes the following directory configuration and operations:

The start command is as follows:

/asmsh /dirl/filel.src (RET)

filel.src must have the following inclusion directive:

. INCLUDE "dir2/file2.h" ; / is the current directory (relative path specification).

Of
. INCLUDE "/dir2/fi1e2.h" ; Absolute path specification

fi1e2.h must have the following inclusion directive:

.INCLUDE "file3.h" ; kl1r2 is the current directory (relative path
specification).

Of
. INCLUDE "/dir2/file3.h" ; Absolute path specification

CAUTION!

When using MS-DOS. change the slash in the above example to a backslash (\).

143

•

•

•

(This page intentionally left blank.) •

144

Section 6 Conditional Assembly Function

6.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

Selects whether or not to assemble a specified pan of a source program according to the

specified condition.
Iteratively assembles a specified part of a source program.

6.1.1 Preprocessor variables

Picimur..essor variables are used to write assembly conditions. Preprocessor variables are of either

integer or character type.

Integer preprocessor variables

Integer preprocessor variables are defined by the .ASSIGNA directive (these variables can be

redefined).

When referencing integer preprocessor variables, insert a backslash (\) and an ampersand (&)

in front of them.

Example:
somm.manommopmenow....

FLAG . ASSIGNA • 1 _ .

.AIF N&FI.AG EQ 1.
MOV RO, R1

. AENDI

; MOV RO.R1 is assembled
; when FLAG is 1.

Character preprocessor variables

Character preprocessor variables are defined by the .ASSIGNC directive (these variables can

be redefined).

When referencing character preprocessor variables, insert a backslash (\) and an ampersand

(&) in front of than.

Example:

tELL.Aq: 1. .ssTc-plc 2117

.AIF F:r&P7--.AG" EQ "ON" ; MOV RO,R1 is assembled
mov RO , R1 ; when FLAG is "ON".

. AENDI

145

•

.AIF " \ &FLAG" EQ "ON"

MOV RO, R10
MOV R1, R11

MOV R2, R12

;AELSE
MOV R10, RO
MOV R11, R1
MOV R12, R2

: AEND I
.1.1•10

These statements
will be assembled

when FLAG is "ON'.

These statements
will be assembled

when FLAG is not "ON".

Example:

6.1.2 Conditional Assembly

The conditional assembly function determines whether or not to assemble a specified part of a

source program according to the specified condition. A coding example is shown below.

41••••••

.AIF <condition>
<Statements to be assembled when the condition is satisfied>

. AELSE
<Statements to be assembled when the condition is not satisfied>

. AEND I

V
This part can be omitted from the coding.

•

146

•

6.13 Iterated Expansion

A pan of a source program can be iteratively assembled the specified number of times. A coding
example is shown below.

.AREPEAT <count>

<Statements to be iterated>

.AENDR

Example:

;

;

This example is a division of 64-bit data by 32-bit data.

R1:R2 (64 bits) 4- RO (32 bits) = R2 (32 bits): Unsigned

TST

HT

RO, RO

xero_div

; Zero divisor check

CMP /HS

BT

RO , R1

ovez_div

; Overflow check

DIVOU ; Flag initialization

10..AT 32

ROTCL R2 ; These statements are

DIV1 RO , R1 ; iterated 32 times.

RM-711
ROTCL R2 ; R2 quotient

•

147

•

6.1.4 Conditional Iterated Expansion

A part of a source program can be iteratively assembled while the specified condition is satisfied.
A coding example is shown below.

.AWHILE <condition>
<Statements to be iterated>

.AENDW
..••••••

Example:

Tb1Siz: .ASSIGNA 50
MOV A_Tb11,R1
MOV A_Tb12,R2
CLRMAC

QHII VSTb1Size CT
MAC.W @RO+,@R1+

Tb1Siz: .ASSIGNA ViTb1Siz-1

This example is a multiply and accumulate
operation.
TbISiz: Data table size

Start address of data table 1
Start address of data table 2

MAC register initialization
0; While TbISiz is larger than 0,

this statement is iteratively assembled.
1 is subtracted from TbISiz.

EkRII*72
STS MACL, RO ; The result is obtained in RO.

•

•

148

•

AWHILE .ANEILE
.AINDN

.ASSIGNA

. ASSIGNC

.AIF

.AELSE

.AENDI

.AREPEAT
AR

.EXZT24

6.2 Conditional Assembly Directives

This assembler provides the following conditional assembly directives.

•
Defines an integer preprocessor variable. The defined

variable can be redefined.

Defines a character preprocessor variable. The defined

variable can be redefined.

Determines whether or not to assemble a part of a source

program according to the specified condition. When the

condition is satisfied, the statements after the .AIP are

assembled. When not satisfied, the statements after the

.AELSE are assembled.

Repeats assembly of a part of a source program (between

.AREPEAT and .AENDR) the specified number of times.

Assembles a part of a source program (between .AWHILE

and .AENDW) iteratively while the specified condition is satisfied.

Terminates .AREPEAT or .AWHILE iterated expansion.

149

•

ASSIGNA

Integer Preprocessor Variable Definition (redefinition is possible)

Syntax

<preprocessor variable>(:).ASSIGNAti<value>

Statement Elements

Label

Enter the name of the preprocessor variable.

Operation

Enter the .ASSIGNA mnemonic in the operation field.

Operands

Enter the value to be assigned to the preprocessor variable.

Description

.ASSIGNA is the assembler directive that defines a value for an integer preprocessor
variable. The syntax of integer preprocessor variables is the same as that for symbols. The
assembla distinguishes uppercase and lowercase letters.

The preprocessor variables defined with the .ASSIGNA directive can be redefined with the
.ASSIGNA directive.

3. The values for the preprocessor variables must be the following:

Constant (integer constant and character constant)
Defined preprocessor variable
Expression using the above as terms

Defined preprocessor variables are valid from the point of specification forward in the source
program.

Defined preprocessor variables can be referenced in the following locations:

150

•

•

ASSIGNA

.ASSIGNA directive

.ASSIGNC directive

.AIF directive

.AREPEAT directive

.AWHILE directive
Macro body (source statements between .MACRO and .ENDM)

When referencing integer preprocessor variables, insert a backslash (\) and an ampersand (&)
in front of them.

\6<preprocessor variable>P1

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe C) can be added.

151

•

. ASSIGNA

Coding Example

; This example generates a general-purpose multiple-bit
; shift instruction which shifts bits to the right by the
; number of SHIFT.

RN: .REG RO ; RO is set to Rn.
; 2715 set to SHIFT

.AIF grsH GE 16 ; Condition: SHIFT a 16
SHLR16 Rn ; When the condition is satisfied. Rn is shifted to the nght by 16 bits.

SHIFV---'"ASSIGNA_a4SILIFT-16 ; 16 is subtracted from SHIFT
.AENDI

.AIF iSF=T' GE 8 ; Condition: SHIFT? 8
SEEM Rn ; When the condition is satisfied. Rn is shifted to the right by 8 bits.

IGNi"."'"7/1177---7"-8‘SHIFT ; 8 is subtracted from SHIFT.
.AENDI

AIF •&SMIFT GE 4 ; Condition: SHIFT? 4
SHL22 Frn ; When the condition is satisfied. Rn is shifted to the right by 4 bits.
SHLR2 Rn

halFT:771ASSIGNA nISHIFT-42 ; 4 is subtracted from SHIFT
AENDI

.AIF . &SEr-C.Ttrt GE 2 ; Condition: SHIFT a 2
SHLR2 Rn When the condition is satisfied. Rn is shifted to the right try 2 bits.

IsSIGt -AiSHITT.-72.41 ; 2 is subtracted from SHIFT.
AENDI

AIF ASMILT; EQ 1 ; Condition: SHIFT 1
SHLR Rn ; When the condition is satisfied. Rn is shifted to the right by 1 bit.
.AENDI

The expanded results are as follows:
SHLR16 R1 ; When the condition is satisfied, Rn is shifted to the right by 16 bits.
S1LR8 R1 ; When the condition is satisfied, Rn is shifted to the nght by 8 bits.
SHLR2 R1 ; When the condition is satisfied. Rn is shifted to the right by 2 bits.
SHLR1 R1 ; When the condition is satisfied. Fin is shifted to the right by 1 bit.

152

•

•

•

.ASSIGNC

Character Preprocessor Variable Definition (redefinition is possible)

Syntax

<preprocessor variable>kLASSIGNCA"<character string>"

Statement Elements

Label

Enter the name of the preprocessor variable.

Operation

Enter the .ASSIGNC mnemonic in the operation field.

Operands

Enter the character swing enclosed with double-quotation marks (").

Description

.ASSIGNC is the assembler directive that defines a character string for an character

preprocessor variable. The syntax of character preprocessor variables is the same as that for

symbols. The assembler distinguishes uppercase and lowercase letters.

The preprocessor variables defined with the ASSIGNC directive can be redefined with the

.ASSIGNC directive.

Character strings are specified by characters or preprocessor variables enclosed by double

quotation marks (').

Defined preprocessor variables are valid from the point of specification forward in the source

program.

Defined preprocessor variables can be referenced in the following locations:

.ASSIGNA directive

.ASSIGNC directive

.AIF directive

153

•

ASSIGNC

.AREPEAT directive

.AWHILE directive
Macro body (source statements between .MACRO and .ENDM)

When referencing character preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.

\&<preproceddor variable>p]

To clearly distinguish the preprocessor variable name from the rest of the source statement.
an apostrophe 0 can be added.

Coding Example

kTAGeSSIGNO-"'“ON1 ; "ON' is set to FLAG.

.AIF &ICT-7—AGw• EQ "ON" ; MOV RO,R1 is assembled
NOV RO,R1 ; when FLAG is 'ON".
.AENDI
••=••••••

t7A4ANWA,SSIGNOttr.WpAG_I : A space C") is added to FLAG.
lemr.."ASSIGNC17,Ofcia • *OW is added to FLAGA.

_ wvirLAG.AND-kinaw

; An apostrophe (') is used to distinguish FLAG and AND.
; FLAG finally becomes "ON AND OFF".

.0.••••••

154

•

•

.Air .AELSE .AENDI

Conditional Assembly

Syntax

.AIni<terml>a<relational operator>A<term2>

<Source statements assembled if the condition is satisfied>

[AELSE

<Source statements assembled if the condition is not satisfied>

.AENDI

Statement Elements

I. Label

The label field is not used.

Operation

Enter the .AIF, .AELSE (can be omitted), or AENDI mnemonic in the operation field.

Operands

.AIF: Enter the condition. Refer to the description below.

.AELSE: The operand field is not used.

.AENDI: The operand field is not used.

Description

.AIF..AELSE and .AENDI are the assembler directives that select whether or not to
assemble source statements according to the condition specified. The .AELSE directive can
be omitted.

The condition must be specified as follows:

.AInt<terml>a<relational operator>A<term2>

155

•

.Alt .A1CLSE . AEND I

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks ("). To specify a double quotation mark in a character string, enter two
double quotation marks (" ") in succession.

3. The following relational operators can be used:

EQ: term 1 = term2
NE: term 1 * terrn2
GT: terml > terrn2
LT: tenni < telm2
GE: terml term2
LE: temi 1 5 term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

alim••••/•

W"\iFLAG" EQ "OW
MOV RO.R10
MOV R1.1211
MOV R2.R12

EXE.r,SA
MOV R1O.R0
MOV R11.R1
MOV R12.R2

.AE"--77,1D

These statements
are assembled
when FLAG is "ON".

These statements
are assembled
when FLAG is not 'ON".

156

•

AREPEAT . AENDR

Iterated Expansion

Syntax

.AREPEAT <count>

<Source statements iteratively assembled>

.AENDR

Statement Elements

Label

The label field is not used.

Operation

Enter the .AREPEAT or AENDR mnemonic in the operation field.

Operands

.AREPEAT: Enter the number of iterations.

.AENDR: The operand field is not used.

Description

I. .AREPEAT and .AENDR are the assembler directives that assemble source statements by
iterative expansion the specified number of times.

The source statements between the .AREPEAT and .AENDR directives are iterated the
number of times specified with the .AREPEAT directive. Note that the source statements are
simply copied the specified number of times, and therefore, the operation does not loop at
program execution.

Counts are specified by constants or preprocessor variables.

Nothing is expanded if a value of 0 or smaller is specified.

157

ARZPEAT I .AENDR

Coding Example

; This example is a division of 64-bit data by 32-bit data.
; Rl:R2 (64 bits)* RO (32 bits) .. R2 (32 bits): Unsigned

TST RO,R0 ; Zero divisor check
ST zero_div
Ct4P/HS RO , R1 : Overflow check
BT over div
DIVOII : Flag initialization

.".71..ILT. 32
ROTCL R2

:.
These statements are

DIV1 RO, R1 iterated 32 times.
M27"..miply.
ROT R2 ; R2 . quotient

•

•

158

•

. AWHILE .AENDW

Conditional Iterated Expansion

Syntax

.AWHILEA<terml>A<relational operator>A<term2>

<Source statements iteratively assembled>

.AENDW

Statement Elements

Label

The label field is not used.

Operation

Enter the .AWHILE or AENDW mnemonic in the operation field.

Operands

.AWHILE: Enter the condition to iteratively expand source statements.

.AENDW: The operand field is not used.

Description

.AWHILE and .AENDW are the assembler directives that assemble source statements by

iterative expansion while the specified condition is satisfied.

The source statements between the AWHILE and .AENDW directives are iterated while the

condition specified with the .AWHILE directive is satisfied. Note that the source statements

are simply copied iteratively, and therefore, the operation does not loop at program execution.

The condition must be specified as follows:

.AWHILEa<terml>a<relational operator>6<term2>

Terms are specified with numeric values or character strings. However, when a numeric

value and a character string are compared. the condition always fails.

159

S

. ASCII.LE .AENDW

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters cr preprocessor variables enclosed by double
quotation marks ("). To specify a double quotation mark in a character string, enter two
double quotation marks (" ") in succession.

Conditional iterated expansion terminates when the condition finally fails. An infinite loop
occurs if a condition which never fails is specified. Accordingly, the condition for this
directive must be carefully specified.

4. The following relational operators can be used:

EQ: term! = term2
NE: term! * term2
GT: terml > tenn2
L'n tenni < term2
GE: term 1 a term2
LE: terml term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

This example is a multiply and accumulate
operation.

TbISiz : .ASSIGNA 50 1b1Siz: Data table size
NOV A Tb11, RI : RI: Stan address of data table 1
taov A Tb12 • R2 R2: Stan address of data table 2
CLRIaC MAC register initialization

iiz \ ATbISize CT 0 While IbISiz is larger than 0.
144C. W €R0+ , @RI+ : this statement is iteratively assembled.

IbISiz : .ASSIGNA \ 671)1Siz -1 : 1 is subtracted from TbISiz.

STS MACL. RO : The result is obtained in RD.

160 •

. EXITM

Expansion Termination

Syntax

.EXITM

Statement Elements

Label

The label field is not used.

Operation

Enter the .EXITM mnemonic in the operation field.

Operands

The operand field is not used.

Description

.EXITM is the assembler directive that terminates an iterated expansion (.AREPEAT to

.AENDR) or a conditional iterated expansion (.AWHILE to .AENDW).

Either expansion is terminated when this directive appears.

This directive is also used to exit from macro expansions. The location of this directive must

be specified carefully when macro instructions and iterated expansion are combined.

Reference: Macro expansion
--+ Programmer's Guide, 7.2, "Macm Function Directives"

161

io

Coding Example

••••••••

=INT .ASSIGNA 0
.AWHILE 1 EQ 1

ADD RoJa
ADD R2,143

; 0 is set to COUNT.
; An infinite loop (condition is always satisfied) is
; specified.

coUNT .ASSIGM \&C.OUNT+1 ; 1 is added to COUNT.
.AIF \ &COUNT EQ 2 ; Condition: COUNT 2
MT": itit
.AENDI
.AENI7W

el•••••/1•

When COUNT is updated and satisfies the condition specified with the .AIF directive, .EXITM is
assembled. When .EXITM is assembled. .AWHILE expansion is terminated.

The expansion results are as follows:

ADD RO,R1 ; When COUNT is 0
ADD R2,R3
ADD RO.R1 ; When COUNT is 1
ADD R.2.1/3

After this, COUNT becomes 2 and expansion is terminated.

•

•

162

•

•

•

Section 7 Macro Function

7.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as

one macro instruction. This is called a macro definition. Macro instructions are defined as

follows:

I•••••

.MACRO <macro name>
<macro body>

.ENDM
•••••

A macro name is the name assigned to a macro instruction, and a macro body is the statements to

be executed as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro

instructions are called as follows:

••••••

<defined macro name>

An example of macro definition and macro call is shown below.

Example:

d••••

o.MACRO, SUM
mov RO, R10
ADD R1,R10
ADD R2,R10
ADD R3,R10

LEILDLI

gramme,
PIM

; Processing to obtain the sum of RO. R1. R2.
; and R3 is defined as macro instruction SUM.

; This statement calls macro instruction SUM.
; Macro body MOV RO,R10

ADD R1,R10
ADD R2,R10

• ADD R3,R10
; is expanded from the macro instruction.

163

•

•

Parts of the macro body can be replaced when expanded by the following procedure:

1. Macro defmition

Declare formal parameters in the .MACRO directive.

Use the formal parameters in the macro body. Formal parameters must be identified in the
macro body by placing a_kslash (N) in front of them.

2. Macro call

Specify macro parameters in the macro call.

When the macro instruction is expanded, the formal parameters are replaced with their
corresponding macro parameters.

Example:

iat-TECRO..;;SUM ARGL

MOV RO, 41. tGt
ADD R1, p.#LGO.
ADD
ADD R3, kARG4

; Formal parameter ARG1 is defined.
; ARG1 is referenced in the macro body.

ammo.

LSUM-.R10:1 This statement calls macro instruction SUM
specifying macro parameter R10.

The formal parameter in the macro body is
replaced with the macro parameter, and

MOV RO,R10
ADD R1,R10
ADD R2,R10
ADD R3,R10 is expanded.

164

•

•

7.2 Macro Function Directives

This assembler provides the following macro function directives.

.MACRO

Defmes a macro instruction.

Terminates macro instruction expansion.

..

. EXIDM

. Eland

•

.MACRO . ENDM

Macro Definition

Syntax

.MACROA<macro name>[ti<formal parameter>[=<default>]
[,<formal parameter>...]]

Statement Elements

Label

The label field is not used.

Operation

Enter the .MACRO or .ENDM mnemonic in the operation field.

Operands

.MACRO: Enter the name and formal parameters for the macro instruction to be defined.
When formal parameters are defined, their defaults can be defined (defaults can
be omitted).

.ENDM: The operand filed is not used.

Description

.MACRO and .ENDM are the assembler directives that define a macro instruction (a
sequence of source statements that are collectively named and handled together).

Macro definition

Naming as a macro instruction the source statements (macro body) between .MACRO and
.ENDM directives is called a macro definition.

Macro name

Macro names are the names assigned to macro instructions.

Formal parameters

Formal parameters are specified so that pans of the macro body can be replaced by specific

166

.MACRO .ENDM

parameters at expansion time. Formal parameters are replaced with the character strings
(macro parameters) specified at macro expansion (macro call).

Formal parameter syntax

The syntax for formal parameters is the same as that for symbols. The assembler
distinguishes uppercase and lowercase letters.

Formal parameter reference

Formal parameters are used (referenced) at the part to be replaced in the the macro body.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>[1]

To clearly distinguish the preprocessor variable name from the rest of the source
statement, an apostrophe 0 can be added.

3. Formal parameter defaults

Defaults for formal parameters can be specified in macro definitions. The default specifies the
character string to replace the formal parameter when the corresponding macro parameter is
omitted in a macro call.

The default must be enclosed by double quotation marks C') or angle brackets (<>) if any of
the following characters are included in the default.

Space
Tab
Comma (,)
Semicolon (;)
Double quotation marks C)
Angle brackets (<>)

The assembler inserts defaults at macro expansion by removing the double quotation marks or
angle brackets that enclose the character strings.

167

•

PEW SUM
PV RO,R10
ADD R1,R10
ADD R2,R10
ADD R3,R10

; Processing to obtain the sum of RO, R1, R2.
: and R3 is defined as macro instruction SUM.

40.111•11,

; This statement calls macro instruction SUM

; Macro body MOV RO.R10
ADD R1,R10
ADD R2.R10
ADD R3.R10 is expanded.

.MAO .END14

6. Restrictions on macro definitions

a. Macros cannot be defined in the following locations:

Macro bodies (between .MACRO and .ENDM directives)
Between -AREPEAT and .AENDR directives
Between AWHILE and .AF-NDW directives

b. The .ENDM directive cannot be used within a macro body.

No symbol can be inserted in the label field of the .ENDM directive. The .ENDM
directive is ignored if its label field is not blank, but no error is generated in this case.

Coding Example

168

•

. EXITM

Expansion Termination

Syntax

EXITM

Statement Elements

Label

The label field is not used.

Operation

Enter the .EXTTM mnemonic in the operation field.

Operands

The operand field is not used.

Description

.EXITM is the assembler directive that terminates a macro expansion. This directive can be

specified within the macro body (between .MACRO and .ENDM directives).

Expansion is terminated when this directive appears.

This directive is also used to exit from iterated expansions specified with the .AREPEAT or

.AWHILE directive. The location of this directive must be specified carefully when macro

instructions and iterated expansion are combined.

•

. EXITH

Coding Example

. MACRO SUM P1
MOV RO, R10
ADD R1,1110
ADD R2,R10 1

En

ADD R3, R10
. ENDM

INNII.M•

SUM CEKITM '

.EXITM is expanded at (2) and macro expansion is terminated. Only the statements indicated by
(1) are expanded.

•

•

170

•

•

7.3 Macro Body

The source statements between the .MACRO and .ENDM directives are called a macro body. The
macro body is expanded and assembled by a macro call.

Formal parameter reference

Formal parameters are used to specify the parts to be replaced with macro parameters at macro
expansion.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>P]

To clearly distinguish the formal parameter name from the rest of the source statement, add an
apostrophe 0.

Coding example:

.MACRO PLUS1 P,P1 ; P and PI are formal parameters.
ADD #1, \P1 ; Formal parameter PI is referenced.
. SDATA " \ P ' 1" ; Formal parameter P is referenced.
. ENDM

PLUS1 R, R1 ; PLUS1 is expanded.

Expanded results are as follows:

ADD 111,R1 ; Formal parameter PI is referenced.
.SDATA "R1" ; Formal parameter P is referenced.

Preprocessor variable reference

Preprocessor variables can be referenced in macro bodies.

The syntax for preprocessor variable reference is as follows:

\6<preprocessor variable name>(]

To clearly distinguish the formal parameter name from the rest of the source statement. add an
apostrophe O.

171

•

Coding example:

.MACRO P LUS 1
ADD #1, R= ; Preprocessor variable V1 is referenced.
.SDATA “Ay 1^ ; Preprocessor variable V is referenced.
.ENDM

V . ASSIGNC "R" ; Preprocessor variable V is defined.
Vi . ASS IGNA 1 ; Preprocessor variable VI is defined.

PLUS1 ; PLUS1 is expanded.

Expanded results are as follows:

ADD #1,R1 ; Preprocessor variable 1/1 is referenced.
.SDATA "Rl" ; Preprocessor variable V is referenced.

3. Macro generation number

The macro generation number facility is used to avoid the problem that symbols used within a
macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a macro.
This will result in symbols that are unique to each macro call.

The macro generation number marker is expanded as a 5 digit decimal number (between
00000 and 99999) unique to the macro expansion.

The syntax for specifying the macro generation number marker is as follows:

'€
Two or more macro generation number markers can be written in a macro body, and they will
be expanded to the same number in one macro call.

CAUTION!

Because macro generation number markers are expanded to numbers, they must not be written at
the beginning of symbol names.

Reference: Programmer's Guide, 1.3.2. "Coding of Symbols"

•

•

172

.MACRO RES_STR STR, Rn
MOV.L 8n.1711\Rn
BRA prier's tin:
NO?
.SDATA "\STR"
.ALIGN 2

ca:471:11:1

' 71G- k0
.ENDM

RES_BTR "ONE",R0

RES_STR "TWO",R1

Expanded results are as follows:

MOV.L istr00000,R0

BRA end str00000
NO?

str00000 .SDATA "ONE"
.ALIGN 2

MOV.L #5tr00001,R1
BRA end_str00001
NO?

str00001 .SDATA "TWO"
.ALIGN 2

Different symbols are generated each time
RES_STR is expanded.

Coding example:

4. Macro replacement processing exclusion

When a backslash 6) appears in a macro body, it specifies macro replacement processing.

Therefore a means for excluding this macro processing is required when it is necessary to use

the backslash as an ASCU character.

The syntax for macro replacement processing exclusion is as follows:

\(<macro replacement processing excluded character string>)

The backslash and the parentheses will be removed in macro processing.

173

•

•

Coding example:

.MACRO BACK_SLASH_SET

rtZ401-t="1,--10.: ;
. ENDM

1 is expanded as an ASCII character.

Expanded results are as follows:

MOv ; \ is expanded as an ASCII character.

Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal comments.
When comments in the macro body are not required in the macro expansion code (to avoid
repeating the same comment in the listing file), those comments can be coded as macro
internal comments to suppress their expansion.

The syntax for macro internal comments is as follows:

\;<comment>

Coding example:

.MACRO PUSH Rn
MOV.L \Rn,e-R15
.ENDM
PUSH RO

kRn is a register.
•

Expanded results are as follows (the comment is not expanded):

MOV.L RO,@ -R15

Character string manipulation functions

Character string manipulation functions can be used in the body of a macro. The following
character string manipulation functions are provided.

.LEN Character string length.
INSTR Character string search.
.SUBSTR Character string substring.

References:
.LEN -* Programmer's Guide. 7.5, "Character String Manipulation Functions", .LEN
INSTR -4 Programmer's Guide, 7.5. "Character String Manipulation Functions", .1NSTR
.SUBSTR -4 Programmer's Guide, 7.5. "Character String Manipulation Functions", .SUBSTR

174

•

•

•

7.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Syntax

[<symbol>] <macro name>[<macro parameter>
(,<macro parameter> ...]]

Statement Elements

Label

Enter a reference symbol in the label field if required.

Operation

Enter the macro name to be expanded in the operation field. The macro name must have been
already defined before a macro call.

3. Operands

Enter character strings as macro parameters to replace formal parameters at macro expansion.
The formal parameters must have been declared in the macro definition with .MACRO.

Description

1. Macro parameter specification

Macro parameters can be specified by either positional specification or keyword specification.

Positional specification

The macro parameters are specified in the same order as that of the formal parameters
declared in the macro definition.

Keyword specification

Each macro parameter is specified following its corresponding formal parameter, separated
by an equal sign (=).

175

•

2. Macro parameter syntax

Macro parameters must be enclosed by double quotation marks (") or angle brackets (<>) if

any of the following characters are included in the macro parameters:

Space
Tab
Comma(.)
Semicolon (;)
Double quotation marks (")
Angle brackets (c>) .

Macro parameters are inserted by removing the double quotation marks or angle brackets that

enclose character strings at macro expansion.

Coding Example

.MACRO SUM FROM..0, To-9 Macro instruction SUM and formal
parameters FROM and TO are defined.

MOV R\FROM,R10
COUNT .ASSIGNA \FROM+1

.AWHILE \&COUNT LE \TO
MOV R\iCOUNT,R10

COUNT .ASSIGNA \tCOUNT+1
.AENDW
.ENDM

Macro body is coded
using formal parameters.

SUM 0, 5 Both will be expanded

SUM TO-5 into the same statements.

Expanded results are as follows (the formal parameters in the macro body are replaced with

macro parameters):

MOV RO, R1 0
MOV R1, R1 0

MOV R2, R10
MOV R3, R1 0
MOV R4, R1 0
MOV R5, R1 0

176

7.5 Character String Manipulation Functions

This assembler provides the following character string manipulation functions.

.LEN

Counts the length of a character string.

Searches for a character string.

Extracts a character string.

. INETR

. SUBSTR

177

•

.LEN

Character String Length Count

Syntax

.LEN[A]("<character string>")

Description

LEN counts the number of characters in a character string and replaces itself with the number
of characters in decimal with no radix.

Character strings are specified by enclosing the desired characters in double quotation marks
("). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

Macro formal parameters and preprocessor variables can be specified in the character string as
shown below.

.LEN("\<formal parameter>")

.LEN("\&<preprocessor variable>")

This function can only be used within a macro body (between .MACRO and .ENDM
directives).

178

•

.LEN

Coding Example:

/Raft/

-MACRO RESERVE_LENGTH P1

.ALIGN 4
SRES "t11227t71711

.ENDM

•••••••

RESERVE_LENGTH ABCDEF

RESERVE_LENGTH ABC

Expanded results are as follows:

.ALIGN 4
SFLES 6

.ALIGN 4

. SRES 3

; "ABCDEF" has six characters.

; 'ABC has three characters.

.311STR

Character String Search

Syntax

.INSTRW("<character string l>","<character string 2>"
(,<start position>))

Description

.INSTR searches character string 1 for character suing 2. and replaces itself with the
numerical value of the position of the found string (with 0 indicating the start of the string) in
decimal with no radix. .INSTR is replaced with —1 if character string 2 does not appear in
character suing I.

Character strings are specified by enclosing the desired characters in double quotation marks
("). To specify a double quotation mark in a character suing, enter two double quotation
marks in succession.

The <start position> parameter specifies the search start position as a numerical value, with 0
indicating the start of the suing. Zero is used as default when this parameter is omitted.

Macro formal parameters and preprocessor variables can be specified in the character strings
and as the start position as shown below.

.INSTR("\<formal parameter>", ...)

.INSTR("\&<preprocessor variable>", ...)

This function can only be used within a macro body (between .MACRO and .ENDM
directives).

180

•

•

•

. INS TR

Coding Example:

••••••••

.MACRO FIND_STR P1

.DATA.W .INSTR("ABCDEFG","\P1",0) .

.ENDM
••••••••

F IND_S TR CD E
F IND_S TR H

Expanded results are as follows:

.DATA.W 2 ; The start position of "CDE" is 2 (0 indicating the

beginning of the string) in "ABCDEFG*

.DATA.W .•-1 ; *ABCDEFG" includes no "1-1".

•

SUBSTR

Character Substring Extraction

Syntax

.SUBSTRW("<character string>",<start position>
,<extraction length>)

Description

.SUBSTR extracts from the specified character string a substring starting at the specified start
position of the specified length. .SUBSTR ts replaced with the extracted character string
enclosed by double quotation marks (").

Character strings are specified by enclosing the desired characters in double quotation marks
("). To specify a double quotation mark in a character string, enter 2 double quotation marks
in succession.

The value of the extraction start position must be 0 or greater. The value of the extraction
length must be 1 or greater.

If illegal or inappropriate values are specified for the <start position> or <extraction length>
parameters, this function is replaced with a blank space (" ").

Macro formal parameters and preprocessor variables can be specified in the character strin
and as the start position and extraction length parameters as shown below.

.SUBSTR("\<formal parameter>", ...)

.SUBSTR("\&<preprocessor variable>", ...)

This function can only be used within a macro body (between .MACRO and .ENDM
directives).

182

•

•

.SUESTR

Coding Example:

.MACRO RESERVE_STR P1-0 P2
.SDATA .SUBSTR("ABCDEFG",\P1,\P2)

.ENDM

FtESERVE_STR 2 , 2
RESERVE_STR , 3 ; Macro parameter P1 is omitted.

Expanded results are as follows:

SDATA "CD"

SDATA "ABC"

•

(This page intentionally left blank.)

•

•

184

•

•

Section 8 Automatic Literal Pool Generation Function

8.1 Overview of Automatic Literal Pool Generation

To move 2-byte or 4-byte constant data (referred to below as a "literal") to a register. a literal pool

(a collection of literals) must be reserved and referred to in PC relative addressing mode. For

literal pool location, the following must be considered:

Is data stored within the range that can be accessed by data move instructions?

Is 2-byte data aligned to a 2-byte boundary and is 4-byte data aligned to a 4-byte boundary?

Can data be shared by several data move instructions?

Where should the literal pool be located in the program?

The assembler automatically generates from a single instruction a .DATA directive and a PC

relative MOV or MOVA instruction, which moves constant data to a register.

For example, this function enables program (a) below to be coded as (b):

MOV.L DATA1,R0

MOV.L DATA2,R1 •

.4.0•••••o

.ALIGN 4

DATA]. .DATA.L H'12345678

DATA2 .DATA.L 50000

MOV.L 01'12345678,RO

MOV.L #500000,R1

185

8.2 Extended Instructions Related to Automatic Literal Pool Generation

The assembler automatically generates a literal pool corresponding to an extended instruction

(MOV.W #imm, Rn: MOV.L #imm, Rn: or MOVA #imm, RO) and calculates the PC relative

displacement value.

An extended instruction source statement is expanded to an executable instruction and literal data

as shown in table 8-1.

Table 8-1 Extended Instructions and Expanded Results

Extended Instruction Expanded Result

MOV.W #imm. Rn MOV.W @(disp. PC), Rn and 2-byte literal data

MOVE. #imm, Rn MOV.L @(disp, PC), Rn and 4-byte literal data

MOVA #imm, RO MOVA @(disp, PC), RO and 4-byte literal data

8.3 Literal Pool Output

The literal pool is output to one of the following locations:

After an unconditional branch (after the delay slot instruction following BRA, JMP, RTS, or

RTE)
Where a .POOL directive has been specified by the programmer

The assembler outputs the literal corresponding to an extended instruction to the nearest output

location following the extended instruction. The assembler gathers the literals to be output as a

literal pool.

CAUTION!

When a label is specified in a delay slot instruction, no literal pool will be output to the location

following the delay slot.

186

•

SEZTI ON CD1, CODE, LOCATEmH 0000F000

CD1_START:
NOV. L FFFF0000, RO

HOY'. W 1H FFOO R1
NOV. L tan_START, R2

NOV 1FF, R3

NOV RO, R10

. END

Source program
-r

Automatic literal pool generation result (source list)

* t * END-POOL
. END

1-.-4vgt:-•*1-,rt::: -v - -:• :1:: ".•••_"7."':. 7.- -,. • I' 7.. ,.....-

ftwommiallidai•PII:Aird;e4adfighiirg:11P1-4".........••, . :at --. •

15 9

1 0000F000
2 0000F000

1
2

.SECTION

CD l_START
CD1, CODE, LOCATE-H ' 0000F000

3 0000F000 5004 3 MOV . L it H ' FFFF0000, RO

4 0000F002 1103 4 MOV . W 4ili ' FF00, R1

5 0000F004 5205 5 MCA, . L It CD1_START , R2

6 0000F006 6300 6 NOV tiFF , R3

7 0000F008 000B 7 RTS

8 0000FOOA 603 8 NOV RO , R10

It 000FOOE"606Cr.7.- -..7!.;':-.-'4. -fitii.7..I.IGNMENI"CODE

tii,6Cioro14 •0000F000 DATA FOR SOURCE-LINE 5

.,. ,r - .•........fo—alr,.7...7.".....•
127000,7010 .7FFF00.00':.....l.e.;;:;:•:_-10ATA FOR SOURCE-LINE 3

00
__:_:._ .._...........;..

9P/F9.5.,.FF:u0 • _ _Ir. 7...; Ty...1, it.LDATA FOR SOUR-LINE 4

•

•

83.1 Literal Pool Output after Unconditional Branch (BRA. JMP, RTS. RTE)

An example of literal pool output is shown below.

187

•

• 8.3.2 Literal Pool Output to the -POOL Location

If literal pool output location after unconditional branches is not available within the valid
displacement range (because the program has a small number of unconditional branches), the
assembler outputs error message 402. In this case, a .POOL directive must be specified within the
valid displacement range.

The valid displacement range is as follows:

W• ord-size operation: 0 to 511 bytes
Long word-size operation: 0 to 1023 bytes

When a literal pool is output to a .POOL location, a branch instruction is also inserted to jump
over the literal pool.

An example of literal pool output is shown below.

Source program

.SECTION CD1,CODE,LOCATE-H'0000F000
CD1_START

MOV.L iH'FFFF0000,R0
MOV.W tH'FFOO,R1
MOV.L ICD1_START,R2
NOV IFF.R3
.P6OL
.END

.1.
Automatic literal pool generation result (source list)

1 0000F000 1 .SECT/ON CD1,CODE.LOCATE-H'0000F000
2 0000F000 2 CD1_START:
3 0000F000 5012 3 MEN.L eit'FFFF0000.110
4 0000F002 110E 4 MOV.W OPFFOO,R1
5 0000F004 5216 5 MEN.L #CD1_START.R2
6 0000F006 6300 6 MEN 41H'FF.R3
7 0000F008 7 .POOL

**** BEGIN-POOL ****
9 0000F008 A006 ERA TO END-POOL

10 0000F00A 0009 NOP
11-0000FOOC FFOO DATA FOR SOURCE-LINE 4
A2 0000F00E 0000 ALIGNMENT CODE
A3 0000F010 FFFF0000 DATA FOR SOURCE-LINE 3
14 0000F014 0000F000 DATA FOR SOURCE-LIME 5
15 **** END-POOL ****
16 8 .END

188

•

•

•

8.4 Literal Sharing

When the literals for several extended instructions are gathered into a literal pool. the assembler
makes the extended instructions share identical immediate data.

The following operand forms can be identified and shared:

Symbol
Constant
Symbol ± constant

In addition to the above, expressions that are determined to have the same value at assembly
processing may be shared.

However, extended instructions having different operation sizes do not share literal data even
when they have the same immediate data.

An example of literal data sharing among extended instructions is shown below.

Source program

.SECTION CD1,CODE,LOCATE-H'0000F000.

CD1_START:

li'FFFF0000,R0
MOV.W

#H'FFFF0000,R2
MOV #14'FF,R3
RTS
MOV RO,R10

.END

Automatic literal pool generation result (Source list)

1 0000F000 1 .SECTION CCI.CODE.LOCATE=H'0000F000

2 0000F000 2 CD1_START:

3 0000F000 5004 3 MOV.L stiPFFFF0000,R0

4 0000F002 1103 4 MOV.W OWFF00,R1

5 0000F004 5204 5 MOV.L *H'FFET0000,R2

6 0000F006 6300 6 MOV 4H'FF,R3

7 0000F008 000B 7 RTS

8 0000FOOA 6A03 8 MOV RO,R1C

9 **** BEGIN—POOL ****

10 0000FOOC FFOO DATA FOR SOURCE—LINE 4

.
11 0000FOOE 0000 ALIGNMENT CODE

12 0000F010 FFFF0000 DATA FOR SOURCE—LINE 3,5

13 **" END—POOL •***

14 9 .END

189

<delayed branch instruction>
<delay slot instruction>
.NOPOOL

.01•••••

Example

Source program

••••••••

CASE1:
MOV.L WFFFF0000,R0
RTS
NOP

—.NOPOOL
C.A.SE2•

Extended instruction 1

No literal pool is output here

MOV.L Atil'FFFF0000,R° --L---- Exmndedirumwaion2
RTS
NOP

--r ---- Literal pool is output here

1
Automatic literal pool generation result (source list)

••••••••••

20 0000F000 20 CASE1:
21 0000F000 5001 21 MOV.L WFFET0000,R0
22 0000F002 000B 22 R'S
23 0000F004 0009 23 NOP
24 24 .NOPOOL
25 0000F006 25 CASE2.

MOV.L OWFFFF0000,R0 26 0000F006 5001 26
27 0000F008 000B 27 RTS
28 0000FOOA 0009 28 NOP
29 **** BEGIN-POOL ****

_30 0000FOOB 0000 __ ._... _. ALIGNMENT CODE
.31 0000FOOC FFFF0000 DATA FOR SOURCE-LINE 21,26
32 **** END-POOL •••••

•••••••••

8.5 Literal Pool Output Suppression •
When a program has too many unconditional branches, the following problems may occur:

Many small literal pools are output
Literals are not shared

In these cases, suppress literal pool output as shown below.

190

•

• 8.6 Notes on Automatic Literal Pool Output

1. If an error occurs when an extended instruction is written

Extended instructions must not be specified in delay slots (error 151).

Extended instructions must not be specified in relative sections having a boundary

alignment value of less than 2 (error 152).
MOV.L #imm, Rn or MOVA #imm, RO must not be specified in relative sections having a

boundary alignment value of less than 4 (error 152).

If an error occurs when a .POOL directive is written

.POOL directives must not be written after unconditional branches (error 522).

3. If an error occurs when a NOPOOL directive is written

NOPOOL directives are valid only when written after delay slot instructions. If written at

other locations, the NOPOOL directive causes error 521.

If the displacement of an executable instruction exceeds the valid range when an extended

instruction is expanded

The assembler generates a literal pool and outputs error message 402 for the instruction having

a displacement outside the valid range.

Solution: Move the literal pool output location by the .NOPOOL directive, or change the

location or addressing mode of the instruction causing the error.

If the literal pool output location cannot be found

If the assembler cannot find a literal pool output location satisfying the following conditions in

respect to the extended instruction,

Same file
Same section
Forward direction

the assembler outputs, at the end of the section which includes the extended instruction, the

literal pool and a BRA instruction with a NOP instruction in the delay slot to jump around the

literal pool. and outputs warning message 876.

6. If the displacement from the extended instruction exceeds the valid range

If the displacement of the literal pool from the extended instruction exceeds the valid range,

error 402 is generated.

Solution: Output the literal pool within the valid range using the .POOL directive.

191

(This page intentionally left blank.)

•

•

•
192

User's Guide

S

•

(This page intentionally left blank.)

•

•

•

• Section 1 Executing the Assembler

1.1 Command Line Format

To start the assembler, enter a command line with the following format when the host computer

operating system is in the input wait state.

> figa a
(1)

:41s7--n?irortt-v- $'4em (,<input source <command line options> ...,

(3)

Assembler start command.
Name of input source tile. Multiple source files can be specified at the same time.

Command line options, which specify the assembly method in more detail.

CAUTION!

When multiple source files are specified on the command line, the unit of assembly processing

will be the concatenation of the specified files in the specified order.

In this case. the .END directive must appear only in the last file.

Supplement:

The assembler returns the operating system a return code that reports whether or not the assembly

processing terminated normally. The return value indicates the level of the errors occurred as

follows.

Normal termination 0

Warnings occurred 0

Errors occurred MS-DOS: 2
UNIX: 1

Fatal error occurred MS-DOS: 4
UNIX: 1

195

1.2 File Specification Format

Files handled by the assembler are specified in the following format.

<file name>.[<file format>)

The term "file name" as used in this manual normally refers to both the file name and the file
format.

Example:

(File name)
file. src A file with the file name file and the file format src.
prog.obj A file with the file name prog and the file format obj.

The file format is used as an identifier to distinguish the contents of the file. Thus two files with
differing formats are different files even if the file name is the same.

Example:

file.sre
file.obj These file names specify different files.

The assembler handles the following types of file.

Source file
This is a source program file. If a source program file is specified without the file format, the
file format arc will be supplied.

Object file
This is an output destination file for object modules. If an object file is specified without the
file format, the file format obj will be supplied. If an object file is not specified to the
assembler, a file with the same name as the source file (the first specified source file) and with
the file format obj will be used.

Listing file
This is an output destination file for assemble listings. If a listing file is specified without the
file format, the extension lis will be supplied. If a listing file is not specified to the assembler,
a file with the same name as the source file (the rust specified source file) and with the file
format us will be used.

Note: The PC system treats names, command lines, and subcommand lines as capital letters.

196

•

Section 2 Command Line Options

2.1 Overview of Command Line Options

Command line options are detailed specifications of the assembly processing. Table 2-1 shows an
overview of the command line options.

Table 2-1 Command Line Options

Type Command Line Option Function

Object module OBJECT Control output of an object module.
specifications NOOBJECT

DEBUG Control output of debug information.
NODEBUG

Assemble listing LIST Control output of an assemble listing.
specifications NOLIST

SOURCE Control output of a source program listing.
NOSOURCE

CROSS_REFERENCE Control output of a cross-reference listing.
NOCROSS_REFERENCE

SECTION Control output of a section information
NOSECTION listing.

SHOW Control output of the source program
NOSHOW listing.

LINES Sets the number of lines in the assemble
listing.

COLUMNS Sets the number of columns in the
assemble listing.

CAUTION!

When starting the assembler on MS-DOS, enter a slash (/) instead of a hyphen (-) before the
command line options.

Supplement:

The assemble listing is a listing to which the results of the assembly processing are output, and
consists of a source program listing, a cross-reference listing, and a section information listing.

References: See appendix C, "Assemble Listing Example", for a detailed description of the
assemble listing.

197

2.2 Command Line Option Reference

2.2.1 Object Module Command Line Options

This assembler provides the following command line options concerned with object modules.

OBJECT NOOBJECT

These command line options control output of an object module.

DEBUG NODEBTJG

These command line options control output of debug information.

Note: The syntaxes are written for a UNIX system; use a slash (/) instead of a hyphen (-) for
an MS-DOS system.

198

•

OBJECT NOOBJECT

Object Module Output Control

Syntax

OBJECT (= <object output file>1
Ega5BJECT

The abbreviated forms are indicated by shading.

Description

The OBJECT option specifies output of an object module.

The NOOBJECT option specifies no output of an object module.

The object output file specifies the output destination for the object module.

When the object output file parameter is omitted, the assembler takes the following actions:

If the file format is omitted:
The file format obj is supplied.

If the specification is completely omitted:
The file format obj is appended to the name of the input source file (the first specified

source file).

4. Do not specify the same file for the input source file and the output object file.

Assembler Directive Command Line Option Result

(regardless of any specification)

(regardless of any specification)

.OUTPUT OBJ

.OUTPUT NOOBJ

An object module is output.

An object module is not output.

An object module is output.

An object module is not output.

OBJECT

NOOBJECT

(no specification)

(no specification) An object module is output

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

200

OBJECT NOOBJECT

•

DEBUG I NODEBUG

Debug Information Output Control

Syntax

SEEBUG

EEZEBUG
The abbreviated forms are indicated by shading.

Description

I. The DEBUG option specifies output of debug information.

The NODEBUG option specifies no output of debug information.

2. The DEBUG and NODEBUG options are only valid in cases where an object module is

being output.

References: Object module output
-+ Programmer's Guide, 4.2.5, "Object Module Assembler Directives".

.OUTPUT
--o User's Guide, 2.2.1, "Object Module Command Line Options",

OBJECT NOOBJECT

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

DEBUG (regardless of any specification) Debug information is output.

NODEBUG (regardless of any specification) Debug information is not
output.

(no specification) .OUTPUT DBG Debug information is output.

.OUTPUT NODBG Debug information is not
output.

(no specification) Debug information is not
output.

201

S DEBUG NODEBUG

Supplement:

Debug information is information required when debugging a program using the
simulator/debugger or the emulator, and is part of the object module. Debug information includes
information about source statement lines and information about symbols.

•

202

• 2.2.2 Assemble Listing Command Line Options

This assembler provides the following command line options concerned with the assemble listing.

LIST NOLIST

These command line options control output of an assemble listing.

SOURCE NOSOURCE

These command line options control output of a source program listing.

CROSS_REFERENCE

NOCROSS REFERENCE

These command line options control output of a cross-reference listing.

SECTION NOSECTION

These command line options control output of a section information listing. •
SHOW NOSHOW

These command line options control output of the source program listing.

LINES

This command line option sets the number of lines in the assemble listing.

COLUMNS

This command line option sets the number of columns in the assemble listing.

203

• LIST NOLIST

Assemble Listing Output Control

Syntax

ECIST (—<listing output file>]
111=3T

The abbreviated forms are indicated by shading.

Description

The LIST option specifies output of an assemble listing.

The NOLIST option specifies no output of an assemble listing.

The listing output file specifies the output destination file for the assemble listing.

When the listing output file parameter is omitted, the assembler takes the following actions:

If the file format is omitted:
The file format us is supplied.

If the specification is completely omitted: I
The file format us is appended to the name of the input source file (the first specified
source file).

4. Do not specify the same file for the input source file and the listing output file.

204

• LIST NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Una Option Assembler Directive Result

LIST (regardless of any specification) An assemble listing is output.

NOLIST (regardless of any specification) An assemble listing is not
output.

(no specification) .PRINT LIST An assemble listing is output.

.PRINT NOLIST An assemble listing is not
output.

(no specification) An assemble listing is not
output.

•

• SOURCE NOSOURCIC

Source Program Listing Output Control

Syntax

OCURCE
ERDEURCE

The abbreviated forms are indicated by shading.

Description

The SOURCE option specifies output of a source program listing to the assemble fisting.

The NOSOURCE option specifies no output of a source program listing to the assemble
listing.

The SOURCE and NOSOURCE options are only valid in cases where an assembly listing is
being output.

References: Assemble listing output
Programmer's Guide. 4.2.6. "Assemble Listing Assembler Directives",
_PRINT

-4 User's Guide, 2.2.2. "Assemble Listing Command Line Options",
LIST NOLIST

206

•

• SOURCE NOSOURCE

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Result (when an assemble

Command Line Option Assembler Directive listing is output)

SOURCE (regardless of any specification) A source program listing is
output.

NOSOURCE (regardless of any specification) A source program listing is not
output.

(no specification) .PRINT SRC A source program listing is
output.

.PRINT NOSRC A source program listing is not
output.

(no specification) A source program listing is
output.

•

• CROSS_REFERENCE NOCROSS_REFERENCE

Cross-Reference Listing Output Control

Syntax

=SOS S....REFERENCE
CMOS S_REFERENCE

The abbreviated forms are indicated by shading.

Description

The CROSS_REFERENCE option specifies output of a cross-reference listing to the
assemble listing.

The NOCROSS_REFERENCE option specifies no output of a cross-reference listing to the
assemble listing.

The CROSS_REFERENCE and /NOCROSS_REFERENCE options are only valid in cases
where an assemble listing is being output.

References: Assemble listing output
---) Programmer's Guide, 4.2.6, "Assemble Listing Assembler Directives",

-PRINT
User's Guide. 2.2.2, "Assemble Listing Command Line Options",
LIST NOLIST

208

•

CROSS ...REFERENCE NOCROSS REFERENCE

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Result (when an assemble

Command Line Option Assembler Directly, listing is output)

CROSS_REFERENCE (regardless of any specification) A cross-reference listing is
output.

NOCROSS_REFERENCE (regardless of any specification) A cross-reference listing is not
output.

(no specification) .PRINT CREF A cross-reference listing is
output.

.PRINT NOCREF A cross-reference listing is not
output.

(no specification) A cross-reference listing is
output.

• SECTION NOSECTION

Section Information Listing Output Control

Syntax

MOTION
CT ION

The abbreviated forms are indicated by shading.

Description

I. The SECTION option specifies output of a section information listing to the assemble listing.

The NOSECTION option specifies no output of a section information listing to the assemble
listing.

2. The SECTION and NOSECTION options are only valid in cases where an assemble listing is
being output.

References: Assemble listing output
—o Programmer's Guide. 4.2.6. "Assemble Listing Assembler Directives",

.PRINT
-4 User's Guide. 2.2.2. "Assemble Listing Command Line Options",

LIST NOLIST

210

a

SECTION NOSECTION

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Result (when an assemble

Command Line Option Assembler Directive listing is output)

SECTION (regardless of any specification) A section information listing is
output.

NOSECTION (regardless of any specification) A section information listing is
not output.

(no specification) .PRINT SCT A section information listing is
output.

.PRINT NOSCT A section information listing is
not output.

(no specification) A section information listing is
output.

•

211

lb

• SHOW NOSHOW

Source Program Listing Output Control

Syntax

<UNIX> •

MOW (ms <output type>G<output type> ...]]
=mow (= <output type>G<output type> ...))

<MS—DOS>

=OW (<output type> (, <output type> .))
al9,5k1Ow (<output type> G <output type> . .])]

When only one output type is specified, the parentheses can be omitted.

Output type: {CONDITIONALS I I5EF INIT IONS I CALLS I EXPANSIONS I CODE I

The abbreviated forms are indicated by shading.

Description

The SHOW option specifies output of preprocessor function source statements and object
code lines in the source program listing.

The NOSHOW option suppresses output of specified preprocessor function source statements
and object code display lines in the source program listing.

The items specified by output types will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

-SHOW: Output
-NOSHOW: Not output (suppress)

212

Output Type Object Description

Condition-failed .AIF statements CONDITIONALS Failed condition

DEFINITIONS Definition Macro definition parts,
.AREPEAT and .AWHILE definition parts,

.INCLUDE directive statements

.ASSIGNA and .ASSSIGNC directive
statements

Call Macro call statements,
.AIF and .AENDI directive statements

CALLS

Macro expansion statements
.AREPEAT and .AWHILE expansion

statements

EXPANSIONS Expansion

Object code lines The object code lines exceeding the source

statement lines
CODE

The object code is output.

The object code is not output.

SHOW.coutput type> (regardless of any specification)

NOSHOW.<output type> (regardless otany specification)

(no specification) The object code is output.

The object code is not output.

The object code is output.

.UST <output type> (output)

.LIST <output type> (suppress)

(no specification)

SHOW NOSHOW

3. The following output types can be specified:

References: Assemble listing output

—) Programmer's Guide, 4.2.6, "Assemble Listing Assembler Directives",

.PRINT

—) User's Guide. 2.2.2. "Assemble Listing Command Line Options",

LIST NOLIST SOURCE NOSOURCE

Relationship with Assembler Directives

The assembler gives priority to-specifications made with command line options.

Command Line Option Assembler Directive Result

213

•

• LINES

Sets the Number of Lines in the Assemble Listing

Syntax

EZ:Hts=<line count>
The abbreviated form is indicated by shading.

Description

LINES is the command line option that sets the number of lines on a single page of the
assemble listing. The range of valid values for the line count is from 20 to 255.

The LINES specification is only valid in cases where an assemble listing is being output.

References: Assemble listing output
—) Programmer's Guide. 4.2.6, "Assemble Listing Assembler Directives",

.PRINT
—) User's Guide, 2.2.2, "Assemble Listing Command Line Options",

LIST NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Una Option Assembler Directive Result

LINES..cline count> (regardless of any specification) The number of lines on a page
is given by the LINES
specification.

(no specification) .FORM LIN.<1ine count> The number of lines on a page
is given by the .FORM
specification.

(no specification) The number of lines on a page
is 60 lines.

214

•

•

COLt7MNS

Sets the Number of Columns in the Assemble Listing

Syntax

EZELUMNS.•<colurnn count >
The abbreviated form is indicated by shading.

Description

COLUMNS is the command line option that sets the number of columns in a single line of

the assemble listing. The range of valid values for the column count is from 79 to 255.

The COLUMNS specification is only valid in cases where an assemble listing is being

output.

References: Assemble listing output
-4 Programmer's Guide, 4.2.6. "Assemble Listing Assembler Directives",

.PRINT
—o User's Guide. 2.2.2. "Assemble Listing Command Line Options",

LIST NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

COLUMNS- (regardless of any specification) The number of columns in a line

. <column count> is given by the COLUMNS
specification.

(no specification) .FORM COL.<column count> The number of columns in a line
is given by the .FORM
specification.

(no specification) The number of columns in a line
is 132 columns.

215

(This page intentionally left blank.)

4)

*

Appendix

(This page intentionally left blank.)

S

*

s

•

•

Appendix A Limitations and Notes on Programming

Table A-1 Limitations and Notes on Programming

No. Item Limitation

1 Character types ASCII characters

2 Upper/lower-case letter
distinction

Symbols (including section names)

Object module names

Reserved words
Executable instruction mnemonics

Assembler directive mnemonics

Operation sizes
Integer constant radixes ,

/ Distinguished

Not
distinguished

3 Line length Up to 255 bytes

4 Program length (in lines) Up to 65,535 lines

5 Character constants Up to 4 characters

6 Symbol length Up to 32 characters

7 Number of symbols Up to 65,535 symbols

8 Number of import symbols Up to 65.535 symbols

9 Number of export symbols Up to 65.535 symbols

10 Section size Up to H'FFFFFFFF bytes

11 Number of sections Up to 65.535 sections

12 Number of macro generation

numbers

Up to 100,000 numbers

13 Number of literals Up to 100.000 literals

Appendix B Sample Program

This appendix presents a sample program written for this assembler.

Sample Program Specifications:

Functional Specification

Macros and subroutines for addition, subtraction, multiplication, and division of fixed-point data
in the following format:

<parameter 1> OP <parameter 2> —) result

OP: +,—,x,+

Note: Operation results are rounded off. Neither underflow nor overflow is checked.

Data Format

Register

Sign bit

Integer part
A

Decimal point

Fraction part

The location of the decimal point is set in preprocessor variable POINT as the number of bits
from the MSB.

Inputs and Outputs

Inputs: Set parameter 1 in register Parml.
Set parameter 2 in register Pann2.
For addition and subtraction, parameters 1 and 2 can be specified as macro parameters.

Output The result is stored in register Parm 1.

Macro and Subroutine Usage

Addition (+): Macro call FIX_ADD [parameter 11, [parameter 21

Subtraction (—): Macro call FIX_SUB [parameter 1], [parameter 21

Multiplication (x): Subroutine call FIX_MUL

Division(+): Subroutine call FIX_DIV

Registers to be Used

Define the following registers with the .REG directive:
Parml. Pam n 2. WORK 1, WOR1C2, WORK3, WORK4

Supplement

An example of using this sample program is shown in appendix C.

•

Coding Example:

.MACRO FIX_ADD Rs=2arm2, Rd=Parml
ADD \Rs.\Rd
.ENDM

.MACRO FIX _SUB Rs..Parm2,Rd=Parm1
SUB \115 ,\Rd
.ENDM

FIX_MUL:
DIVOS Parml, Parm2
MOW WORK1

MP/P2 Parini
; Stores the sign of the result in WORK I.

BT MUL01 If (Parrnl < 0), Parml = —Parml

NEC Parml, Parml
MUL01 CMP /P2 Parm2

ST MUL02
; --

lit (Parm2 < 0), Parm2 = —Parm2

NEG Parm2, Pa rm2
MULO 2 MULU Parml, Parm2 ; Parml (low) • Parm2 (low)

SWAP .w Pa rml, Pa rml
STS MACL, WORK2
MULU ? a rrnl, Pa rtil2 ; Parml (high) • Parm2 (low)

SWAP .w Pa rml, Pa rml
SWAP .W Pa rm2, Pa rm2
STS MACL.WORK3
MULU Pa rml. Pa rm2 ; Parml (low) • Parm2 (high)

SWAP .W Pa rml, Parml
STS MACL, WORK4
MULU Parml, Pa rm2 Parml (high) • Parm2(high)

CLRT
STS MACL, P arml
POV WORK3, P a rm2
SHLR16 WORK3
SHLL16 P a rm2
ADDC • Pa rm2. WORK2
ADDC RK3, P a rml Sums 16-bit multiplication results.

MOV WORK4,Parm2
SHLR16 WORK4
SHLL16 Parm2
ADDC WORK2,Parm2
ADDC WORK 4 , Pa rml ; —

.AREPEAT \ &POINT
SHLL Parm2 Corrects deamal point location.

ROTCL Pared
.AENDR
SH1R WORK1
BF MUL03 Adds the sign.

NEC Parml, Pa rml —

MUL03 RTS
NO?

(Continued on following page.)

221

•
cv #0,103RK1

DIVOS W3RK1,Parrn1 ; I If dividend is a negative value.
SUFIC W3RK1,Parml ; converts to 1's complement.
.AREPEAT \iPOINT
SHAR Panel I Corrects decimal point location.
ROICR WORKI
.AENDR

DIVOS Parm2.Parml
.AREPEAT 32 -+

ROTCL WORM. I Parm 1 :WORK 1 /Parm2 —> WORK 1
DIVI Parm2,Parml

.AENDR -4.

ROTCL WORKI
CV tO,Paren1

ADCC Parenl,WORK1 I Converts to 2's complement.
MDV WORK1,Paren1 ;
RTS
NO?

•

• Appendix C Assemble Listing Output Example

The assemble listing shows the result of the assemble processing. The assemble listing consists of

a source program listing, a cross-reference listing, and a section information listing.

This appendix describes the content and output format of the assemble listing using the assembly

of the source program shown below as an example. This uses the sample program shown in

appendix B to calculate the following:

1.5 x 2.25 +3 +5

POINT .ASSIGNA 16
Parml .REG (R0)
Parm2 .REG (Si)
WORK' .REG (52)
WORY2 .REG (53)
WORK3 .REG (54)
WORM .REG (R5)

.SECTION SAMPLE.222Z.A::::=L

.:NCLUCE "appenclx P"

a .REG (R8)
.REG (R9)
.REG (R10)
.REG' (R11)

sz.art
ST'S ?R,-SP
MOV.L 4H'000:8DDG.J
MOV.L sH'0CC24,L
MOV.L *H'DOC30000,z
MOV.L .-“C"^

MOV a,Parml
(.VV c.Parm2
BSR
NOP
MOV Parm:,a
MOV c.Parm:
MOV a.Parml
BSR
NOP
FIX_ADD a
MOV Par,,
LOS 35?-,PR
RTS
NOP
.END

223

SH SERIES ASSEMBLER Ver.
PROGRAM NAME

1

1.2

1

07/09/93
-SAMPLE-

19:52:40
!7)

.HEADING —SAMPLE--
2 2 POINT .ASSIGNA 16
3 3 Parml .REG (R01
4 4 Parm2 .RIG !RI)
5 5 WORK1 .REG (R21
6 6 WORK2 .RE. G (R31
7 7 WORK3 .REG (R4)
8 8 WORK4 .REG (R51

••••••••

20 00000000 9 Ii FIX_MUL:
21 00000000 2107 10 Ii DIVOS ParmI.Parm2
22 00000002 0229 11 Ii MOVT WORKI
23 00000004 4011 12 II. CMP/PZ ?arm. :--
24 00000006 8900 13 31 37 MULCI

__.21 00000008 6008 -11.11.
(1) (2) (3) (4) (5) (6)

237

....war

BEGIN-POOL
238 00000180 A008 BRA TO END-POOL
239 00000182 0009 NOP
240 00000184 00018000 DATA FOR SCURCE-L:NE 2:-
241 00000188 00024000 DATA FOR SOURCE-::NE 2:6 (8)
242 0000018C 00030000 DATA FOR SOURCE-L1NE 2:,:.
243 00000190 00050000 DATA FOR SOURCE-L:NE 22:
244 _ND-POOL
245 39 .END

....TOTAL ERRORS 0

....TOTAL WARNINGS 0

(9)

• C.1 Source Program Listing

The source program listing lists information related to the source statements, includina the line
number and the corresponding object code.

Figure C-1 shows an example of a source program listing.

Figure C-1 Source Program Listing Output Example

Line numbers (in decimal)
The value of the location counter (in hexadecimal)
The object code (in hexadecimal). The size of the reserved area in bytes is listed for areas
reserved with the .RES..SRES, .SRESC. and .SRESZ assembler directives.
Source line numbers (in decimal)
Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function is listed.
In: File inclusion (n indicates the nest level).
C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional

iterated expansion
M: Macro expansion

224

•

**. SH SERIES ASSEMBLER Ver. 1.2

CROSS REFERENCE LIST

07/09/93 19:52:40

NAME SECTION ATM VALUE SEQUENCE

FIX DTI/ SAMPLE 00000088 94* 229

FIX MUL SAMPLE 00000000 20. 224

MAN03 UDEF 00000000 89

MULOI SAMPLE 0000000A 24 26*

P83L02 SAMPLE 00000010 27 29*

Parma REG 3* 21 23 25
37 37 39 41
69 7: 73 75
96 97 102 104
122 124 126 128
150 152 154 156
174 :76 178 180
:98 200 202 204

Parm2 REG 4* 21 26 28
44 45 47 49
70 72 74 76

144 146 148 150
168 :70 172 174

(1) (2) (3) (4) (5)

• The source statements
The header setup with the .HEADING assembler directive.

The literal pool
The total number of errors and warnings. Error messages are listed on the line following the

source statement that caused the error.

C.2 Cross-Reference Listing

The cross-reference listing lists information relating to symbols, including the attribute and the

value.

Figure C-2 shows an example of a cross-reference listing.

Figure C-2 Cross-Reference Listing Output Example

The symbol name
The name of the section that includes the symbol (first eight characters)

The symbol attribute

 Export symbol

IMPT . .. Import symbol

SC T Section name ,

REG Symbol defined with the .REG assembler directive

ASGN Symbol defined with the .ASSIGN assembler directive

EQU Symbol defined with the .EQU assembler directive

MDEF Symbol defined two or more times

UDEF Undefined symbol

225

No symbol attribute (blank)....A symbol other than those listed above

The value of symbol (in hexadecimal)
The list line numbers (in decimal) of the source statements where the symbol is defined or

referenced. The line number marked with an asterisk is the line where the symbol is defined.

C.3 Section Information Listing

The section information listing lists information related to the sections in a program, including the

section type and section size.

Figure C-3 shows an example of a section information listing.

SH SERIES ASSEMBLER Ver. 1.2 07/09/93 19:52:4C

SECTION DATA LIST

SECTION ATTRIBUTE SIZE 37AR"

SAMPLE REL-CODE :CC0CC194

(I) (2) (3) (4)

Figure C-3 Section Information Listing Output Example

(I) The section name
The section type

REL Relative address section

ABS Absolute address section
CODE Code section
DATA Data section
COMMON Common section
STACK Stack section
DUMMY Dummy section

The section size (in hexadecimal. byte units)
The start address of absolute address sections

226

Appendix D Error Messages

D.1 Error Types

Command Errors

These are errors related to the command line that starts the assembler. These errors can occur, for

example, in cases where there are errors in the source file or command line option specifications.

The assembler outputs the error message to standard error output (usually the display). The

format of these messages is as follows:

<error number><message>

Example:

10 NO INPUT FILE SPECIFIED

Source Program Errors

These are syntax errors in the source program.

The assembler outputs the error message to standard output (usually the display) or the source

program listing. (If a source program listing is output during assembly, these messages are not

. output to standard output.)

The format of these messages is as follows:

"<source file name>",line <line number>: ERROR <error number>

"<source file name>",line <line number>: WARNING <error number>

Example:

"PROG.SRC",line 25: ERROR 300

"PROG.SRC",line 33: WARNING 811

227

• The source program error numbers are classified as follows:

100's General source program syntax errors
200's -....—. Errors in symbols
300's ...-...--.--- Errors in operations and/or operands
400's----__ Errors in expressions
500's ...-------- Errors in assembler directives
600's ...-------.— Errors in file inclusion, conditional assembly, or macro function
800's . — General source program warnings

(3) Fatal Errors

These are errors related to the assembler operating environment, and can occur, for example, if the
available memory is insufficient.

The assembler outputs a message to standard error output. The format of these messages is as
follows:

FATAL ERROR (<er ror numbe r >)

Example:

FATAL ERROR (9 02)

Assembly processing is interrupted when a fatal error occurs. S

228

co

D.2 Error Message Tables

Table D-1 Command Error Messages

10 Message: NO INPUT FILE SPECIFIED

Meaning: There is no input source file specified.

Recovery procedure: Specify an input source file.

20 Message: CANNOT OPEN FILE <file name>

Meaning: The specified file cannot be opened.

Recovery procedure: Check and correct the file name and directory.

30 Message: INVALID COMMAND PARAMETER

Meaning: The command line options are not correct.

Recovery procedure: Check and correct the command line options.

40 Message:

Meaning:

Recovery procedure:

CANNOT ALLOCATE MEMORY

All available memory is used up during processing.

This error only occurs when the amount of available user memory is
extremely small If there is other processing occurring at the same
time as assembly, interrupt that processing and restart the
assembler. If the error still occurs, check and correct the memory
management employed on the host system.

50 Message:

Meaning:

Recovery procedure:

Supplement:

COMPLETED FILE NAME TOO LONG <file name>

The file name including the directory is too long.

Shorten the total length of the file name and directory path.

It is possible that the object module output by the assembler after
this error has occurred will not be usable with the
simulator/debugger.

229

or

• Table D.2 Source Program Error Messages

General Source Program Syntax Errors

100 Error description: Too complex operation.

Recovery procedure: Simplify the expression for the operation.

101 Error description: Syntax error in executable instruction source statement.

Recovery procedure: Check and correct the whole source statement.

102 Error description: Syntax error in assembler directive source statement.

Recovery procedure: Check and correct the whole source statement.

103 Error description: Program does not end with .END directive.

Recovery procedure: Add .END directive.

104 Error description: The value of location counter exceeded its maximum value.

Recovery procedure: Reduce the size of the program.

105 Error description: Executable instruction or assembler directive that reserves aata in
stack section.

Recovery procedure: Remove the instruction or directive in the stack section.

106 Error description: Error display terminated due to too many errors.

Recovery procedure: Check and correct the whole source statement.

108 Error description: Illegal continuation line.

Recovery procedure: Check and correct continuation line.

109 Error description: The number of lines being assembled exceeoed 65.535 lines.

Recovery procedure: Subdivide the program into multiple files.

150 Error description: Illegal executable instruction placed following delayed branch
instruction in memory.

Recovery procedure: Change the order of the instruction so that the instruction does not
immediately follow a delayed branch instruction.

151 Error description: Extended instruction placed following a delayed branch instruction in
memory.

Recovery procedure: Place an executable instruction following the delayed branch
instruction.

152 Error description: Illegal boundary alignment value specified for a section including
extended instructions.

Recovery procedure: Specify 2 or a larger multiple of 2 as a boundary alignment value.

153 Error description: Executable or extended instruction placed at an odd address.

Recovery procedure: Place executable and extended instructions at even addresses.

230

Table D-2 Source Program Error Messages (coot)

Symbol Errors

200 Error description:

Recovery procedure:

Undefined symbol reference.

Define the symbol.

201 Error description: Reserved word specified as symbol (or section name).

Recovery procedure: Correct the symbol or section name.

202 Error description: Illegal symbol (or section name).

Recovery procedure: Correct the symbol or section name.

Operation and Operand Errors

300 Error description: Illegal operation.

Recovery procedure: Correct the operation.

301 Error description: Too many operands of executable instruction, or illegal comment

format.

Recovery procedure: Check and correct the operands and comment.

304 Error description: Too few operands.

Recovery procedure: Correct the operands.

307 Error description: Illegal addressing mode in operand.

Recovery procedure: Correct the operand.

308 Error description: Syntax error in operand.

Recovery procedure: Correct the operand.

Expression and Operation Errors

400 Error description: Character constant is longer than 4 characters.

Recovery procedure: Correct the character constant.

402 Error description: Operand value out of range for this instruction.

Recovery procedure: Change the value.

403 Error description: Attempt to perform multiplication, division, or logic operation on

relative value.

Recovery procedure: Correct the expression.

407 Error description: Memory overflow during expression calculation.

Recovery procedure: Simplify the expression.

408 Error description: Attempt to divide by 0.

Recovery procedure: Correct the expression.

231

Table D-2 Source Program Error Messages (cont)

409 Error description: Register name in expression.

Recovery procedure: Correct the expression.

411 Error description: STARTOF or SIZOF specifies illegal section name.

Recovery procedure: Correct the section name.

450 Error description: Illegal displacement value. (Negative value is specified.)

Recovery procedure: Correct the displacement value.

452 Error description: PC-relative data move instruction specifies illegal address for data
area.

Recovery procedure: Access a correct address according to the instruction operation size.
(4-byte boundary for MOV.L and MOVA, and 2-byte boundary for
MOV.W.)

453 Error description: More than 510 extended instructions exist that have not output
literals.

Recovery procedure: Output literal pools using .POOL.

Assemblii Dirsiethr• . _
•

500 Error description: Label not defined in directive that requires label.

Recovery procedure: Insert a label.

501 Error description: Illegal specification of the start address or the value of location
counter in section.

Recovery procedure: Correct the start address or value location counter.

502 Error description: Illegal value (forward reference symbol, import symbol, or relative
address symbol) specified in operand.

Recovery procedure: Correct the operand.

503 Error description: Symbol declared for export symbol not defined in the file.

Recovery procedure: Define the symbol. Alternatively, remove the export symbol
declaration.

504 Error description: Illegal value (forward reference symbol or import symbol) specified in
operand.

Recovery procedure: Correct the operand.

505 Error description: Misspelled operand.

Recovery procedure: Correct the operand.

506 Error description: Illegal element specified in operand.

Recovery procedure: Correct the operand.

232

•

• Table D-2 Source Program Error Messages (cont)

508 Error description: Operand value out of range for this directive.

Recovery procedure: Correct the operand.

510 Error description: Illegal boundary alignment value.

Recovery procedure: Correct the boundary alignment value.

512 Error description: Illegal execution start address.

Recovery procedure: Correct the execution start address.

513 Error description: Illegal register name.

Recovery procedure: Correct the register name.

514 Error description: Symbol declared for export symbol that cannot be exported.

Recovery procedure: Remove the declaration for the export symbol.

516 Error description: Inconsistent directive specification.

Recovery procedure: Check and correct all related directives.

517 Error description: Illegal value (forward reference symbol, an import symbol, or

relative-address symbol) specified in operand.

Recovery procedure: Correct the operand.

518 Error description: Symbol declared for import defined in the file.

Recovery procedure: Remove the declaration for the import symbol.

521 Error description: .NOPOOL placed at illegal position.

Recovery procedure: Place .NOPOOL following a delayed branch instruction.

522 Error description: .POOL placed following a delayed branch instruction.

Recovery procedure: Place an executable instruction following the delayed branch

instruction.

VilainarilOnerCOnditgraftiiiiiiiin6ly, and Macro Errors

600 Error description: Illegal character.

Recovery procedure: Correct it.

601 Error description: Illegal delimiter character.

Recovery procedure: Correct it.

602 Error description: Character string error.

Recovery procedure: Correct it.

603 Error description: Source statement syntax error.

Recovery procedure: Reexamine the entire source statement.

233

• Table D-2 Source Program Error Messages (cont)

604 Error description: Illegal operand specified in a directive.

Recovery procedure: No symbol or location counter ($) can be specified as an operand of
this directive.

610 Error description: Macro name reused in macro definition (.MACRO directive).

Recovery procedure: Correct the macro name.

611 Error description: Macro name not specified (.MACRO directive).

Recovery procedure: Specify a macro name in the name field of the .MACRO directive.

612 Error description: Macro name error (.MACRO directive).

Recovery procedure: Correct the macro name.

613 Error description: .MACRO directive appears in macro body (between .MACRO and
.ENDM directives), between .AREPEAT and .AENDR directives, or
between .AWHILE and .AENDW directives.

Recovery procedure: Remove the .MACRO directive.

614 Error description: Identical formal parameters repeated in formal parameter declaration
in macro definition (.MACRO directive).

Recovery procedure: Correct the formal parameters.

615 Error description: .END directive appears in macro body (between .MACRO and
.ENDM directives).

Recovery procedure: Remove the .END directive.

616 Error description: An .ENDM directive appears without a preceding .MACRO directive,
or an .EXITM directive appears outside of a macro body (between
.MACRO and .ENDM directives), outside of .AREPEAT and .AENDR
directives, or outside of .AWHILE and .AENDW directives.

Recovery procedure: Remove the .ENDM or .EXMLA directive.

618 Error description: Line with over 255 characters generated by macro expansion.

Recovery procedure: Correct the definition or call so that the line is less than or equal to
255 characters.

619 Error description: Macro parameter name error in macro call, or error in formal
parameter in a macro body (between .MACRO and .ENDM
directives).

Recovery procedure: Correct the formal parameter.

Supplement: When there is an error in a formal parameter in a macro body, the
errbr will be detected and flagged during macro expansion.

620 Error description: Reference to an undefined preprocessor variable.

Recovery procedure: Define the preprocessor variable.

234

•

Table D-2 Source Program Error Messages (cont)

621 Error description: .END directive in macro expansion.

Recovery procedure: Remove the .END directive.

622 Error description: Matching parenthesis missing in macro processing exclusion.

Recovery procedure: Add the missing macro processing exclusion parenthesis.

623 Error description: Syntax error in character string manipulation function.

Recovery procedure: Correct the character string manipulation function.

624 Error description: Too many macro parameters for positional specification in macro call.

Recovery procedure: Correct the number of macro parameters.

630 Error description: Syntax error in structured assembly directive operand.

Recovery procedure: Reexamine the directive.

631 Error description: Terminating preprocessor directive does not agree with matching

directive.

Recovery procedure: Reexamine the preprocessor directives.

640 Error description: Syntax error in conditional assembly directive operand.

Recovery procedure: Reexamine the antler source statement.

641 Error description: Error in conditional assembly directive relational operator.

Recovery procedure: Correct the relational operator.

642 Error description: .END directive appears between .AREPEAT and .AENDR directives
or between AWHILE and .AENDW directives.

Recovery procedure: Remove the .END directive.

643 Error description: .AENDR or .AENDW directive does not form a proper pair with

.AREPEAT or .AWHILE directive.

Recovery procedure: Re-examine the preprocessor directives.

644 Error description: .AENOW or .AENDR directive appears between .AIF and .AENDI

directives.

Recovery procedure: Remove the .AENDW or .AENDR directive.

645 Error description: Line with over 255 characters generated by .AREPEAT or .AWHILE

expansion.

Recovery procedure: Correct the .AREPEAT or .AWHILE to generate lines of less than or

equal to 255 characters.

650 Error description: Error in .INCLUDE file name.

Recovery procedure: Correct the file name.

651 Error description: Could not open .INCLUDE file.

Recovery procedure: Correct the file name.

235

• Table D-2 Source Program Error Messages (cont)

652 Error description: File inclusion nesting exceeded 8 levels.

Recovery procedure: Limit the nesting to 8 or fewer levels.

653 Error description: Syntax error in .INCLUDE operand.

Recovery procedure: Correct the operand.

660 Error description: Missing .ENDM directive following .MACRO.

Recovery procedure: insert an .ENDM directive.

662 Error description: .END directive appears between .AIF and .AENDI directives.

Recovery procedure: Remove the .END directive.

663 Error description: .END directive appears in included file.

Recovery procedure: Remove the .END directive.

664 Error description: .END directive appears between .AIF and .AENDI directives.

Recovery procedure: Remove the .END directive.

'General Sonriiii.Program—iVam—Ings;,:.i--44------ - •
800 Error description: A symbol exceeded 32 characters.

Recovery procedure: Correct the symbol

Supplement: The assembler ignores the characters starting at the 33rd character.

801 Error description: Symbol already defined.

Recovery procedure: Remove the symbol redefinition.

Supplement: The assembler ignores the second and later definitions.

807 Error description: Illegal operation size.

Recovery procedure: Correct the operation size.

Supplement: The assembler ignores the incorrect operation size specification.

808 Error description: Illegal notation of integer constant.

Recovery procedure: Correct the notation.

Supplement The assembler may misinterpret the integer constant. i.e.. interpret it
as a value not intended by the programmer.

810 Error description: Too many operands or illegal comment format.

Recovery procedure: Correct the operand or the comment.

Supplement: The assembler ignores the extra operands.

811 Error description: Specified label in assembler directive that cannot have a label.

Recovery procedure: Remove the label specification.

Supplement: The assembler ignores the label.

236

•

• Table D-2 Source Program Error Messages (cont)

812 Error description: Section or object module name exceeded 32 characters.

Recovery procedure: Correct the section or object module name.

Supplement: The assembler ignores the 33rd and later characters.

813 Error description: A different section type is specified on section restart (reentry), or,
a section start address is respecified at the restart of absolute
section.

Recovery procedure: Do not respecify the section type or start address on section reentry.

Supplement: The specification of starting section remains valid.

815 Error description: Respecification of object module name.

Recovery procedure: Specify the object module name once in a program.

Supplement: The assembler ignores the second and later object module name
specifications.

816 Error description:

Recovery procedure:

Supplement:

Illegal allocation of data or data area.

Locate the word data or data area on the even address. Locate the
long word data or data area on an address of a multiple of 4.

The assembler corrects the location of the data or data area
according to the size of it.

• 817 Error description:

Recovery procedure:

Supplement:

A boundary alignment value less than 4 specified for a code section.

The specification is valid, but if an executable instruction or extended
instruction is located at an odd address, error 153 occurs.

Special care must be taken when specifying 1 for code section
boundary alignment value.

825 Error description: Executable instruction or assembler directive that reserves data or
data area in dummy section.

Recovery procedure: Remove the instruction or directive.

Supplement: The assembler ignores the instruction or directive.

832 Error description: Symbol P already defined before a default section is used.

Recovery procedure: Do not define P as a symbol if a default section is used.

Supplement: The assembler regards P as the name of the default section, and
ignores other definitions of the symbol P.

835 Error description: Operand value out of range for this instruction.

Recovery procedure: Correct the value.

Supplement: The assembler generates object code with a value corrected to be
within range.

237

• Table D-2 Source Program Error Messages (cont)

836 Error description: Illegal notation of integer constant.

Recovery procedure: Correct the notation.

Supplement: The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmer.

837 Error description: The length of a source statement exceeded 255 bytes.

Recovery procedure: Rewrite the source statement to be within 255 bytes by, for example,
rewriting the comment. Alternatively, rewrite the statement as a
multi-line statement.

Supplement: The assembler ignores byte number 256, and regards the characters
starting at byte 257 as the next statement.

850 Error description: Symbol specified in label field.

Recovery procedure: Remove the symbol.

851 Error description: Macro generation counter exceeded 99999.

Recovery procedure: Reduce the number of macro calls.

852 Error description: Characters appear after the operands.

Recovery procedure: Correct the operand(s).

870 Error description: Illegal displacement value.

(Either the displacement value is not an even number when the
operation size is word, or the displacement value is not a multiple of
4 when the operation size is long word.)

Recovery procedure: Take account of the fact that the assembler corrects the
displacement value.

Supplement: The assembler generates object code with the displacement
corrected according to the operation size.

(For a word size operation the assembler discards the low order bit
of the displacement to create an even number, and for a long word
size operation the assembler discards the two low order bits of the
displacement to create a multiple of 4.)

871 Error description:

Recovery procedure:

Supplement:

Executable instruction with PC relative addressing mode operand is
located following delayed branch instruction.

Take account of the fact that the value of PC is changed by a
delayed branch instruction.

The assembler generates object code exactly as specified in the
program.

238

• Table D-2 Source Program Error Messages (coot)

872 Error description:

Recovery procedure:

Supplement:

Executable instruction is located on the odd address in absolute
address section.

Locate the instruction on the even address.

The assembler only outputs this message for the first illegal
instruction in the section.

874 Error description:

Recovery procedure:

Supplement:

Cannot check data area boundary for PC-relative data move
instructions.

Note carefully the data area boundary at linkage process.

The assembler only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.

875 Error description:

Recovery procedure:

Supplement:

Cannot check displacement size for PC-relative data move
instructions.

Note carefully the distance between data move instructions and data
area.

The assembler only outputs this message for the first illegal
instruction in the section.

876 Error description: The assembler automatically outputs a BRA instruction.

Recovery procedure: Specify a literal pool output position using .POOL. or check that the
program to which a BRA instruction is added can run normally.

Supplement: When a literal pool output location is not available, the assembler
automatically outputs literal pool and a BRA instruction to jump over
the literal pool.

Table D-3 Fatal Error Messages

901 Error description: Source file input error.

Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

902 Error description: Insufficient memory. (Unable to process the temporary information.)

Recovery procedure: Subdivide the program.

903 Error description: Output error on the list file.

Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

904 Error description: Output error on the object file.

Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

905 Error description: Insufficient memory. (Unable to process the line information.)

Recovery procedure: Subdivide the program.

906 Error description: Insufficient memory. (Unable to process the symbol information.)

Recovery procedure: Subdivide the program.

907 Error description: Insufficient memory. (Unable to process the section information.)

Recovery procedure: Subdivide the program.

908 Error description: The number of sections exceeded 65,535.

Recovery procedure: Subdivide the program.

909 Error description: The number of symbols exceeded 65.535.

Recovery procedure: Subdivide the program.

910 Error description: The number of source program lines exceeded 65,535.

Recovery procedure: Subdivide the program.

911 Error description: The number of import symbols exceeded 65,535.

Recovery procedure: Reduce the number of import symbols.

912 Error description: The number of export symbols exceeded 65,535.

Recovery procedure: Reduce the number of export symbols.

950 Error description: Insufficient memory.

Recovery procedure: Separate the source program.

951 Error description: More than 16 sections exist that have not output literal pools.

Recovery procedure: Output literal pools using .POOL before terminating section
processing.

Please contact your Hitachi. Ltd., sales representative if a problem cannot be resolved using the
indirated recovery procedure. or if an error message that does not appear in the manual is
displayed.

240

241

•

Table E-1 ASCII

Lower 4 Bits

Appendix E

Code Table

ASCII Code Table

Upper 4 Bits

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 g P P

1 SOH DC1 I 1 A 0 a Il

2 STX DC2 ' 2 B R b r

3 EIX DC3 # 3

4 EOT DC4 $ 4 D T d t

5 ENO NAK °A 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB 7 G W 9 w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i Y

A LF SUB ' J Z j z

B VT ESC + K [k (

C FF FS < L \ I I

CR GS

SO RS > N A

SI US I 0 DEL

(This page intentionally left blank.)

•

242

•

• Index

A
absolute address 36
absolute address section 36

absolute address section declaration 66
absolute address symbol 38
absolute address value 38.76
absolute path 142,143
absolute value 38
ADD 51,54
ADDC 54
address calculation 59
address symbol 16

absolute address symbol 38
relative address symbol 38

addressing mode 48
instruction and operation size

combination 52
ADDV 54
.AELSE 155
.AENDI 155
.AENDR 157
.AENDW 159
.AIF 155
-ALIGN 73
AND 51,55
.AREPEAT 157
arithmetic operation instruction 54
ASCII code table 241
assembler 3,6
assembler directive 12,63
assembly-language source program 3,6
assemble listing 3

assemble listing assembler directive 119
assemble listing column count

setting 126.215
assemble listing command line

option 203
assemble listing line count

setting 126,214
assemble listing output control 122,204
assemble listing output example 223

.ASSIGN 78

.ASSIGNA 150

.ASSIGNC 153
automatic literal generation 185

extended instruction related to
automatic literal generation 186

.AWHILE 159

B' 19
backward 41
backward reference 41,42
BF 56.58
boundary alignment value

(adjust the value of the location
counter) 21. 73

section boundary alignment 66
BRA 56.58
branch instruction 56

delayed branch instruction 58
BSR 56,58
BT 56,58

character constant 20
character string 29

character string data area reservation 100
character string data area reservation

(with length) 102
character string data area reservation

(with zero terminator) 106
character string data blocks

reservation 90
character string data reservation 88
character string data reservation

(with length) 93
character string data reservation

(with zero terminator) 95
character string manipulation

function 178
CLRMAC 57
CLRT 57
CMP/EQ 51,54

243

CMP/GE 54
CMP/GT 54
CMP/HI 54
CMP/HS 54
CMP/PL 54
CMP/PZ 54
CMP/STR 54
code section 31

code section declaration 66
COLUMNS 215
command line 195
command line option 195, 197
comment 11. 12. 14

comment for multiple line source
statement 15

common section 33
common section declaration 66

conditional assembly 146. 155
conditional assembly directive 149
conditional iterated expansion 148, 159
compiler 6,7
constant 19, 20, 38
constant symbol 38
control character (appended to a

character string) 88. 91. 93. 95
CROSS_REFERENCE 208
cross-reference listing 225

cross-reference listing output
control 120,208

D
D' 19
.DATA 83
data area reservation 97
data section 32

data section declaration 66
data structure 35
data move instruction 52
.DATAB 85
.DEBUG 117
DEBUG 201
debug information 115,116

debug information output control 114
symbolic debug information output

control 117

decrement 49
delay slot instruction 58
delayed branch instruction 58
disp 48, 49, 50
displaced GBR indirect 48
displaced register indirect 48
displacement 49, 50. 62

correction of displacement 51
divisor of 0 28
DIVOS 54
DIVOU 54
DIV I 54
dummy section 34

data structure using a dummy section 35
caution and supplement on dummy

section 36, 37

E
editor 6, 7
emulator 7
END 139
.ENDM 166
error message 227
EQU 76
executable instruction 47

executable instruction table 52
executing the assembler 195
.EXITM 161.169
export 44

export assembler directive 106
export symbol 44
export symbol declaration 44, 107, I 1 1

.EXPORT 107
expression 23

elements of expression 23
operator priority 25
internal processing 28
notes on expressions 28

extended instruction 53. 186
external 41
external definition 44
external reference 42,44
external reference value 38
EXTS 54
EXTU 54

244

file format 196
file inclusion 141
file name 196

keyword specification 175

file specification format 196 label 12, 13
.FORM 126 LDC 57
formal parameter 164, 166, 171 LDS 57

formal parameter default 166 .LEN 178
forward 41
forward reference 41,42

GBR 48,49
GBR indirect with displacement 48
.GLOBAL 111

H' 19
header (for source program listing) 128
.HEADING 128

#imm 49
immediate 49,51
import 44

import assembler directive 106
import symbol 38,45
import symbol declaration 45, 109. 111

IMPORT 109
INCLUDE 142
included file 141,142
inclusion nest 142
increment 49
INSTR 180
integer constant 19

integer constant with no radix
specification 137

integer data reservation 83
integer data block reservation 85
internal symbol 18
iterated expansion 147. 157

IMP 56,58
'SR 56,58

librarian 6,7
library file 6,7
line

line length 13,219
source statements across multiple

lines 15
program length in lines 219

LINES 214
linkage editor 6. 7
.LIST 122
LIST 204
listing file 196

listing output file 204
load module 6,7

S-type format load module 6,7
location 21.37
location counter 16,21
logic operation instruction 55

MAC 54
MACH 48.49
MACL 48,49
macro 163

comments in macro 174
macro body 163, 166, 171
macro call 175
macro definition 163, 166
macro directive 165
macro function 163
macro generation number 172
macro name 163. 166
macro parameter 164,175
macro replacement processing

exclusion 173
.MACRO 166
mnemonic 12, 47, 219

245

assembler directive mnemonic 63
executable instruction

mnemonic 52,54, 55, 56,57
MOV 51. 52. 61
MOVA 52,61
MOVT 52
MULS 54
MULU 54

operator association rule 25
operator of reserved word 16
operator priority 25

OR 51,55
.ORG 71
.OUTPUT 114

NEG 54
NEGC 54
new page (source program listing)
NOCROSS_REFERENCE 208
NODEBUG 201
NOLIST 204
NOOBJECT 199
NOP 57
NOSECTION 210
NOSHOW 212
NOSOURCE 206
NOT 55

.PAGE 130
parentheses 24, 25
PC 49, 59, 62
positional specification 175

130 PR 48,49
preprocessor variable 145, 150, 153
priority

operation priority 25
operator priority 25

.PRINT 120
PROGRAM 135
program counter (PC) 16,49

value of PC 59

0
OBJECT 199
object code 21

object code for delay slot instruction 58
object converter 6,7
object file 196

object output file 199
object module 3,6

object module assembler directive 113
object module command line option 198
object module output control 114. 199

object module name 135
operand 11, 12. 14, 47
operation 11. 12, 14, 47
operation (expression) 23

internal processing 28
operation priority 25

operation size 47
instruction and addressing form

combination 52
operator 23

Q 19

radix 19
integer constant with no radix

specification 137
_RADIX 137
reassemble 43
.REG 82
register direct 48
register indirect 48

register indirect with index 48
register indirect with post-increment 48
register indirect with pre-decrement 48

register name (reserved word) 16
register name definition 80

relative address 37
relative address section 37

relative address section declaration 66
relative address symbol 38
relative address value 38, 72

246

relative path 142,143
relative value 38
RES 97
reserved word 16,219
return code 195
Rn 48.49
Rara. 56
ROTCR 56
ROTL 56
ROTR 56
RTE 57,58
RTS 56,58
RO 48,49
RI5 49

sample program 220
.S DATA 88
.SDATAB 90
.SDATAC 93
.SDATAZ 95
.SECTION 66
SECTION 210
section 24. 31, 66

section auribute (type by usage) 31.66
section placement in memory 36,66
strut and restart of section 67,68

section information listing 226
section information fisting

output control 120,210
section name 16. 40, 66
section set 24
section set operation 23,24
separate assembly 43
SETT 57
SHAL 56
SHAR 56
shift instruction 56
SHLL 56
SHLL2 56
SHLL8 56
SHLL16 56
SHLR 56
SHLR2 56

SHLR8 56
SHLR16 56
SHOW 212
simulator/debugger 6, 7
SLEEP 57
SOURCE 206
source file 195,196

input source file 195
multiple source file assembly 195

source program 3,6
source program listing 224

source program listing blank line
output 132

source program listing header setting 128
source program listing new page

insertion 130
source program listing

output control 120, 122, 206, 212
source statement 11

source statement structure 11
coding of source statement 13
coding of source statement across

multiple lines 15
SP 34,49
.SPACE 132
SR 48,49
.SRES 100
.SRESC 102
.SRESZ 104
stack pointer (SP) 34,49
stack section 34

caution on stack section 36
stack section declaration 66

start address for simulation 139
Sit 57
STS 57
SUB 54
SUBC 54
.SUBSTR 182
SUBV 54
SWAP 52
symbol (addressing mode) 49, 60, 62
symbol 12

functions of symbol 16

247

symbol definition 39
coding of symbol 18
symbol reference 41

symbol debug information 118
symbolic debug information output

control 117
system control instruction 57

TAS 55
term 23
TRAM 51. 57. 58
TST 51,55

upper/lower case letter distinction 219

V
value of location counter 21.39

location counter value setting 71
location counter value correction 73

VBR 48,49

X
XOR 51,55
XTRCT 52

248

